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Abstract— Polar linkages have two degrees-of-freedom (DOF)
where one input joint angle controls the length of a radial seg-
ment while another controls its angle. Considering a theoretical
planar robot model, this mapping between joint angles to output
motions can be shown to be energetically advantageous over
the ubiquitous two-revolute linkage. Since a polar linkage’s
typical construction involves a moving prismatic joint, it is
cumbersome to implement alongside rotary electromagnetic
actuators offsetting any advantage. In this paper, we present
a procedure for designing polar linkages using only revolute
joints. The procedure starts with a pre-existing single DOF
straight line linkage and then finds the dimensions of a three-
link attachment to produce the second DOF. In the end, the
straight line linkage actuates the polar length and the attach-
ment actuates the polar angle. The design process is framed
under optimization with an objective that is both polynomial
and invariant to the number of discretization points. This
enables the techniques of numerical continuation to efficiently
find complete sets of minima. We demonstrate our procedure
with an example in which multiple minima are found including
the global minimum. This computed design solution is then
fabricated in order to validate the designed kinematics.

I. INTRODUCTION

A typical design for the leg mechanism of a planar robot
model is to attach an RR (revolute-revolute) mechanism to
the body of a robot and actuate it at each joint with two
copies of the same motor. These motors control the motion
and forces of an endpoint that interact with the environment
to locomote the robot. With this set-up, the mapping between
joint torques and Cartesian force output are well mixed.
Considering that the presence of gravity raises the force and
torque requirements in the vertical direction, this begs the
question as to whether a more decoupled approach is in order.
Analysis of force and velocity commands at various points
in the RR mechanism’s workspace indicates configurations
where the first has large instant power requirements while the
second motor’s is small, as well as configurations where the
first motor has small instant power requirements while the
second motor’s is large. If only the former or latter were true,
then one of the two motors could be downsized to match its
lower power regime, resulting in mass and energy savings.
Instead, each motor needs to be capable of shouldering the
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energetic burden individually at different points in time. To
make matters worse, force and velocity commands executed
at certain points in the workspace require one of the actu-
ators to perform negative work as illustrated in Section II.
Other researchers additionally note that kinematic coupling
between the RR mechanism’s actuator and endpoint motions
leads to negative work production [1], and adversely impacts
the performance of speed and force control between vertical
and horizontal directions [2, pg. 149].

An approximate coupling of actuator motions to Carte-
sian directions can be shown to have advantages in this
regard. One implementation of this coupling is the usage
of a polar leg, that is, to use a rotary actuator to radially
point a prismatic actuator toward the ground. This approach
is particularly effective when that prismatic actuator is a
powerful pneumatic [2],[3],[4] or hydraulic cylinder [5].
However, implementations of a polar leg with rotary electro-
magnetic (EM) actuators are more scarce. The accessibility,
cost, portability, power density, and ease of implementation
of rotary EM actuators makes this point substantial [6]. The
bow leg of Zeglin [7] involved a polar leg powered by servos,
however, the design objectives included an unconventional
thrust actuation scheme that does not coincide with the
objectives of the current paper. It is worth noting that at least
a few partially actuated polar leg designs exist [8],[9],[10].
However, their relation to this work is tangential because
only one joint is actuated.

One factor inhibiting broader usage of EM powered polar
legs is that current rotary to linear motion solutions are not
well suited for impact loads and large accelerations. For
example, rack & pinion assemblies and ball screws involve
heavy parts that should change direction quickly and often.
Another relevant solution is to indirectly drive a prismatic
joint, such as with a slider-crank linkage [11]. This approach
admits a rotary actuator but still incorporates the challenges
that come with building a prismatic joint, i.e., tolerating sub-
stantial torque over an accurate, low friction sliding motion.
Revolute linkage assemblies provide several solutions for
the rotary to linear problem, and have greater potential to
be lightweight and sustain large forces. Furthermore, with
parallel linkages, all actuators may be fixed relative to the
body to limit acceleration of their inertias. However, it is
unclear how to take these existing solutions and piece them
together into a two degree-of-freedom polar leg. In this
paper, we present a design procedure for converting extant
approximate straight line linkages into approximate polar leg
mechanisms using only revolute joints.

