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Abstract

A common problem when analyzing models, such as mathematical modeling of a biological

process, is to determine if the unknown parameters of the model can be determined from

given input-output data. Identifiable models are models such that the unknown parameters

can be determined to have a finite number of values given input-output data. The total num-

ber of such values over the complex numbers is called the identifiability degree of the

model. Unidentifiable models are models such that the unknown parameters can have an

infinite number of values given input-output data. For unidentifiable models, a set of identifi-

able functions of the parameters are sought so that the model can be reparametrized in

terms of these functions yielding an identifiable model. In this work, we use numerical alge-

braic geometry to determine if a model given by polynomial or rational ordinary differential

equations is identifiable or unidentifiable. For identifiable models, we present a novel

approach to compute the identifiability degree. For unidentifiable models, we present a

novel numerical differential algebra technique aimed at computing a set of algebraically

independent identifiable functions. Several examples are used to demonstrate the new

techniques.

Introduction

Parameter identifiability analysis for dynamical system models consisting of ordinary differen-

tial equations (ODEs) addresses the question of which unknown parameters can be deter-

mined from given input-output data. In this paper, we address structural identifiability, which

concerns whether the parameters of a model can be determined from perfect input-output

data, i.e., noise-free and of any time duration required. This is a necessary condition for the

practical or numerical identifiability problem, which involves parameter estimation with real,

and often noisy, data. For this reason, structural identifiability is often referred to as a priori
identifiability [1]. Even if a model fails to be structurally identifiable, some useful information

about the parameters can still be determined, which is the main motivation for this paper.
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There are two possible outcomes of the structural identifiability check of a mathematical

model. If the parameters of the model have a unique or finite number of values given input-

output data, then the model and its parameters are said to be identifiable. However, if some

subset of the parameters can take on an infinite number of values and yet yield the same input-

output data, then the model and this subset of parameters are called unidentifiable. In the latter

case, we attempt to find a set of identifiable functions of the parameters. These can then be

used to reparameterize the model and also to give additional insight into which parameters

should be experimentally measured [2].

Several methods have been proposed to find identifiable functions. In linear models, this

can be done using the transfer function method [3]. However, in nonlinear models, the prob-

lem has been more challenging with only ad hoc methods proposed, e.g., [2, 4, 5]. For example,

the approach in [2] requires the calculation of many Gröbner bases and can thus be computa-

tionally expensive. It should be noted, however, that even in the linear case, the identifiable

functions of parameters found using the transfer function method are not necessarily (and are

usually not) the simplest identifiable functions of parameters. Since our goal is to reparametrize

a model over identifiable functions of the parameters, simpler functions are preferred.

In this paper, we use techniques from numerical algebraic geometry (e.g., see [6, 7] for a

general overview) to investigate both identifiable and unidentifiable models. For an identifi-

able model, we compute the finite number of values of the parameters given input-output

data. The total number of such values over the complex numbers is called the identifiability
degree which is computed in two ways. The first method relies on differential algebra tools to

first generate the input-output equations while the second does not utilize these equations.

For unidentifiable models, we also introduce two novel approaches for finding identifiable

functions of the parameters. The first method relies on knowing the input-output equations
and uses them to find globally identifiable functions of parameters, as in [2]. In the case where

these input-output equations cannot be calculated using conventional differential algebra tech-

niques, we also introduce a method to compute locally identifiable functions of parameters.

This combination of numerical algebraic geometry and differential algebra could be thought

of as numerical differential algebra. We demonstrate our methods on various models.

Materials and methods

Identifiability

We consider ODE models of the form:

_xðtÞ ¼ fðxðtÞ; p; uðtÞ; tÞ

yðtÞ ¼ gðxðtÞ; p; tÞ
ð1Þ

where f and g are vectors of rational functions, x(t) is the state variable vector, p is the parame-
ter vector which is assumed to be constant, u(t) is the input vector, and y(t) is the output vector.

In the following, only the input u(t) and output y(t) vectors are assumed to be known, i.e., the

state variables x(t) and the parameters p are unknown.

Input-output equations. One approach to determine identifiability properties of the

model (1) using known input-output data is via the input-output equations, i.e., equations that

relate the input u(t), output y(t), and parameters p. Thus, the input-output equations result

from eliminating the state variables x(t). Several methods have already been proposed, e.g., [5,

8–16], to compute the input-output equations, including the so-called differential algebra
approach to identifiability [11, 13, 15]. Using differential algebra, the state variables x(t) are

eliminated using differential elimination techniques. If the number of outputs y(t) is m, this
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procedure produces m differential polynomial equations that are solely in input and output

variables with rational coefficients in the parameters so that the jth one can be written as

X

i

cjiðpÞciðu; yÞ ¼ 0 ð2Þ

where each ψi(u, y) is a differential monomial. Each cji(p) is a rational function in the parame-

ters p, forming a collection c(p) called the coefficients of the input-output equations. The coeffi-

cients of each input-output equation can be determined uniquely by normalizing each input-

output equation so that one of the coefficients is one.

Deciding identifiability. Let m1 denote the number of independent parameters p and

m2 denote the total number of non-constant coefficients taken from all m input-output equa-

tions. Thus, we can treat the coefficients of the input-output equations as a rational map

c : Cm1 ! Cm2 . Identifiability refers to whether it is possible to recover the parameters of the

model only by observing the relations among the input and output variables. In other words,

assuming known input-output data for a sufficient number of time instances so that c can the-

oretically be computed, identfiability asks whether it is possible to recover the parameters p.

Definition 1. Let c be the coefficients of the input-output equations for a model (1). For

general p 2 Cm1 , let

Xp ¼ c� 1ðcðpÞÞ ¼ fq 2 Cm1 j cðqÞ ¼ cðpÞg � Cm1 ; ð2Þ

ℓ = dim Xp� 0, and k ¼ #Xp 2 N [ f1g. That is, ℓ is the dimension of a general fiber of c

and c is generically a k-to-one map when ℓ = 0. The model (1) is identifiable from c if ℓ = 0, i.e.,

k 2 N, and unidentifiable if ℓ> 0, i.e., k =1.

When identifiable, the number k 2 N is called the identifiability degree. If k = 1, the model

(1) is called globally identifiable and called locally identifiable if 1< k<1.

When unidentifiable, the number ℓ� 1 is called the dimension of unidentifiability.

To distinguish between identifiable and unidentifiable models, one simply needs to com-

pute the dimension ℓ of a general fiber of c. As defined in Section 13.4 of [7], the rank of c,

denoted rank c, is the rank of the Jacobian matrix of c evaluated at a general, i.e., random,

p 2 Cm1 . The corank of c is corank c = m1 − rank c. The following, which is Lemma 13.4.1 of

[7] (see also [17]), relates ℓ and corank c.

Proposition 2. For a general p 2 Cm1 , ℓ = dim Xp as defined in (2) is equal to corank c where
c is the set of coefficients of the input-output equations. In particular, the model (1) is identifiable
if and only if c has full rank and the dimension of unidentifiability is equal to corank c.

In particular, Prop. 2 indicates a method to distinguish between identifiable and unidentifi-

able models provided that the coefficients c of the input-output equations can be computed,

which is summarized in the following pseudocode.

