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ABSTRACT
It is natural to employ an optimization algorithm for the

approximate kinematic synthesis of linkages. The hope is to find
some superior points in the design space that indicate dimensions
that are practically useful. One way to achieve this is to find all
minima of an objective, then to filter them so the best remain.
However, the prospect of finding all minima is bleak unless the
optimization problem at hand is particularly small. In this work,
we show how to find nearly all minima for a large optimization
problem using polynomial homotopy continuation in the approx-
imate synthesis of a four-bar path generator. The system at hand
has a Bézout bound of 543,848,665 and a Schnabel estimate to
the maximum number of stationary points of 6 · (303,249±713),
within a 95% confidence interval. At least with regards to mecha-
nism synthesis, this work represents the largest scale deployment
to date of homotopy continuation to solve an unconstrained op-
timization problem. The challenges of scaling and suggestions
for design are given. Example usage for the design of a leg
mechanism is given. On the mechanism design front, this is the
first presentation of a nearly complete (within the limitations of
numerical discernment) solution of the general four-bar optimal
path synthesis problem.

∗Address all correspondence to this author.

1 INTRODUCTION
It is fitting to frame the approximate kinematic synthesis

as an optimization problem. In doing so there is no shortage
of extant tools [1], most of which cannot claim to generically
find a complete set of local minima, including the global. How-
ever, applying homotopy continuation to find the zeros of first
order conditions provides a means to find all local minima of
unconstrained polynomial objectives. Such an approach has been
applied to mechanism design problems in the past [2, 3]. In this
work, we push this approach onto a much larger scale problem,
advancing from a system of degree 25 to a system of estimated
degree 303,249. In doing so, we point out the challenges en-
countered in terms of numerical precision, compute time, and
design utility. As a result of this exercise, we also produce for the
first time the nearly complete solution for the approximate path
synthesis of a four-bar linkage with an arbitrary number of con-
trol point specifications and no dimensions pre-specified. This
is a natural progression from the 5-9 precision point problems
solved by researchers in the early 1990s [4–7]. The enabling
computational technique of this work is the method of Random
Monodromy Loops [8–11], which was preceded by Finite Root
Generation [12, 13], and is executed on top of Bertini [14, 15].

The novelty of this work over other optimal path synthesis
works is in the analytical formulation and in the use of numerical
continuation to find nearly all possible design candidates, which
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FIGURE 1: Schematic of a four-bar linkage in the complex plane

is not possible using other tools. The exact path synthesis prob-
lem of four-bars, known as Alt’s problem [16], with a maximum
of nine generic design specifications was first solved by Wampler
et al. [7] which yielded a complete solution set of 1,442 Roberts’
cognate triplets to a polynomial system. We report in this work
that an optimization problem of path synthesis of four-bars admits
approximately 303,249 ± 713 Roberts’ cognate triplets as critical
points with 95% confidence, computed using the statistical esti-
mates provided by [11], for any number of design specifications
greater than nine. This optimization model can accommodate as
many design positions as required within the same framework,
thus offering a key advantage over the exact synthesis approach
albeit at the cost of significant computational effort. The opti-
mization problem is about 200 times harder to solve compared to
Alt’s problem. The solution is made possible only by the use of a
heuristic-based numerical continuation, namely, the recently de-
veloped technique of Random Monodromy Loops (RML) [8–11].

2 MATHEMATICAL MODEL

Consider a four-bar linkage as shown in Fig. 1. Let 𝐴 and 𝐵 be
the fixed pivots of the linkage. The moving links are of length 𝑙1,
𝑙2, and 𝑙3, respectively. Let 𝜙1, 𝜙2, and 𝜙3 be the respective an-
gular displacements of these links measured counter-clockwise
from the positive 𝑥-axis. The coupler trace point (normalized by
the coupler base length 𝑙2) is denoted in the coupler frame using
the vector variable 𝑄 while 𝑋 denotes the coupler trace point in
the global frame. We use isotropic coordinates [17] which use a
complex variable/parameter and its conjugate variable/parameter
instead of two scalar components for any vector. This choice of
coordinates offers a simpler mathematical description, reduced
total degree of the resulting system, and other numerical advan-
tages during computation.