The approach involves designing a three link add-on. The
add-on is to be attached to the body frame at one end and



to the straight line generator at the other. The add-on should
reproduce the straight line of the generator and, by actuating
its angle, be able to change that line’s orientation. In this
way, the add-on controls the polar angle while the straight
line generator controls polar length. To find the dimensions
of the add-on, an optimization problem is formed. The
objective is formed from the sum of squares of kinematic
constraint quantities that should ideally evaluate to zero. The
objective summation is long because its terms correspond to
discretization points of designated target curves. But notably,
we perform an algebraic elimination on these constraints
beforehand to wipe out configuration dependent variables,
leading to a polynomial objective whose structure is invariant
to the number of discretization points. This makes the
ensuing computation very tractable, especially in terms of the
toolset of polynomial homotopy continuation. A numerical
ab initio homotopy is executed onto the optimization prob-
lem, finding that no more than 1,253 stationary points can
exist. Specifically, we use the method of random monodromy
loops [12], [13]. A parameter homotopy [14] is then executed
to find all stationary points for an example problem. Saddles
are then filtered out and the remaining minima are analyzed.
In the example, the global minimum is found from which
we fabricate a kinematic model that is verified to produce
an approximate polar workspace.

The structure of the paper is as follows. Section II
performs a preliminary exercise to motivate the design of
polar linkages by demonstrating their potential for energetic
benefits. The formulation and numerical reduction of our
design equations is contained in Section III. These results are
applied to compute a polar linkage example in Section IV.
In Section V, a kinematic model of one of the computed
solutions is constructed and validated for its approximate
polar workspace. Conclusions are offered in Section VI.

II. MOTIVATION

To understand the advantages that a polar leg design might
offer in terms of mechanical power flow, consider the three
serial chains displayed in Fig. 1: (a) an RR chain, (b) a
PP chain, and (c) an RP chain. The RR chain consists of
two serially actuated revolute joints. The PP chain consists
of two serial, orthogonal prismatic joints, each of which is
actuated by a rotary actuator through some means. In Fig. 1b,
this is conveyed by rack and pinions but, for the current
exercise, how rotary to linear motion is achieved does not
matter. The RP chain consists of a revolute joint that aims
a prismatic joint in which the two joint axes intersect. Once
again, a rotary-to-linear transformation sets up the leg to have
two rotary actuators.

The motion inputs of each leg are marked as (θ1, θ2)> For
the RR and RP chains, θ1 is measured from the downward
vertical. For the RR chain, θ2 is the relative angle between
proximal and distal segments. The kinematic Jacobians of

the three serial chains are

[JRR] =

[
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)
l1 sin θ1 + l2 sin(θ1 + θ2) l2 sin(θ1 + θ2)

]
, (1)

[JPP] =

[
L1 0
0 L2

]
, (2)

[JRP] = L

[
θ2 cos θ1 sin θ1
θ2 sin θ1 − cos θ1

]
, (3)

where l1 and l2 are the segment lengths of the RR chain.
L1, L2, and L are the radii of the pinions shown in Fig. 1.
For this exercise, they will ultimately cancel out and so their
actual values are inconsequential.

The Jacobian transforms velocities and forces/torques be-
tween the actuators and endpoint. Let’s notate the motor
velocities as (θ̇1, θ̇2)>, the endpoint velocity as (vx, vy)>,
the motor torques as (T1, T2)>, and force applied at the
endpoint as (Fx, Fy)>. The relevant transformations are[

θ̇1
θ̇2

]
= [Jxx]−1

[
vx
vy

]
,

[
T1
T2

]
= [Jxx]T

[
Fx

Fy

]
. (4)

We note that inertial forces and losses have been neglected,
and in doing so, suggest that the kinematic effects captured in
Eqns. (4) are substantial enough to study on their own. With
this formulation, it is easy to show that the power generated
at the endpoint in an instant must equate to the motors’
mechanical power output. The dot product of Eqns. (4) yields[

T1 T2
] [θ̇1
θ̇2

]
=
[
Fx Fy

]
[J ][J ]−1

[
vx
vy

]
. (5)

However, Eqn. (5) fails to capture the role that the Jacobian
plays in distributing power. Given the force and velocity of
the endpoint, and the current configuration of the mechanism,
the kinematic Jacobian dictates how instantaneous com-
manded power Pkin is distributed between the motors. This is
found simply by evaluating the right sides of Eqns. (4), then
computing P1 = T1θ̇1 and P2 = T2θ̇2. Note that although
Pkin = P1 + P2, there is no guarantee that both P1 and P2

will be positive. If P1 happens to be negative, then P2

must be greater than Pkin. In other words, the mechanical
power output by one of the motors must be greater than
the mechanical power of the commanded task. Moreover,
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Fig. 1: Serial two DOF chains: (a) an RR chain, (b) a PP chain, and (c)
an RP chain. Power distributions of these three chains were calculated for
characteristic force/velocity commands at various points in their workspaces.
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Fig. 2: Neglecting losses, an instantaneous force/velocity command specifies
a kinetic power which distributes between actuated joints as defined solely
by the kinematic Jacobian. P1 or P2 may be negative although Pkin is
positive.

this is all due to kinematics, before Joule heating, friction,
compliance, and all other losses are accounted for.