Method 1: Computing dimension of unidentifiability from input-output equations
Input: m2 input-output equation coefficients c(p), depending on param-
eters p ¼ ðp1; . . . ; pm1

Þ.
Output: Dimension of unidentifibility ℓ = corank c = dim c−1(c(q)) for
general q 2 Cm1.
Choose random, complex values q 2 Cm1.
Return ℓ = corank Jc(q) where Jc(p) is the Jacobian matrix of c evalu-
ated at p.

Example 3. Linear compartment models are frequently used models arising in pharmacoki-

netics, toxicology, cell biology, physiology, and ecology [18–22]. The following from [17] is

an example of a linear three-compartment model with input u(t), output y(t), state variables

x(t) = (x1(t), x2(t), x3(t)), and unknown parameters p = (k01, k02, k03, k12, k13, k21, k32), where kij
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represents the rate of transfer from compartment j to compartment i and k0i represents a leak

from compartment i to outside the system:

_x1 ¼ � ðk01 þ k21Þx1 þ k12x2 þ k13x3 þ u

_x2 ¼ k21x1 � ðk02 þ k12 þ k32Þx2

_x3 ¼ k32x2 � ðk03 þ k13Þx3

y ¼ x1:

ð3Þ

Fig 1 presents a pictorial representation of this model.

The approach described in [17, 23] yields the input-output equation:

y⃛ � c1ðpÞ€y þ c2ðpÞ _y � c3ðpÞy � €u þ c4ðpÞ _u � c5ðpÞu ¼ 0

where

c1ðpÞ ¼ E1ð� ðk01 þ k21Þ; � ðk02 þ k12 þ k32Þ; � ðk03 þ k13ÞÞ

c2ðpÞ ¼ E2ð� ðk01 þ k21Þ; � ðk02 þ k12 þ k32Þ; � ðk03 þ k13ÞÞ � E2ðk12; k21Þ

c3ðpÞ ¼ E3ð� ðk01 þ k21Þ; � ðk02 þ k12 þ k32Þ; � ðk03 þ k13ÞÞ þ E3ðk13; k32; k21Þ

þ E3ðk12; k21; ðk03 þ k13ÞÞ

c4ðpÞ ¼ E1ð� ðk02 þ k12 þ k32Þ; � ðk03 þ k13ÞÞ

c5ðpÞ ¼ E2ð� ðk02 þ k12 þ k32Þ; � ðk03 þ k13ÞÞ

Fig 1. A 3-compartment model. A 3-compartment model with input (represented by the arrowhead) and output

(represented by the line segment with a circle at the end) in the first compartment and “leaks” from every

compartment (represented by arrows leaving the compartments). Here, the input could represent a drug injection and

the first compartment could represent blood, with the other two compartments representing organs, e.g., tissue and

stomach. The unknown parameters represent rates of transfer from one compartment to another (drawn as arrows in

the figure), or in the case of leaks, from one compartment to outside the system. The state variables represent drug

concentration in the blood and organs, with output from the first compartment representing measured drug

concentration in the blood.

https://doi.org/10.1371/journal.pone.0226299.g001
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such that Ek(z1, . . ., zm) is the kth elementary symmetric polynomial in z1, . . ., zm. Thus, for

c = (c1, . . ., c5), it is easy to verify that rank c = 5 and c = 2 so that this model is unidentifiable

with 2 dimensions of unidentifiability.

For an identifiable model, one approach to distinguish between global and local identifiabil-

ity is to solve the system of equations c(q) = c(p) given a general point p 2 Cm1 . If there is a

unique solution, namely q = p, the model is globally identifiable. If there are a finite number of

solutions, the model is locally identifiable. Such an approach, for example, is implemented in

the software package DAISY [1, 24] which randomly selects a point p and uses Gröbner basis

methods to count the number of solutions to c(q) = c(p) yielding the identifiability degree.

Since such an approach can only be applied when c has first been computed, we will consider

the following problem using numerical algebraic geometric methods.

Problem 4. Given a model (1), decide if it is identifiable or unidentifiable. If identifiable,

determine its identifiability degree to decide if it is globally identifiable or locally identifiable.

One technique for determining whether a model is identifiable without computing c is via

the Exact Arithmetic Rank (EAR) approach [25]. In particular, rather than eliminating to com-

pute the corank of c, one considers projections of a system that still involves the state variables

derived by replacing functions with Taylor series expansions and taking a finite-size system via

the Cartan-Kuranishi Theorem that underlies differential elimination, e.g., see [26]. Projec-

tions yield contructible algebraic sets whose closure in both the Euclidean and Zariksi topolo-

gies are equal. The following, Lemma 3 from [27], is essential for computing corank c without

first computing c.

Proposition 5. Let F : CN
! Cn be a polynomial system, V � fx 2 CN

j FðxÞ ¼ 0g � CN

be irreducible of multiplicity 1 with respect to F, and π(x1, . . ., xN) = (x1, . . ., xa) for some a� N.

For general z 2 V,

dimpðVÞ ¼ corank0 JFðzÞ � coranka JFðzÞ

where JF(z) is the Jacobian matrix of F evaluated at z and corankj M is the corank of the last N −
j columns of M.

Example 6. With the setup from Ex. 3, write the function x(t), u(t), and y(t) using a Taylor

series expansion centered at t = 0, namely

xðtÞ ¼
X1

j¼0

xj � t
j=j!; uðtÞ ¼

X1

j¼0

uj � t
j=j!; and yðtÞ ¼

X1

j¼0

yj � t
j=j!: ð4Þ

Since (3) holds for all t, one obtains equations by substituting these Taylor series expansions

into (3) and taking coefficients with respect to t. For r� 0, let Fr be the system obtained by tak-

ing coefficients of 1, t, t2, . . ., tr. For this linear compartment model, the coefficients of t j are

Gj ¼

� ðk01 þ k21Þxj1 þ k12xj2 þ k13xj3 þ uj � xjþ1;1

k21xj1 � ðk02 þ k12 þ k32Þxj2 � xjþ1;2

k32xj2 � ðk03 þ k13Þxj3 � xjþ1;3

yj � xj1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

so that Fr ¼

G0

G1

..

.

Gr

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

Based on the structure of each Gj, it is clear that the Jacobian matrix of Fr has full rank,

namely 4(r + 1), at every point. In fact, Fr = 0 defines an irreducible and smooth solution set of

codimension 4(r + 1) (dim = 11 + r). We can compute a random point on this solution set by

Identifiability and numerical algebraic geometry
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randomly selecting the following 11 + r values: p, x0, and u0, . . ., ur, and trivially computing

the unique xj+1 and yj sequentially for j = 0, . . ., r via Gj = 0.

Next, one treats the coefficients of the input u(t) and output y(t) as constants in Fr. Thus,

we have that Fr depends upon Nr = 13 + 3r variables and apply Prop. 5 to compute

dr ¼ corank0 JFrðp; x0; . . . ; xrþ1Þ � corank7 JFrðp; x0; . . . ; xrþ1Þ

since prðp; x0; . . . ; xrþ1Þ ¼ p 2 C7
. We trivially know dr� dr+1 since Fr is a subset of Fr+1.

Hence, fdrg
1

r¼0
is a sequence of nonincreasing nonnegative integers that stabilizes with

lim
r!1

dr ¼ corank c:

This limit is obtained at a finite value of r in accordance with the Cartan-Kuranishi Theo-

rem and can be observed by checking for stabilization between the values obtained from r to

r + 1 as demonstrated in Table 1. We see that d7 = d8 = 2 = corank c and provide the extra rows

to show how the entries stabilize. In particular, this confirms that (3) is unidentifiable with 2

dimensions of unidentifiability.