If Φ𝑘 = 𝑒𝑖𝜙𝑘 for 𝑘 = 1,2,3 are the rotation operators in 2D,
then the vector loop equations associated with the path generation

problem can be written via the left and right dyads as

𝐴+ 𝑙1Φ1 + 𝑙2𝑄Φ2 = 𝑋, (1)
𝐵+ 𝑙3Φ3 + 𝑙2 (𝑄−1)Φ2 = 𝑋, (2)

respectively. Their complex conjugate equations must also be
included as part of the formulation in the isotropic coordinates
framework, namely

𝐴∗ + 𝑙1
1
Φ1

+ 𝑙2𝑄∗ 1
Φ2

= 𝑋∗, (3)

𝐵∗ + 𝑙3
1
Φ3

+ 𝑙2 (𝑄∗−1) 1
Φ2

= 𝑋∗. (4)

Note that the conjugate of a rotation operator is its reciprocal
and 𝑙1, 𝑙2, and 𝑙3 are real variables. The rotation operators are
insignificant as they are not design specifications, so we eliminate
them as follows. Eliminating Φ1 from Eqs. (1) and (3), we obtain

𝑙2𝑄
∗ (𝐴− 𝑋) + (𝑋𝑋∗− 𝐴∗𝑋 − 𝐴𝑋∗− 𝑙1s)Φ2

+ 𝑙2𝑄(𝐴∗− 𝑋∗)Φ2
2 = 0, (5)

where 𝑙1s = 𝑙21 − 𝑙22𝑄𝑄∗− 𝐴𝐴∗.
Similarly, eliminating Φ3 from Eqs. (1) and (3), we obtain

𝑙2 (𝑄∗−1) (𝐵− 𝑋) + (𝑋𝑋∗−𝐵∗𝑋 −𝐵𝑋∗− 𝑙3s)Φ2

+ 𝑙2 (𝑄−1) (𝐵∗− 𝑋∗)Φ2
2 = 0, (6)

where 𝑙3s = 𝑙23 − 𝑙22 (𝑄−1) (𝑄∗−1) −𝐵𝐵∗.
Finally, Φ2 can be eliminated between Eqs. (5) and (6) via

Sylvester’s resultant to obtain a polynomial condition which rep-
resents the coupler trace of a given four-bar linkage:

��������
𝑄∗ (𝐴− 𝑋) 𝑔(𝑋, 𝑋∗) 𝑙2𝑄(𝐴∗− 𝑋∗) 0

0 𝑙2𝑄
∗ (𝐴− 𝑋) 𝑔(𝑋, 𝑋∗) 𝑄(𝐴∗− 𝑋∗)

(𝑄∗−1) (𝐵− 𝑋) ℎ(𝑋, 𝑋∗) 𝑙2 (𝑄−1) (𝐵∗− 𝑋∗) 0
0 𝑙2 (𝑄∗−1) (𝐵− 𝑋) ℎ(𝑋, 𝑋∗) (𝑄−1) (𝐵∗− 𝑋∗)

�������� = 0,

where

𝑔(𝑋, 𝑋∗) = 𝑋𝑋∗− 𝐴∗𝑋 − 𝐴𝑋∗− 𝑙1s and
ℎ(𝑋, 𝑋∗) = 𝑋𝑋∗−𝐵∗𝑋 −𝐵𝑋∗− 𝑙3s.

When expanding this determinant condition, observe that 𝑙2
only occurs in its quadratic form. Hence, substituting 𝑙2s = 𝑙22
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simplifies the expression further. Let us denote this condition
as 𝜂(𝒅, 𝑋, 𝑋∗) = 0 hereon, where

𝒅 = {𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙1s, 𝑙2s, 𝑙3s,𝑄,𝑄∗}

denotes the set of nine design variables. Note that 𝑙1s, 𝑙2s, and 𝑙3s
are still real variables based on their definitions. Some notable
aspects of this condition are that it is real-valued, of algebraic de-
gree six in 𝑋 and 𝑋∗, and the circularity [17] is three. Further, this
condition evaluates to the same value for any given four-bar link-
age and its two corresponding Roberts’ cognates [18]. Exploiting
this in the numerical continuation implementation reduces com-
putational efforts.