To see this and other behaviors, we perform a brief
study. Consider the limb commanded to perform a vigorous
task of accelerating upwards at four G’s and forwards at
one G. The commanded force would be F = mg(1, 5)>

(minding the offset of the robot’s weight itself). And consider
a commanded velocity collinear to F such that the robot
bounds to a height h, i.e., v = 1

5

√
2gh(1, 5)>. We observe

the power distribution between actuators for each of the serial
chains of Fig. 1 at various points in the workspace.

We note that the ratio P1:P2 is defined only by the
directions of F and v. With respect to this ratio, their
magnitudes cancel out as can be seen in the power balance
of Eqn. (5). In this sense, the magnitudes defined above
are superficial except to illustrate this study with realistic
values. To this end, we proceed forward with additional
values m = 1 kg, h = 0.5 m, and l1 = l2 = 0.15 m. The
commanded kinetic power is Pkin ≈ 160 W. The results are
given in Fig. 3 and Table I.

The power distribution was computed at six points in the
workspace, marked A–F in Fig. 3, for all three serial chains.
Table I displays the data that corresponds to each of these
points. This table includes the instantaneous power values at
each motor necessary to complete the commanded motion,
as well as the ratio of P1 to the total requested power Pkin. To
understand this latter value, we note that at point A, the θ1
motor of the RP chain would provide 7% of the necessary
energy meaning the θ2 motor must provide the remaining
93%. Considering the RR chain at point A, the θ1 motor
would provide −21% of the energy meaning that it is doing
negative work at that instant. Therefore, the θ2 motor must
provide 121% of the requested kinetic power at that instant.

It can be unintuitive that a net positive power kinematically
requires a negative power component. The condition for this
to occur is simply that the commanded torque and velocity at
an actuated joint oppose each other. One such configuration
is given in Fig. 3. For the endpoint to move in the direction
of v, the θ1 joint must rotate clockwise. For the endpoint to
exert a force in the direction of F, it must resist the opposite
of F. Consider the moment arm of −F from the fixed pivot
in Fig. 3, it is clear that a counterclockwise torque must be
exerted by the motor.

The preceding study is brief. Combinations of config-
urations and force/velocity specifications that necessitate
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Fig. 3: The three serial chains of Fig. 1 were evaluated at six points in their
workspaces to determine instantaneous power distribution between actuators
for a characteristic force/velocity command. Pictured above is only the RR
chain. Corresponding values at points A-F are given in Table I.

TABLE I: The results of a preliminary exercise comparing the three serial
chains shown in Fig. 1 according to their power distributions between
actuators during a characteristic force/velocity command at the workspace
points A-F shown in Fig. 3.

P1 P2
P1

Pkin
P1 P2

P1

Pkin
P1 P2

P1

Pkin

(W) (W) (%) (W) (W) (%) (W) (W) (%)

A B C
RR −34 194 −21 34 126 21 147 13 92
PP 6 154 4 6 154 4 6 154 4
RP 11 149 7 6 154 4 60 100 38

D E F
RR −62 222 −39 60 100 37 226 −67 142
PP 6 154 4 6 154 4 6 154 4
RP 5 155 3 6 154 4 46 114 29

negative power can be found for all three of the serial chains.
Rather than exploring all combinations, we suggest that the
combinations depicted in Fig. 3 are representative in order
to make design decisions. In particular, we point out the
relatively low values of P1/Pkin for the PP and RP chains
shown in Table I. This indicates that these chains might
benefit from asymmetric motor specification. The θ1 motor
can operate in a lower power regime than the θ2 motor.
Intuitively, for these two chains, the θ1 motor predominantly
controls horizontal Cartesian velocities while the θ2 motor
is predominantly resisting gravity in the vertical direction.
However, since both of these chains contain a P joint, their
integration with electric motors is challenging.