We summarize this computation of the dimension of unidentifiability without first explic-

itly computing the input-output equations c in the following pseudocode.

Method 2: Computing dimension of unidentifiability without input-output equations
Input: For each r � 0, system Fr(q, x, u, y) consisting of the coeffi-
cients of 1, t, t2, . . ., tr and general point zr such that Fr(zr) = 0
where q consists of m1 parameters.
Output: Dimension of unidentifibility ℓ = corank c = dim c−1(c(p)) for
general p 2 Cm1.
For r = 0, 1, 2, . . .

Compute dr ¼ corank 0JFrðzrÞ � corank m1
JFrðzrÞ

If either dr = 0 or r > 0 with corank0JFr(zr) = corank0JFr−1(zr−1) and
corank m1

JFrðzrÞ ¼ corank m1
JFr� 1ðzr� 1Þ; return dr.

Such an approach naturally extends to problems when the parameters and initial conditions

are restricted to an irreducible component by simply appending to Fr the requested constraints

and taking the test points to be general on the corresponding irreducible component. The fol-

lowing demonstrates this on Example 1 from [28].

Table 1. Summary of computations showing 2 dimensions of unidentifiability.

r Nr corank0 JFr corank7 JFr dr
0 13 9 2 7

1 16 8 1 7

2 19 7 0 7

3 22 6 0 6

4 25 5 0 5

5 28 4 0 4

6 31 3 0 3

7 34 2 0 2

8 37 2 0 2

9 40 2 0 2

10 43 2 0 2

https://doi.org/10.1371/journal.pone.0226299.t001
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Example 7. Consider the following three-compartment model [29]:

_x1 ¼ p13x3 þ p12x2 � p21x1 þ u

_x2 ¼ p21x1 � p12x2

_x3 ¼ � p13x3

y ¼ x2

ð5Þ

with state variables x(t) = (x1(t), x2(t), x3(t)), input u(t), output y(t), and unknown parameters

p = (p12, p13, p21). Using a similar setup from Ex. 6 summarized in Method 2, Table 2 shows

that the model (5) is identifiable.

Let F0r be the system obtained by adding the constraint x3(0) = 0 to Fr. Table 3 shows that

the model (5) is now unidentifiable with one dimension of unidentifiability.

Identifiable functions. When a model (1) is unidentifiable, one can ask for functions of

the parameters p which are actually functions of the coefficients c(p) of the input-output equa-

tions. Such functions are called identifiable functions. For example, every element of c is itself

an identifiable function. This is algebraically formalized in the following.

Definition 8. Let c be as above. A real-valued function f(p) is identifiable if the field exten-

sion Rðf ; cÞ=RðcÞ is an algebraic field extension.

One can also consider the global and local identifiability of functions.

Definition 9. Let c be as above and f be an identifiable function. The function f is called

globally identifiable from c if there exists a function ϕ such that ϕ � c = f. The function f is called

locally identifiable from c if there exists a multi-valued function ξ such that for every p, f(p) is

equal to an entry of the multi-valued function ξ � c(p).

Example 10. With the setup from Ex. 3, the function f(p) = k01 + k21 is globally identifiable

with f = ϕ � c where ϕ(x1, . . ., x5) = x4 − x1, i.e., f = c4 − c1. The function g(p) = k02 + k12 + k32 is

Table 2. Summary of computations showing the model (5) is identifiable.

r Nr corank0 JFr corank3 JFr dr
0 9 5 2 3

1 12 4 1 3

2 15 3 0 3

3 18 2 0 2

4 21 1 0 1

5 24 0 0 0

https://doi.org/10.1371/journal.pone.0226299.t002

Table 3. Summary of computations showing that (5) is unidentifiable when x3(0) = 0.

r Nr corank0 JF0r corank3 JF0r dr
0 9 4 1 3

1 12 3 0 3

2 15 2 0 2

3 18 1 0 1

4 21 1 0 1

https://doi.org/10.1371/journal.pone.0226299.t003
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locally identifiable with g2 + c4 g + c5 = 0, i.e., g = ξ � c where That is, for

xðx1; . . . ; x5Þ ¼
� x4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

4
� 4x5

p

2
;

we have

x � cðpÞ ¼
1

2
k02 þ k12 þ k32 þ k03 þ k13 � jk02 þ k12 þ k32 � k03 � k13jð Þ:

The entry of this 2-valued function which is equal to g(p) is selected based on the sign of

k02 þ k12 þ k32 � k03 � k13;

i.e., the “+” entry when k02 + k12 + k32 − k03 − k13� 0 and the “–” entry otherwise.

When a model is unidentifiable with ℓ = corank c dimensions of unidentifiability, the goal

is to compute d = rank c algebraically independent identifiable functions. The problem of find-

ing d “nice” algebraically independent identifiable functions can be described in the following

way, where “nice” could be taken to mean low degree, sparse, or are easy to interpret in terms

of the model, depending on the context.

Problem 11. For rational functions c with d = rank c, compute a “nice” transcendence basis

of the field extension RðcÞ=R.

One way to locate identifiable functions is by computing Gröbner bases with respect to var-

ious elimination orderings of the ideal hc(q) − c(p)i. This approach is described in [2, 30] and

has been implemented in the web application COMBOS [30]. In addition to requiring c, e.g.,

computed using differential elimination techniques, the biggest disadvantage of this method is

that Gröbner basis computations can be computationally expensive. Thus, COMBOS can fail

even for relatively simple models. Alternatively, the program DAISY [1, 24] can sometimes be

used to find identifiable functions. Specifically, the DAISY program gives the solution to the

system of equations c(q) = c(p) for a randomly chosen numerical point p. Sometimes one can

algebraically manipulate the solution to obtain functions of the form f(q) = f(p), but there are

many cases where this cannot be done [2, 30]. Nonetheless, if one is able to obtain such f, the

following shows that they are indeed identifiable functions.

Proposition 12. If f(q) − f(p) is an element of the ideal I ¼ hcðqÞ � cðpÞi � R½p; q�, then f is
an identifiable function. That is, if f is constant on irreducible components of generic fibers of c,

then f is an identifiable function.

proof. If f(q) − f(p) is contained in I, then the dimension of the image of the combined map

(c, f) is equal to the dimension of the image of the map c. In other words, the field extension

Rðf ; cÞ=RðcÞ is an algebraic field extension showing that f is identifiable.

Reparametrization and other uses of identifiable functions. If one can solve Problem

11, one then tries to use the new basis to reparametrize the model. In [23], a method to find

identifiable scaling reparametrizations is given for a certain class of linear compartment mod-

els where the identifiable functions are monomials. Currently, there is no general approach to

find identifiable reparametrizations and, for most models, the reparametrizations are found

using ad hoc approaches which work on a case-by-case basis.