Suppose that the path generation problem is formulated for
points (𝑋 𝑗 , 𝑋

∗
𝑗
) for 𝑗 = 1, . . . , 𝑁 , where 𝑁 is the number of design

specifications, and let 𝜂 𝑗 (𝒅) = 𝜂(𝒅, 𝑋 𝑗 , 𝑋
∗
𝑗
). In particular, when

𝑁 = 9 and the points are general, Alt’s problem is equivalent to
solving the nine-dimensional square polynomial system 𝜂 𝑗 (𝒅) = 0
for 𝑗 = 1, . . . ,9. A different formulation of this problem was used
in the solution provided by [7]. Nonetheless, the solution set
of Alt’s problem includes 1,442 Roberts’ cognate triplets. One
way of accommodating more than nine design specifications is by
formulating and minimizing an optimization objective function.
To retain the polynomial nature of the system, we use a 𝑳2-norm
based error measure as follows.

For 𝑁 > 9, the objective function, which is based on the
residual error of the coupler trace equation, is:

1
2

𝑁∑︁
𝑗=1

𝜂2
𝑗 . (7)

This is a real-valued polynomial function. Hence, the first order
necessary conditions for optimality are derived analytically as:

𝑁∑︁
𝑗=1

𝜂 𝑗

𝜕𝜂 𝑗

𝜕𝒅
= 0. (8)

This resulting system of polynomial equations is also a square
nine-dimensional system. The monomial structure of the system
is invariant with respect to 𝑁 for any 𝑁 > 9, thus providing a uni-
fied framework. A measure of complexity of this polynomial sys-
tem is the 5-homogeneous Bézout bound [17] of 543,848,665 for
the variable grouping {{𝐴, 𝐴∗, 𝑙1s}, {𝐵, 𝐵∗, 𝑙3s}, {𝑄}, {𝑄∗}, {𝑙2s}}
which is an upper bound on the number of solutions to Eq. (8) for
𝑁 > 9. Note that the corresponding bound for solving Alt’s prob-
lem with 𝑁 = 9 and the same variable grouping is 2,580,4801.

1Better upper bounds have been reported in literature, e.g., [7, 19] for Alt’s
problem using a different formulation.

By comparison, the optimization problem is about 200 times
harder to solve than Alt’s problem if a multi-homogeneous ho-
motopy technique [7] is used. This involves numerically tracking
543,848,665 homotopy paths, which is a phenomenal computa-
tional effort. From other corroborating evidences in the literature,
e.g., [8,20], we know that only a small percentage (typically <1%)
of these paths will lead to finite solutions while the rest diverge
off to infinity. In such a scenario, it is advantageous to resort
to heuristic numerical continuation techniques such as Random
Monodromy Loops (RML) [8–11]. Here the computational ef-
fort is associated only with the number of finite solutions, which
is usually much lower than the Bézout bound. In the follow-
ing section, we describe the use of RML to solve our derived
polynomial system.

3 NUMERICAL CONTINUATION
Random Monodromy Loops (RML) is a numerical continu-

ation technique that collects finite roots to a system of polynomial
equations starting from a seed solution. A monodromy loop is a
group action that permutes the starting solution set onto the same
system via randomly constructed paths [8–11]. When applied
iteratively, the aggregation of new roots follows a probabilistic
model that estimates the system’s total root count [11]. We use
the implementation of RML put forth in [8], wherein monodromy
loops are carried over the total coefficient space of our system. A
generic polynomial system is posed ab initio with a randomly cho-
sen set of 𝑁 = 10 design specifications (𝑋 𝑗 , 𝑋

∗
𝑗
) for 𝑗 = 1,2, ..,10,

which is one greater than that of Alt’s problem. These specifi-
cations can be generic complex choices without adhering to the
conjugate relationship. Then, an initial seed solution is found for
the polynomial system by using a local method such as Newton’s
method. Starting from the seed solution, a monodromy loop is
tracked numerically. This procedure results in potentially new
roots for the original system. When this process is repeated with
the cumulative set of solutions after each iteration, the solution set
grows in a capture-mark-recapture model as elucidated in [11].
Since the total number of isolated solutions to the polynomial
system is finite, the cumulative set of solutions saturate over the
iterations and approach the total number of roots.