Rotary-to-linear solutions are heavy and torque limited
(rack & pinion, ball screws). Linkage designs that convert
rotary to linear motions exist, but their required positioning
of links makes it unclear how these might be converted
into two degree-of-freedom leg mechanisms. To address this
problem, we focus on a design technique to create linkages
with a map of (θ1, θ2)> to endpoint coordinates that liken to
an RP chain with the critical exception that we create parallel
chains rather serial. This allows both actuators to remain
fixed to the robot body, minimizing large accelerations of
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Fig. 4: Schematic of the design of a 3R mechanism.

their inertias.

III. DESIGN FORMULATION

To begin our design formulation, we assume that an
approximate straight line generator is already in hand. Exam-
ples of these sorts of linkages can be found in [15]. The ob-
jective is to design additional links to attach to this generator
in order to displace its line to a convenient location and allow
the ability to reorient this line as controlled by an actuator
placed at the base link of the add-on. In tandem with an
actuator placed on the generator itself, the two would serve
to actuate and orient this line of action, thus instantiating a
polar workspace. The add-on mechanism consists of three
links connected from the base to the straight line generator
by three revolute joints, and so is referred to as a 3R linkage.
Such a set up is shown in Fig. 4a where the three revolutes
are labeled as A, B, and C, and the connection point to
the straight line is labeled D. The endpoint is labeled P ,
and should produce at least approximate polar motions as
parameterized by the base angle θ and motions along the
straight line.

A. Mathematical Model

Consider three sets of approximate straight lines (referred
to as curves hereon) as design requirements at P . Note
that these curves are to be functions of the polar angle
input θk, k = 1, 2, 3, respectively, whose values are to be
determined. While a continuous association with the polar
angle is preferred, we pick three sets of design curves over
the desired range to simplify the model. This allows us to
initiate vector loop equations starting from Bk, k = 1, 2, 3,
instead of A. Once the points Bk, k = 1, 2, 3, are determined,
the point A can be obtained by fitting a circle through the
points Bk and locating its center as summarized in Fig 4b.

We fixed the parameter length DP and solved the PR
inverse kinematic problem to determine the orientation ψkj

of the vector DP for the three set of curves through all of the
design positions, which are discrete points on the generator
curve at Dj , j = 1, 2, ..., N . The vector CD is denoted using

the variables (qx, qy)> in an initial configuration. The vector
loop equation associated with each design position can be
written as follows:

(bxk, byk)> + l(cos(φkj), sin(φkj))
> + R[ψkj ] · (qx, qy)>

= (dxj , dyj)
>. (6)

Here, R represents the 2D rotation matrix and φkj is the
rotation angle associated with the binary link BC at a design
position. Eliminating φkj can be performed by considering
the rigidity of the link BC as follows:

ηkj := l2 − ||(dxj , dyj)> − R[ψkj ] · (qx, qy)> − (bxk, byk)
>||2

= 0. (7)

A further simplification is made by replacing l2 with ls to
reduce the algebraic degree of the system. Thus, the nine
variables in the above equation are

d = {bx1, by1, bx2, by2, bx3, by3, ls, qx, qy}.

Hence, if the design positions are to be met exactly, only
specifying nine design positions in total are possible. How-
ever, for a larger number of design positions in each of
the three sets, one can replace exact specifications with an
optimization problem where the residual in the equation ηkj
is minimized over all the design positions. Accordingly, the
objective of the optimization is a sum of squares of the
residual over all the design positions, namely

f =
1

2

3∑
k=1

N∑
j=1

η2kj . (8)

This error measure has been used previously in literature for
kinematic synthesis to successful effect, e.g. [16]. The first
order necessary conditions of optimality are:

fd =

3∑
k=1

N∑
j=1

ηkj
∂ηkj
∂d

= 0. (9)

This leads to a system of nine polynomial equations in nine
variables whose roots are the stationary points of the uncon-
strained optimization problem. Polynomial systems such as
this one are nonlinear in nature and admit a large number of
solutions termed as the root count of the system. The root
count can be bounded based on the monomial structure of
the polynomials, called the BKK bound, e.g., see [17, § 8.5].
It is important to note that Eqn. 9 is devoid of configuration
dependent variables generated from the discretization. It does
contain configuration dependent input specifications from the
discretization, but these parameters do not alter its monomial
structure. This means that the root count of this system does
not change as the number of discretization points increases.
This allows us to use the technique of numerical continuation
to solve a generic polynomial system of the same structure
and solve any subsequent problems using the solutions of the
generic system. The former step is called the ab initio step
and the later step is called the parameter homotopy step [18].