Even if a reparametrization cannot be found, identifiable functions have other important

uses. From the identifiable functions, one can determine which parameters need to be known

in order to render the entire model identifiable. This information can also be determined from

the solution of the system of equations c(q) = c(p). However, identifiable functions give us

additional information if only a subset of those parameters can be determined. In other words,

we can obtain a simpler set of identifiable functions of parameters if a subset of the parameters
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are known and, perhaps, for this new set of identifiable functions, computing an identifiable

reparametrization is possible. This is the case for Ex. 23 below where knowledge of either the

pair (a34, a43) or the pair (a33, a44) renders all the identifiable functions to be monomials, in

which case the method in [23] can be used to find an identifiable scaling reparametrization.

Computing identifiability degree

For a model (1) that is identifiable, Problem 4 can be solved by computing the identifiability

degree k 2 N in order to distinguish between globally identifiable (k = 1) and locally identifi-

able (k> 1) models. k is simply the number of solutions of c(q) = c(p) for general p, where c is

the collection of coefficients of the input-output equations. As mentioned above, the software

package DAISY [1, 24] uses such an approach with Gröbner basis methods to count the num-

ber of solutions. One could also use numerical homotopy methods, e.g., as summarized in [6,

7], to compute k, as illustrated in the following example.

Example 13 As shown in Ex. 3, the model (3) has 2 dimensions of unidentifiability. With

the aim of constructing an identifiable model, we modify (3) by adding the extra constraints

k01 = k03 = 0 yielding a new model with only one leak parameter k02. The coefficients c of the

input-output equation for this simplified model are

cðk02; k12; k13; k21; k32Þ ¼

k02 þ k12 þ k13 þ k21 þ k32

k02k13 þ k02k21 þ k12k13 þ k13k21 þ k13k32 þ k21k32

k02k13k21

k02 þ k12 þ k13 þ k32

k02k13 þ k12k13 þ k13k32

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; ð6Þ

which is easily seen to have rank 5, i.e., the model is identifiable. For general ai 2 C, the system

cðk02; k12; k13; k21; k32Þ � cða1; a2; a3; a4; a5Þ ¼ 0 ð7Þ

consists of 5 equations (1 cubic, 2 quadratic, and 2 linear) in 5 variables. Using a total degree

homotopy (see [6, 7] for more details), one tracks 3 � 22 � 12 = 12, i.e., the total degree of (7),

solution paths. Tracking these paths with homotopy continuation, e.g., via Bertini [31], yields

2 solutions to (7). One can also use a Gröbner basis computation to see that (7) has 2 solutions.

These computations show that the model (3) with k01 = k03 = 0 is locally identifiable with iden-

tifiability degree of 2.

We summarize this most basic approach for computing the identifiability degree when the

input-output equations are known in the following pseudocode.

Method 3: Computing identifiability degree from input-output equations (direct solving)
Input: m2 input-output equation coefficients c(q), depending on param-
eters q 2 Cm1 for which corank c = 0, i.e., corresponding model is
identifiable.
Output: Identifiability degree k 2 N.
Choose random, complex values p of parameters q.
Use homotopy continuation to compute Z ¼ fq 2 Cm1 j cðqÞ ¼ cðpÞg:
Return k = #Z.

Rather than using a direct global solving method which is based on knowing the coefficients

c, we next consider an alternative approach based on monodromy computations in numerical

algebraic geometry that also can be used without computing c. We first describe the approach

when c is known and then extend to the case when c is not explicitly computed.
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Identifiability degree from input-output equations. Suppose that (1) is identifiable with

identifiability degree k 2 N and c is the set of coefficients of the input-output equations. Fol-

lowing the notation before Definition 1, let m1 be the number of independent parameters p

and m2 be the number of entries in c so that c : Cm1 ! Cm2 . Assume that the model is identifi-

able so that corank c = 0 and rank c = dim X = m1 where X ¼ cðCm1Þ � Cm2 . The continuity

of c yields that X is irreducible. The graph of c, namely

GraphðcÞ ¼ fðp; cðpÞÞ j p 2 Cm1g � Cm1 � Cm2

is also irreducible of dimension m1. In fact, for the projection map p : Cm1 � Cm2 ! Cm2 , we

know that X ¼ pðGraphðcÞÞ and π restricted to Graph(c) is generically a k-to-1 map.

One can compute k via a pseudowitness point set [27] for X. To that end, let L2 � C
m2 be a

general linear space of codimension m1. The finite set W ¼ GraphðcÞ \ ðCm1 � L2Þ is a pseu-
dowitness point set for X with respect to Graph(c) and π where #W = k � deg X and #π(W) =

deg X, i.e., k = #W/#π(W). In order to compute W, we follow the approach in [32] using

monodromy loops [33], as follows.

We first note that it is trivial to construct one point w 2W as follows. One first selects a

general point (p, c(p)) 2 Graph(c) and then constructs a general linear space L2 � C
m2 of

codimension m1 that passes through c(p). Hence, w = (p, c(p)) 2W.

Next, the irreducibility of Graph(c) ensures that pairs of points in W are connected via

smooth paths on Graph(c). We aim to discover such connecting paths using random mono-

dromy loops. For t 2 [0, 1], let LðtÞ be a smooth path consisting of general linear spaces of codi-

mension m1 inCm2 such that Lð0Þ ¼ Lð1Þ ¼ L2. Hence, this defines paths w(t) defined by

GraphðcÞ \ ðCm1 � LðtÞÞ where w(1) 2W is known. Homotopy continuation computes the

endpoint w(0), which must also be a point in W. If w(0) 6¼ w(1), the resulting loop has produced

a nontrivial monodromy action and potentially yielded a previously unknown point in W.

Example 14. For c : C5
! C5

in (6), we know that X ¼ cðC5
Þ ¼ C5

, i.e., deg X = 1. Hence,

we have that the identifiability degree k = #W where W is a pseudowitness point set for X.

For illustrative purposes, consider p = (−1, −2, 5, −1, −3) with c(p) = (−2, −31, 5, −1, −30)

so L2 ¼ fð� 2; � 31; 5; � 1; � 30Þg has codimension 5 with cðpÞ 2 L2. Consider the loop

LðtÞ ¼ fð� 2; � 31 � 15sðtÞ; 5þ 5sðtÞ; � 1; � 30þ 35sðtÞÞg

where s(t) = 1 − e2πi(1 − t) and i ¼
ffiffiffiffiffiffiffi
� 1
p

. Hence, LðtÞ is a loop with Lð0Þ ¼ Lð1Þ ¼ L2. For the

path wðtÞ 2 GraphðcÞ \ ðC5
� LðtÞÞ with w(1) = (p, c(p)), we have w(0) = (q, c(q)) where q =

(5/6, −2, −6, −1, 37/6) and c(q) = c(p) showing {w(0), w(1)}�W and k = #W� 2.

Running finitely many random monodromy loops necessarily yields a setcW �W that may

fail to achieve the goal of equality. However, information about the model can be obtained

even ifcW ⊊ W. For example, if (p1, c(p1)) and (p2, c(p2)) are known points in W with c(p1) =

c(p2) and p1 6¼ p2, then one knows the identifiability degree is larger than 1, i.e., the model is

locally identifiable. A heuristic stopping criterion for whencW ¼W provided in [32] is simply

to have many different random monodromy loops yielding no new points.

We use trace tests [34, 35] to provide a stopping criterion to recognize whencW ¼W.

These are described and illustrated well in [36]. To make these monodromy and trace test

computations more efficient, see [37, 38].