As previously mentioned, for every critical point found dur-
ing an iteration, its two Roberts’ cognates are also critical points
in view of the objective function being invariant with respect to
the cognates. Furthermore, there is a redundant representation in
the design space where the left and right dyads of the linkage can
be swapped to obtain an apparently distinct solution; therefore,
critical points to this optimization problem occur in groups of
six. The computational effort can be reduced by retaining only
one member of each group and treating subsequent captures as
repeats during the implementation. Since the homotopy is in-
variant with respect to this six-way symmetry, monodromy loops
will preserve the group and thus map a whole group of six at
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the start to possibly a different group of six at the end. Refer
to Appendix A for the transformations that identify the members
of a group. Consequently, our reported root-count estimate is
one-sixth of the actual root-count estimate. Since the Roberts’
cognates can always be back-calculated using well-known al-
gebraic transformations, provided in Appendix A, this strategy
allows us to mitigate computational effort. We used the software
Bertini [14, 15] in parallel mode on a four node dual 24 core
Intel® Xeon® 2.30 GHz system (totaling 192 cores) in the Center
for Research Computing at the University of Notre Dame to track
the numerical continuations.

FIGURE 2: Progression of the RML runs. The beginning runs
result in new end points; the later runs with ratios close to one
indicate most end points are repeats and convergence has been
achieved.

For the first few RML iterations, generally new points are
found and few, if any, are repeated. In our data, the first time that
a repeated point was found was on iteration 12. As the solution set
grows, more points are discovered and the ratio of repeats to end
points grows, which is used in calculating statistical estimates on
the total number of solutions [11]. Consider iteration 21, where
approximately 40.2% of the end points were repeat solutions; by
iteration 26, 99.6% of end points were repeats. Our final set of
computed roots is 303,226, which took a total computation time
of approximately 21 hours.

Following [11], we employed three statistical methods based
on the aforementioned capture-mark-recapture model to approx-
imate the root count: Lincoln-Petersen, Chapman, and Schnabel
estimates. The Lincoln-Petersen and Chapman estimates use data
collected from a single monodromy loop. While the Chapman
estimate is unbiased, the Lincoln-Petersen estimate is biased for

FIGURE 3: Lincoln-Petersen estimation of the root-count of the
polynomial system.

FIGURE 4: Chapman estimation of the root-count of the polyno-
mial system.

small sample sizes. The Schnabel estimate incorporates data from
multiple monodromy loops. We used a moving window of size
three for the Schnabel estimate, that is, our estimate incorporates
data from the current and previous two monodromy loops. Each
of these estimates have corresponding variances that are used to
compute a 95% confidence interval. For an overview to mon-
odromy loops and expressions for the three mentioned estimates
and their respective variances, refer to [11].

Figures 3-5 show the progression of the computed number
of solutions, the corresponding statistical estimate, and a shaded
area representing the 95% confidence interval for the solution
estimate. Since the Schanbel estimate relies on data from previous
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FIGURE 5: Schnabel estimation of the root-count of the polyno-
mial system, window of 3.

monodromy loops and to maintain consistency amongst the three
estimates, these plots all start from iteration 15. Clearly, the
confidence interval quickly narrows in on the estimate as the
trials progress. At iteration 26, our number of computed roots is
303,226. The final Schnabel estimate, using data from iterations
24, 25, and 26, is 303,249 ± 713. Considering this estimate,
we likely have computed approximately 99.7% of the complete
solution set.

Due to the high degree of the polynomial system and the use
of double precision path tracking, the failure rate of the homo-
topy paths via RML was around 20% per iteration. Although
the three statistical estimates account for path failures, the under-
lying statistical model assumes that such failures are uniformly
distributed amongst the paths. This assumption is not upheld in
our work since ill-conditioned end points have a higher chance of
failure. This results in the Lincoln-Petersen and Chapman meth-
ods underestimating the root count and reporting tighter bounds.
Therefore, we consider the Schnabel estimate for its calculation
over a window of data and wider reported confidence interval.

Adaptive precision path tracking [21] addresses the ill-
conditioning and reduces the failure rate, but it comes at the
computational expense of high precision computations. We did
not employ this since our goal was to find a reasonably com-
plete solution set and use it to compute nearly all minima for the
ensuing example problem.

4 ILLUSTRATION
We used four-bar linkage approximating a hopping motion to

illustrate computing nearly all local minima via homotopy contin-
uation. The solutions computed via RML in the previous section
serve as start points for a coefficient parameter homotopy [22] that

TABLE 1: DESIGN SPECIFICATION FOR A HOPPING
MOTION.