Identifiability and numerical algebraic geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0226299 December 13, 2019 10 / 23

https://doi.org/10.1371/journal.pone.0226299


Example 15. To show that Ex. 14 computed both points in W, i.e., the degree of identifiabil-

ity k = 2, for illustrative purposes, we consider the following three linear spaces in C5
:

H1 ¼ f4x1 þ 5x2 � 2x3 þ 4x4 � 2x5 � 1 ¼ 0g;

H2 ¼ f2y1 þ 4y2 � y3 � 6y4 � 4y5 þ 7 ¼ 0g; and

M2 ¼ fð� 2 � 5r; � 31 � 3r; 5 � 3r; � 1þ 2r; � 30þ 4rÞ j r 2 Cg;

with L2 ¼M2 \H2. We take

HðtÞ ¼ fð4x1 þ 5x2 � 2x3 þ 4x4 � 2x5 � 1Þð2y1 þ 4y2 � y3 � 6y4 � 4y5 þ 7Þ � 2t ¼ 0g � C5
� C5

:

The irreducible curve C ¼ GraphðcÞ \ ðC5
�M2Þ has multidegree (5, 2), which is verified

using the multihomogeneous trace test applied to C \HðtÞ. This yields k = 2.

We summarize this computation in the following pseudocode.

Method 4: Computing identifiability degree from input-output equations (monodromy)
Input: m2 input-output equation coefficients c(q), depending on param-
eters q 2 Cm1 for which corank c = 0, i.e., model is identifiable, and
an integer maxUselessLoops.
Output: Identifiability degree k 2 N or error along with a lower bound
on k if the number of loops in a row that do not yield any new points
is more than maxUselessLoops.
Choose random, complex values p of parameters q and compute c(p).
Form w = (p, c(p)) and W = {w}.
Construct general linear space L2 � C

m2 of codimension m1 that passes
through c(p).
Set numUselessLoops = 0.
While numUselessLoops < maxUselessLoops
Increment numUselessLoops = numUselessLoops + 1.
Construct a general loop of linear spaces LðtÞ such that

Lð0Þ ¼ Lð1Þ ¼ L2.
For each w 2 W
Use homotopy continuation applied to the homotopy GraphðcÞ \ ðCm1 �

LðtÞÞ to
track from w at t = 1 to t = 0 yielding w0.

If w0 =2 W
Update w = {W, w0} and numUselessLoops = 0.
If trace test passes, return k = #W.

Return error with k = #W.

The advantage to using such a monodromy approach is that the structure of c may be such

that k is small but this structure is not known a priori meaning that a homotopy for solving c

(q) = c(p) requires tracking many homotopy paths. The disadvantage is that many mono-

dromy loops may be needed to find all points necessary for the trace test to validate complete-

ness when k is large.

Identifiability degree without input-output equations. In the previous section, we com-

puted the degree of a general fiber of a generically finite-to-one coefficient map. This is based

on the fact that one has the same input-output equation if and only if the coefficients agree.

However, when we are using a truncated system as described in Example 6, namely Fr which

depends upon the parameters p, input U = {u0, . . ., ur}, output Y = {y0, . . ., yr}, and state vari-

ables X = {x0, . . ., xr+1}, it provides necessary conditions to have the same input-output as

shown in the following example.
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Example 16. The following model is a modification of an HIV model from [39]:

_x1 ¼ p1 � p2x1 � p3x1x3

_x2 ¼ p3x1x3 � p4x2

_x3 ¼ p1p4x2 � p5x3

y ¼ x3

ð8Þ

As in the previous section, Table 4 shows that the system F7 provides the model (8) is

identifiable.

For example, consider the sufficiently general truncated output

Y ¼ ðy0; . . . ; y7Þ ¼ ð0:5; � 0:03; � 0:15; � 0:2; � 0:2; � 0:17; � 0:16; � 0:15Þ:

We know that there are finitely many values of the parameters p which yield this output.

Monodromy yields the following 12 values of the parameters (listed to four decimal places):

This table shows that there are 3 distinct values of y8, each of which is obtained by 4 values

of the parameters indicating that the identifiability degree is 4.

This example shows that even though Fr is enough to show identifiability, we may only

need to consider a subset of the corresponding parameter values which have the same input-

output.

The structure of (1) clearly shows that the solution set of Fr = 0 is irreducible, smooth, and

parameterized by p, U, and x0. Thus, it is trivial to construct a generic point (p�, X�, U�, Y�) in

the solution set of Fr = 0. From this point, we can use Prop. 5 to compute the dimension d� 0

of the solution set of Fr(p�, X, U�, Y�) = 0, i.e., the dimension of the state variables. If d> 0, we

can add d general linear slices in X to Fr to reduce to the case when d = 0.

With this reduction, we repeatedly apply random monodromy loops to compute all values

of p such that there exists X with

Frðp;X;U
�;Y�Þ ¼ 0:

By testing the finitely many values of the parameters p, the identifiability degree k is the

number of points corresponding to the same input-output. To verify the completeness, we

simply apply the multihomogeneous trace test via the parameter space and the input-output

space.

To save space, we exclude pseudocode for this method as it is so similar to Method 1. The

primary change is that the set of coefficients c is replaced by the truncated system Fr for some

value of r along with an extra computation to test for the same input-output values.

Table 4. Summary of computations showing (8) is identifiable.

r corank0 JFr corank0 JFr dr
0 7 2 5

1 6 1 5

2 5 0 5

3 4 0 4

4 3 0 3

5 2 0 2

6 1 0 1

7 0 0 0

https://doi.org/10.1371/journal.pone.0226299.t004
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Example 17. Reconsidering the model (8) in Ex. 16 which has no input, we first restrict the

output space to, for illustration purposes, the sufficiently general line

YðsÞ ¼ ðsþ 0:5; 4s � 0:03; 3s � 0:15; � 2s � 0:2; � s � 0:2; � 3s � 0:17; 3s � 0:16; 4s � 0:15Þ:

Thus, we apply the multihomogeneous trace test by solving F7 = 0 on this line intersected

with the sufficiently general family of bilinear hyperplanes in the parameter and output space:

HðtÞ ¼ fð2p1 � 3p2 � 4p3 � p4 � 4p5 � 5Þð3y0 þ 4y1 þ 5y2 þ y3 þ y4 � 4y5 þ 4y6 � y7 � 0:42Þ � t ¼ 0g:

Monodromy followed by the trace test confirms that the bidegree is (222, 12). Hence, the

number of elements in Table 5 is complete.

We can simplify this computation, for example, by instead taking the following family

HðtÞ ¼ fð3p5 � 4Þð3y0 þ 4y1 þ 5y2 þ y3 þ y4 � 4y5 þ 4y6 � y7 � 0:42Þ � t ¼ 0g:

The bidegree in p5 and the output space is (60, 12) which again shows that Table 5 is

complete.

Computing identifiable functions

A model (1) is identifiable if and only if every function of the parameters is an identifiable

function. In particular, each irreducible component of a generic fiber of the coefficients c of

the input-output equations is a singleton for an identifiable model. Since every function of the

parameters is trivially constant on each singleton, Prop. 2 yields that every function is identifi-

able. To be a globally identifiable function, it must take the same constant value on all of the

irreducible components of a general fiber.

Example 18. With the setup from Ex. 16, the model (8) is identifiable with identifiability

degree 4. Hence, for example, we know that f1 = p4 and f2 = p5 are both identifiable functions.

From the first two rows of Table 5, we see that both f1 and f2 are not globally identifiable since

each of them take two different values. The functions g1 = p2, g2 = p3, and g3 = p4 + p5 are all

globally identifiable since each of them take the same value at all four points.

To compute identifiable functions, we will first use numerical algebraic geometry to sample

points from fibers. Then, given a finite collection of terms, we will use exactness recovery tech-

niques, e.g., [40], or interpolation to construct identifiable functions from the sample data.

Computing globally identifiable functions simply requires computing points on all irreducible

components and adding additional constraints.

Sampling. In the case that input-output equations have been computed, let c be the collec-

tion of coefficients of the input-output equations and suppose that d� 0 is the dimension of

unidentifiability. Thus, for a given generic point p, the point q = p is a smooth point on an irre-

ducible component Vp of dimension d of the solution set defined by c(q) − c(p) = 0. Hence,

when d> 0, we can sample other points in this irreducible component as follows. Let Lp be a

Table 5. 12 possible values of parameters of system F7 from model (8).

p1 p2 p3 p4 p5 y8

±0.1253 −2.4825 4.4249 −0.9210 −0.2137 0.1706

±0.2602 −2.4825 4.4249 −0.2137 −0.9210 0.1706

0.3023 ± 0.0779i −3.5234 ± 0.5105i 4.2201 ± 1.9168i −1.3367 ∓ 0.0298i −0.1080 ∓ 0.2292i 0.1107 ∓ 0.4040i
−0.3023 ± 0.0779i −3.5234 ∓ 0.5105i 4.2201 ∓ 1.9168i −1.3367 ± 0.0298i −0.1080 ± 0.2292i 0.1107 ± 0.4040i
0.6847 ± 0.2133i −3.5234 ∓ 0.5105i 4.2201 ∓ 1.9168i −0.1080 ± 0.2292i −1.3367 ± 0.0298i 0.1107 ± 0.4040i
−0.6847 ± 0.2133i −3.5234 ± 0.5105i 4.2201 ± 1.9168i −0.1080 ∓ 0.2292i −1.3367 ∓ 0.0298i 0.1107 ∓ 0.4040i

https://doi.org/10.1371/journal.pone.0226299.t005
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general linear space of codimension d passing through p and L be some other general linear

space of codimension d. By using homotopy continuation, we can track the solution path q(t)
defined by q(1) = p and

cðqðtÞÞ � cðpÞ ¼ 0

qðtÞ 2 t � Lp þ ð1 � tÞ � L:
ð9Þ

This yields the point q(0) which is also a generic point in Vp.

One can easily compute other points in this same fiber Vp by repeating with a different lin-

ear space L and sample other fibers by repeating the process with a different generic point p.

With the aim of computing globally identifiable functions, sample points in every irreduc-

ible component of c(q) − c(p) = 0 are needed. In this case, one simply constructs an identifi-

able system by restricting the parameters to a general linear space of codimension d and

applying the techniques above to the resulting system. That is, if p 2 Cm1 , we take a general

affine linear mapping b : Cm1 � d
! Cm1 so that cðbðq̂ÞÞ � cðbðp̂ÞÞ ¼ 0 has finitely many solu-

tions for generic p̂, say q1 ¼ bðq̂1Þ; . . . ; qk ¼ bðq̂kÞ, i.e., the model with parameters p ¼ bðp̂Þ
is identifiable overCm1 � d

with identifiability degree k. Applying the slice moving described

above, one can sample points in all components of the fiber over p using the points q1, . . ., qk.

Example 19. Reconsider (3) in Ex. 3 for which c shows the model has d = 2 dimensions of

unidentifiability. For illustration, with p = (1, 2, 3, 4, 5, 6, 7), we can take Lp to be

fk01 � k02 þ k03 � k12 þ k13 � k21 þ k32 ¼ 4; 2k02 � k01 þ 2k03 þ k12 � k13 � 2k21 þ 2k32 ¼ 10g ð10Þ

and

L ¼
k01 þ k02ð3 � iÞ þ k03ð� 3þ 2iÞ þ k12ð1þ iÞ � k13ð2þ 2iÞ þ k21ð2 � iÞ � 2k32 ¼ 1

k01ð1 � 3iÞ � 3ik02 þ k03ð� 2þ 2iÞ � 2k12 � ik13 þ k21ð3þ 2iÞ � ik32 ¼ 1

( )

ð11Þ

where i ¼
ffiffiffiffiffiffiffi
� 1
p

. Tracking the path defined by (9) yields the endpoint (to four decimal places):

ð0:6709 � 2:1940i; 3:6921þ 2:5919i; 2:8774þ 0:5068i; 3:3852 � 1:1735i;

5:1226 � 0:5068i; 6:3291þ 2:1940i; 5:9227 � 1:4185iÞ:
ð12Þ

Hence, since all of the values of the parameters changed, we know that each parameter itself

is an unindentifiable function.

If, for illustration, we take the affine linear mapping b : C5
! C7

defined by

bðp̂Þ ¼

p̂1

p̂2

p̂3

p̂4

p̂5

p̂1 þ 3p̂2 � p̂3 � 3p̂4 þ 2p̂5 þ 4

2p̂1 þ 3p̂2 þ 5p̂3 þ p̂4 � 3p̂5 � 5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

the resulting model is identifiable with identifiability degree 8 and the following 7 other points
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corresponding with b(1, 2, 3, 4, 5) = (1, 2, 3, 4, 5, 6, 7):

ð9:2814; � 10:3208; 10:7201; � 10:52; � 2:7201; � 2:2814; 33:8409Þ;

ð108:0762; � 66:9431; 13:0118; � 0:23744; � 0:0118; � 101:0762; 75:1805Þ;

ð2:4938; 0:3612; 4:3645; 5:326; 8:6355; 4:5062; 2:3128Þ;

ð52:0709; � 31:4763; 8:1035; � 0:5325; � 0:1035; � 45:0709; 45:0087Þ;

ð8:6814; � 13:22; 14:5081; � 14:2737; � 1:5081; � 1:6814; 35:4937Þ;

ð� 9:615; 5:8203; 5:6325; 1:4445; 7:3675; 16:615; 0:7352Þ;

ð� 13:625; 9:5193; 3:6057; 1:1636; 4:3943; 20:625; 2:317Þ:

ð13Þ

Thus, we have computed at least one point in each irreducible component of the fiber

over p.

Without input-output equations, one simply uses a truncated system Fr as described in

Example 6 to perform the same computations. The only potential issues were addressed above,

namely reduction to the case that the state variables are generically zero-dimensional over the

parameter-input-output space and restricting to the irreducible components which have the

same input-output. The latter is accomplished by simply ignoring the components which have

different input-output values.

Example 20. To illustrate moving on an irreducible component, we describe the setup to

yield the same corresponding endpoint in (12). To that end, following Ex. 6, we utilize F7.

Starting with parameter values p = (1, 2, 3, 4, 5, 6, 7), the structure of F7 makes it trivial to gen-

erate general input, output, and state variables satisfying F7 = 0, i.e., randomly selecting input

U and initial conditions x0 for the state variables trivially yields the values of the other state var-

iables x1, . . ., x8 and output Y. Then, by holding the input U and output Y fixed, we track

along the solution path where the variables consist of the model parameters and the state vari-

ables defined by F7 = 0 that deforms Lp in (10) to L in (11). The resulting endpoint corre-

sponds with the endpoint in (12).