# 𝑥 𝑦

1 0 1.000000

2 0.031944 0.994898

3 0.063888 0.979592

4 0.095831 0.954082

5 0.127775 0.918367

6 0.159719 0.872449

7 0.191663 0.816327

8 0.223607 0.750000

9 0.255551 0.673469

10 0.287494 0.586735

11 0.319438 0.489796

12 0.351382 0.382653

13 0.383326 0.265306

14 0.415270 0.137755

15 0.447214 0

yields designs of interest. Recall that RML can be used to solve
any system with 𝑁 > 9 design specifications. For the hopping mo-
tion, we specify 𝑁 = 15 specifications (𝑥 𝑗 , 𝑦 𝑗 ), listed in Table 1.
The isotropic specifications are 𝑋 𝑗 = 𝑥 𝑗 + 𝑖𝑦 𝑗 and 𝑋∗

𝑗
= 𝑥 𝑗 − 𝑖𝑦 𝑗

for 𝑗 = 1, . . . ,15 and 𝑖 =
√
−1 which are used to construct the

target system Eq. (8). Within the Bertini environment, we em-
ployed the user-defined homotopy module to track 303,226 paths
in double precision yielding 195,100 successful end points. The
computation time was about 400 minutes using the previously
mentioned computational resource from Notre Dame.

Since the end points satisfy Eq. (8), they are stationary points
of the objective function in Eq. (7). Out of these, we retain
the physical solutions which respect the conjugate relationship
between 𝐴 and 𝐴∗, and so on, and have real values for 𝑙1s, 𝑙2s,
and 𝑙3s. This set includes both the minima and saddle points of the
objective function. By analyzing the Hessian matrix of Eq. (7),
we can identify the minima of the objective function and obtain
a set of 39 solutions, which, considering the cognates, yields
39 ·3 = 117 four-bar linkages. Four of these 39 Roberts’ cognate
triplets are exhibited in Figs. 6-9 with the dimensions provided in
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TABLE 2: LIST OF FOUR-BAR DESIGNS FOR A HOPPING MOTION.

# Cog. 𝐴 𝐵 𝑙1 𝑙2 𝑙3 𝑄

I 1 2.110+1.561i -0.930 + 0.017i 2.018 0.477 1.142 0.527+0.215i

2 0.839+0.093i 2.110+1.561i 0.650 1.149 0.272 -0.626+0.663i

3 -0.930 + 0.017i 0.839+0.093i 0.248 0.593 1.048 1.753+0.797i

II 1 1.077+0.886i -0.255 + 0.124i 0.136 0.733 0.894 1.288-0.143i

2 -0.747+0.096i 1.077+0.886i 1.158 0.177 0.950 0.233-0.085i

3 -0.255 + 0.124i -0.747+0.096i 0.236 0.288 0.044 -2.783-1.386i

III 1 -0.702-0.016i 0.480+0.587i 1.190 0.347 0.339 0.096+0.161i

2 -0.686 + 0.232i -0.702-0.016i 0.0635 0.223 0.065 -1.736+4.581i

3 0.480+0.587i -0.686+0.232i 0.319 0.311 1.092 1.072+0.191i

IV 1 0.330 + 0.563i -0.925 + 0.439i 0.302 0.290 1.268 0.742 + 0.589i

2 -0.529 - 0.268i 0.330 + 0.563i 1.201 0.286 0.275 0.173 + 0.656i

3 -0.925 + 0.439i -0.529 - 0.268i 0.186 0.814 0.194 0.624 + 1.426i

Cog. 1 Cog. 3Cog. 2

Coupler curve (1 circuit)

Design specification

FIGURE 6: A feasible Roberts’ cognate triplet, Design I, shown
in Table 2.

Table 2. Of these, Figs. 6-8 are approximately tracing the path as
desired; the design in Fig. 9 is circuit-defective where the design
positions are split between the two circuits of the linkage [23].
Additionally, there exists designs wherein the coupler trace show
undesirable loops in their path as shown in Fig. 10 even though

Cog. 1 Cog. 3Cog. 2

Coupler curve (1 circuit)

Design specification

FIGURE 7: A feasible Roberts’ cognate triplet, Design II, shown
in Table 2.

the design is not circuit-defective.
None of the designs found showed desired packaging of the

mechanism with sufficient ground clearance. This issue can be
circumvented by affixing a carefully chosen dyad and converting
the four-bar into a Stephenson-III type six-bar linkage as shown
in Fig. 11. The transferred coupler curve retains the essential fea-
tures of the original specification. Additionally, the end-effector
point is the bottom most point of the linkage in all its configura-
tions as desired.
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Cog. 1 Cog. 3Cog. 2

Coupler curve (1 circuit)

Design specification

FIGURE 8: A feasible Roberts’ cognate triplet, Design III, shown
in Table 2.