Functions from samples. From the ability to sample points described in the previous sec-

tion, we can reconstruct identifiable functions in a given finite-dimensional vector space of

functions, say F ¼ spanff1; . . . ; fjg. Following Prop. 2, an identifiable function f 2 F is con-

stant on irreducible components of generic fibers of c, which corresponds with computing

null spaces of linear equations described as follows.

We can express every f 2 F as f ¼
Pj

i¼1
aifi where a ¼ ða1; . . . ; ajÞ 2 C

j
. If p is a generic

value of the parameters, using the sampling method above, we can compute a generic qp in the

same irreducible component Vp. Hence, the condition f(qp) = f(p) imposes a linear constraint

on a, namely

f1ðqpÞ � f1ðpÞ � � � fjðqpÞ � fjðpÞ
� �

� a ¼ 0:

One option is to keep imposing more such conditions by selecting other general values of p

with corresponding qp. The dimension of the null space reduces by one monotonically with

each new condition until it reaches the dimension of the linear span of the identifiable func-

tions in F .

Alternatively, for computing identifiable functions with integer coefficients, i.e., a 2 Zj
, one

general point is enough via exactness recovery methods [40].
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Example 21. Let F ¼ spanfk01; k02; k03; k12; k13; k21; k32g, p = (1, 2, 3, 4, 5, 6, 7), and qp as in

(12). Then, integer solutions to (qp − p) � a = 0 computed using [40] correspond to:

k01 þ k21; k03 þ k13; k02 þ k12 þ k32:

Alternatively, one can sample Vp for five general values of p and observe that the first four

impose a new linear constraint on the coefficients a while the fifth one is redundant. This

shows that there is a three-dimensional linear space of identifiable functions in F spanned by

the three linear functions above.

We bring all methods of this section together in the following brief high-level pseudocode.

Method 5: Computing identifiable functions via sampling
Input: Input-output equation coefficients c(q), depending on parame-
ters q 2 Cm1 (if available), else the truncated system Fr for some r and
a basis f1, . . ., fj for a linear space of polynomials F of interest.
Output: Identifiable functions in F.
Choose random, complex values p of parameters q.
Compute a point on each irreducible component of c−1(c(p)) using either
c or Fr.
Use homotopy sampling to find additional points on each irreducible
component.
Use the sample points together with exactness recovery methods to find
all identifiable
functions in F.

Return all discovered identifiable functions.

Globally identifiable functions are computed by simply adding the condition that the func-

tion takes the same constant value on all irreducible components of general fibers which are

sampled using the methods described above. Since globally identifiable functions are a subset of

the identifiable functions, one need only search inside of the space of identifiable functions in F .

Example 22. From the seven points in (13) corresponding with p = (1, 2, 3, 4, 5, 6, 7), we

see that k01 + k21 is globally identifiable (always taking the value 7 on these eight points)

whereas k03 + k13 and k02 + k12 + k32 are not globally identifiable. However, from the sample

points, it is easy to see that their sum, namely k02 + k03 + k12 + k13 + k32, is globally identifiable.

The selection of the test space F is a user-defined input and is based on the structure of the

identifiable functions of interest, e.g., linear functions, polynomials of low degree, or linear

span of rational monomials where the numerator and denominator have low degree.

Results

We now demonstrate our methods on two larger examples. Throughout the paper, for illustra-

tive purposes, the examples presented typically selected small integer values for random num-

bers. In practice, including the following examples, we select random complex numbers. Data

for computations available at http://dx.doi.org/10.7274/R03T9F91.

Example 23. The following is a 4-compartment model from Example 6.3 of [23]:

_x1 ¼ a11x1 þ a12x2 þ u

_x2 ¼ a21x1 þ a22x2 þ a23x3

_x3 ¼ a33x3 þ a34x4

_x4 ¼ a42x2 þ a43x3 þ a44x4

y ¼ x1:

This model, which has parameters p = (a11, a12, a21, a22, a23, a33, a34, a42, a43, a44), input

u(t), state variables x1(t), x2(t), x3(t), x4(t), and output y(t), does not fit the criteria presented
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in [23] for computing identifiable functions. Nonetheless, the method provided in [17,

23] is able to compute the input-output equations where the set c : C10
! C7

of coefficients

is

a11a23a34a42 þ a12a21a34a43 � a11a22a34a43 � a12a21a33a44 þ a11a22a33a44

a12a21a33 � a11a22a33 � a23a34a42 þ a11a34a43 þ a22a34a43 þ a12a21a44 � a11a22a44 � . . .

. . . a11a33a44 � a22a33a44

� a12a21 þ a11a22 þ a11a33 þ a22a33 � a34a43 þ a11a44 þ a22a44 þ a33a44

� a11 � a22 � a33 � a44

a23a34a42 � a22a34a43 þ a22a33a44

� a22a33 þ a34a43 � a22a44 � a33a44

a22 þ a33 þ a44:

Using Prop 2, the model is unidentifiable with 4 dimensions of unidentifiability. There-

fore, to solve Problem 11, we need to compute 6 algebraically independent identifiable

functions.

We utilize the sampling and interpolation methods above to sample and construct the iden-

tifiable functions. For example, sampling yields two values of the parameters, provided in

Table 6 rounded to four decimal places, so that every identifiable function must take the same

value on both. In particular, we immediately see that both f1 = a11 and f2 = a22 are identifiable.

Applying interpolation as above to the space of linear forms also yields the identifiable linear

function f3 = a33 + a44.

Considering the space of polynomials of degree at most 2 which are algebraically indepen-

dent of f1, f2, f3 yields f4 = a12a21 and f5 = a33a44−a34a43.

Finally, the space of polynomials of degree at most 3 which are algebraically independent of

f1, . . ., f5 yields f6 = a23a34a42.

To show that f1, . . ., f6 are actually globally identifiable, we use the approach above to sam-

ple points from every irreducible component. The result of this process is that a generic fiber

only has one irreducible component thereby showing global identifiability. We could also have

Table 6. Two values of the parameters rounded to four decimal places.

a11 −0.6690 − 0.1758i −0.6690 − 0.1758i
a12 −0.1669 + 0.3165i 1.3705 − 0.4117i
a21 2.3433 + 0.6225i −0.5219 + 0.3086i
a22 −0.6286 − 0.1868i −0.6286 − 0.1868i
a23 0.4005 − 0.5144i 2.5585 + 0.5746i
a33 2.1248 − 0.6011i 0.2095 − 0.4521i
a34 1.1295 − 0.8604i 0.8611 + 0.5272i
a42 −0.4210 + 0.6785i 0.2734 − 0.0567i
a43 −1.1126 − 0.0416i −0.1132 − 0.7724i
a44 −0.6880 + 0.3317i 1.2273 + 0.1827i

https://doi.org/10.1371/journal.pone.0226299.t006
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used Defn. 9 to show global identifiability. This is demonstrated by the following:

f1 ¼ � ðc4 þ c7Þ

f2 ¼
c2

6
þ c6c2

7
þ c4c6c7 þ c3c6 þ c5c7 þ c1 þ c4c5

c2 þ c5 þ c4c6 þ c6c7

f3 ¼ �
c2 þ c5 þ c4c6 þ c6c7

c2
7
þ c4c7 þ c3 þ c6

f4 ¼ � ðc2
7
þ c4c7 þ c3 þ c6Þ

f5 ¼
c1 þ c4c5 þ c5c7

c2
7
þ c4c7 þ c3 þ c6

f6 ¼ �

c2
1
þ 2c1c4c5 þ c1c4c6c7 þ 2c1c5c7 þ c1c2

6
þ c1c6c2

7
þ c3c1c6 þ c2

4
c2

5

þ c4c2
5
c7 � c2c4c5c7 � c2

5
c6 � c3c2

5
� c2c5c6 � c2c5c2

7
� c2c3c5

c2c3 þ c2c6 þ c3c5 þ c5c6 þ c2c2
7
þ c4c2

6
þ c5c2

7
þ c2

6
c7 þ c6c3

7
þ c2c4c7

þ c3c4c6 þ c3c6c7 þ c4c5c7 þ 2c4c6c2
7
þ c2

4
c6c7

Example 24. The following is a model from biochemical reaction network theory for the

mitogen-activated protein kinase (MAPK) pathway [41] which is part of a molecular signaling

network that governs the growth, proliferation, differentiation, and survival of many cell types:

_KS00 ¼ � a00KS00 þ b00KS00 þ g0100FS01 þ g1000FS10 þ g1100FS11

_KS01 ¼ � a01KS01 þ b01KS01 þ c0001KS00 � a01FS01 þ b01FS01 þ g1101FS11

_KS10 ¼ � a10KS10 þ b10KS10 þ c0010KS00 � a10FS10 þ b10FS10 þ g1110FS11

_FS01 ¼ � a11FS11 þ b11FS11 þ c0111KS01 þ c1011KS10 þ c0011KS00

_FS10 ¼ a00KS00 � ðb00 þ c0001 þ c0010 þ c0011ÞKS00

_FS11 ¼ a01KS01 � ðb01 þ c0111ÞKS01

_K ¼ a10KS10 � ðb10 þ c1011ÞKS10

_F ¼ a01FS01 � ðb01 þ g0100ÞFS01

_S00 ¼ a10FS10 � ðb10 þ g1000ÞFS10

_S01 ¼ a11FS11 � ðb11 þ g1101 þ g1110 þ g1100ÞFS11

_S10 ¼ � a00KS00 þ ðb00 þ c0001 þ c0010 þ c0011ÞKS00 � a01KS01

þ ðb01 þ c0111ÞKS01 � a10KS10 þ ðb10 þ c1011ÞKS10

_S11 ¼ � a01FS01 þ ðb01 þ g0100ÞFS01 � a10FS10 þ ðb10 þ g1000ÞFS10

� a11FS11 þ ðb11 þ g1101 þ g1110 þ g1100ÞFS11:
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This model has 12 state variables

KS00ðtÞ; KS01ðtÞ; KS10ðtÞ; FS01ðtÞ; FS10ðtÞ; FS11ðtÞ;

KðtÞ; FðtÞ; S00ðtÞ; S01ðtÞ; S10ðtÞ; S11ðtÞ

and 22 parameters

a00; a01; a10; b00; b01; b10; c0001; c0010; c0011; c0111; c1011;

a01; a10; a11; b01; b10; b11; g0100; g1000; g1100; g1101; g1110:

We will consider several different cases of what is measured as output. In all of our exam-

ples, we attempted to first compute input-output equations using differential elimination via

the command RosenfeldGroebner in Maple [42]. In all of our attempts, the differential elimi-

nation failed to terminate meaning that we will just utilize the model equations in the

following.

First, for taking the standard 6 measurable outputs:

y1 ¼ K; y2 ¼ F; y3 ¼ S00; y4 ¼ S01; y5 ¼ S10; y6 ¼ S11;

Table 7, computed in about a minute on a single processor, shows that the resulting model

is identifiable.

For comparison of methods, neither DAISY [1, 24] nor COMBOS [30] finished the iden-

tifiability computations for this model after running for 24 hours. To the best of our knowl-

edge, this is the first successful implementation of a structural identifiability test for this

model.

Second, if we adjust the model so that we only take the following 2 measurable outputs:

y1 ¼ K; y2 ¼ F;

Table 8 shows that the resulting model is still identifiable.

Third, if we take the following 4 measurable outputs:

y1 ¼ S00; y2 ¼ S01; y3 ¼ S10; y4 ¼ S11;

Table 9 shows that the resulting model is still identifiable.

Finally, we consider 10 new mixing parameters, namely

ms00; mks00; ms01; mks01; mfs01; ms10; mks10; mfs10; ms11; mfs11;

Table 7. Summary of computations showing model is identifiable.

r corank0 JFr corank22 JFr dr
0 28 6 22

1 23 1 22

2 18 0 18

3 13 0 13

4 8 0 8

5 3 0 3

6 0 0 0

https://doi.org/10.1371/journal.pone.0226299.t007
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with the following 4 measurable outputs:

y1 ¼ ms00S00 þmks00KS00

y2 ¼ ms01S01 þmks01KS01 þmfs01FS01

y3 ¼ ms10S10 þmks10KS10 þmfs10FS10

y4 ¼ ms11S11 þmfs11FS11:

Table 10 shows that the resulting model, which has a total of 32 parameters, is unidentifi-

able with one dimension of unidentifiability.

Using the results above, we can observe from sampling that each irreducible component of

a general fiber is simply a line and the following 16 parameters are all identifiable:

b00; b01; b10; c0001; c0010; c0011; c0111; c1011; b01; b10; b11; g0100; g1000; g1100; g1101; g1110

Table 8. Summary of computations showing model is identifiable.

r corank0 JFr corank22 JFr dr
0 32 10 22

1 30 8 22

2 28 6 22

3 26 4 22

4 24 2 22

5 22 0 22

6 20 0 20

7 18 0 18

8 16 0 16

9 14 0 14

10 12 0 12

11 10 0 10

12 8 0 8

13 6 0 6

14 4 0 4

15 2 0 2

16 0 0 0

https://doi.org/10.1371/journal.pone.0226299.t008

Table 9. Summary of computations showing model is identifiable.

r corank0 JFr corank22 JFr dr
0 30 8 22

1 26 4 22

2 22 0 22

3 18 0 18

4 14 0 14

5 10 0 10

6 6 0 6

7 2 0 2

8 0 0 0

https://doi.org/10.1371/journal.pone.0226299.t009
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meaning a00, a01, a10, α01, α10, α11 and the 10 mixing parameters are unidentifiable. In fact, no

nonconstant linear function in these 16 latter unidentifiable parameters is identifiable.

Conclusion

In this article, we considered the problems of determining the identifiability of an ODE model,

computing the identifiability degree in the case that the model is identifiable and identifiable

functions in the case that the model is unidentifiable. To summarize, the results of this article

include numerical methods for the following:

1. compute the dimension of unidentifiability with or without input-output equations;

2. for identifiable models, compute the identifiability degree with or without input-output

equations using basic homotopy continuation or monodromy loops;

3. for unidentifiable models, compute identifiable and globally identifiable functions inside of

a linear family of functions with or without input-output equations.

These methods were illustrated on several examples, including the first known structural

identifiability result for MAPK in Example 24.

In the future, we hope to apply similar numerical algebraic geometry methods to other

areas in biological modelling, such as controllability, observability, and indistinguishability.
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