Cog. 1 Cog. 3Cog. 2

Coupler curve (2 circuits)

Design specification

FIGURE 9: A Roberts’ cognate triplet, Design IV, shown in Ta-
ble 2. which is circuit-defective.

5 SUMMARY
In this paper, we present the solutions to an unconstrained

optimization problem of path synthesis of four-bar linkages us-
ing numerical continuation technique. The problem formulation
is generic and invariant with respect to the number of design
specifications. We pose a polynomial objective function based
on residual error in the coupler trace equation and derive the
first-order necessary conditions of optimality. This results in a
nine-dimensional square system of highly non-linear equations
with at most 543,848,665 solutions via the Bézout bound. This
is one of the largest optimization problems attempted using a nu-
merical continuation approach. We employ Random Monodromy
Loops to compute our solution set; the Schnabel estimate of the
system’s total root count is 6 · (303,249± 713), with 95% con-
fidence. The multiplication of the estimate by 6 represents the
six-way symmetry of the solution set due to Roberts’ cognates

FIGURE 10: Two examples of coupler curves traced by four-bar
linkages which contain other undesirable characteristics despite
not being circuit-defective.

and swapping the left and right dyads. We then apply this result
to design a mechanism for generating a hopping motion.

This work is a significant step-up from other contempo-
rary works in terms of the computational effort expended. A
key advantage is that the designer has the option to specify as
many as 50 design positions or higher albeit at the cost of addi-
tional functional evaluations. Here, we showcase an example with
15 specified design positions. Further, we show that numerical
continuation-based optimization is capable of finding nearly all
local minima, thus leading to multiple alternative designs other
conventional optimization toolboxes may not afford. While this
methodology reliably finds effective designs, the computational
effort may be more effective solving problems of a smaller scale,
such as linkages with specified ground pivots. Scaling down in
this way would be a better design strategy in terms of achieving
real time computations and shorter lead time.

Although direct six-bar designs may be out of scope, we
show an indirect approach in which these linkages are devel-
oped by adding on to four-bar linkages designed via numerical
continuation-based optimization. The occurrence of significant
failure rates in homotopy path tracking for real-world applica-
tions hampers the appeal of this method, which otherwise could
reach into other engineering domains. A potential solution to this
open problem would be developing effective numerical routines
that handle ill-conditioned polynomial systems without requiring
high numerical precision.
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Coupler curve (four-bar)

Coupler curve (six-bar)

FIGURE 11: Design of a six-bar mechanism for generating a hop-
ping motion, derived from the four-bar Design I (second cognate).
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A Cognate transformations
For a given four-bar linkage with design parameters

𝒅1 = {𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙1, 𝑙2, 𝑙3,𝑄,𝑄∗}

following the convention in Fig. 1, its two other Roberts’ cognates
can be computed as follows:

𝒅2 =

{
𝐴+𝑄(𝐵− 𝐴), 𝐴∗ +𝑄∗ (𝐵∗ − 𝐴∗), 𝐴, 𝐴∗, 𝑙3

√
𝑄𝑄∗,

𝑙1
√
𝑄𝑄∗, 𝑙2

√
𝑄𝑄∗,

𝑄−1
𝑄

,
𝑄∗ −1
𝑄∗

}
.

𝒅3 =

{
𝐵, 𝐵∗, 𝐴+𝑄(𝐵− 𝐴), 𝐴∗ +𝑄∗ (𝐵∗ − 𝐴∗), 𝑙2

√︁
(1−𝑄) (1−𝑄∗),

𝑙3
√︁
(1−𝑄) (1−𝑄∗), 𝑙1

√︁
(1−𝑄) (1−𝑄∗), 1

1−𝑄
,

1
1−𝑄∗

}
,

Further, for any design 𝒅1, its symmetric representation is

𝒅′1 = {𝐵, 𝐵∗, 𝐴, 𝐴∗, 𝑙3, 𝑙2, 𝑙1,1−𝑄,1−𝑄∗}.

When taken together, all 3 · 2 = 6 members of a group can be
identified/computed using these rules.
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