B. Numerical Reduction

There are several approaches to compute the root count
and complete the ab initio step. One approach is to bound
the root count and employ a single homotopy. For example,
an elementary analysis shows the multi-homogeneous Bézout
number [19] of Eqn. 9 is 203,877, which is an upper limit
on the root count. Another bound on the root count is the
BKK bound, which was found to be 6,561 [20]. Thus, one
can employ a multi-homogeneous or a polyhedral homotopy
tracking 203,877 or 6,561 paths, respectively, to complete
the ab initio step.

Rather than use a single homotopy, another approach is
based on building up to a complete solution set using a se-
quence of homotopies. The technique of random monodromy
loops (RML) [12], [13] uses a series of homotopy loops
that start and end at the same system while taking different
paths. By starting from a seed solution, roots are accumulated
iteratively with statistical approximations of the root count
computed after each iteration [12]. Several techniques can be
employed for a stopping criterion, e.g., comparing the actual
number of roots collected with a statistical approximation of
the root count, stopping after several iterations yielding no
new roots [21], or employing a trace test to validate that all
roots have been found [12], [22].

For computational efficiency, the choice of method de-
pends upon the expected order of magnitude difference from
the multi-homogeneous Bézout number and the actual root
count, the computational cost of computing the BKK bound
together with its expected order of magnitude difference
with the actual root count, and the cost of performing many
random monodromy loops. If an upper bound is expected to
be comparable to the root count, a single homotopy is often
preferred. When the difference is expected to be large, the
probabilistic approach of RML can be more efficient.

For the ab initio setup, a generic design problem with
randomly chosen values for dxj , dyj , and ψkj , k = 1, 2, 3,
j = 1, 2, ..., 7 is created. Based on the expected difference
between the upper bounds and the actual root count, our
computation utilized RML via the software Bertini [18],
[23] running on an Intel Xeon 2.30 GHz system with
192 parallel cores in the Center for Research Computing
at the University of Notre Dame. Refer to [13] for more
information on the details of the numerical technique. In
about three minutes of real computational time, this showed
that the root count of this polynomial system was 1,253. This
result was independently verified in [24]. This means that the
objective displayed in Eqn. 8 can have no more than 1,253
stationary points which can be found, both real and complex,
by tracking a 1,253 path parameter homotopy in about 28
seconds on the computational resources listed above.

IV. EXAMPLE POLAR LINKAGE

The optimization framework described in Section III was
applied to an example design of a polar linkage. The ap-
proximate straight line generator used was a six-bar linkage
designed independently of this work, depicted in Fig. 5. The
objective is to find a 3R linkage add-on that regenerates the

D

Design 
curves 

Generator curve
(Approximate straight line)

D

P

Fig. 5: Specification of design curves for the optimal design of a polar leg
linkage.

approximate straight line below the pre-existing pivot points
and provides an additional degree of freedom to reorient the
regenerated line resulting in a polar workspace. The length
of DP was chosen as 0.06 m (refer to the inset), roughly
setting the downward translation of the polar workspace.
The shaded region in the figure shows the bottom half area
of the reachable points by P for this choice. The design
curves specified must be restricted to this region. For this set
of design curves, the desired orientation of the vector DP
can be determined by solving for the inverse kinematics
which is elementary in this case. For enabling this, the
generator curve is represented as 440 discrete points. For
every point Dj , j = 1, 2, ..., 440 in the generator curve, the
angular orientation of DP corresponding to each of the three
design curves is computed to serve as the specification for
the optimization problem.

A homotopy is constructed from the previously solved
ab initio system to the target system corresponding to the
practical example. The start solutions of the ab initio system,
1,253 in number, are tracked onto the target system in the
Bertini software in under 30 s with the same resources as
above. The number of successful paths for this numerical ex-
ample was 1120, about 90% of paths. In traditional predictor-
corrector homotopy path tracking, e.g., see [25], [26], New-
ton’s method is used as the correction step which often hits
the limit of numerical precision when confronted with an ill-
conditioned Jacobian. Here, we employed double precision
tracking to balance between efficiency and robustness. Of the
successful paths, only 12 corresponded to physical solutions
with real values for the link dimensions, which are listed in
Table II. Five of the 12 are local minima, while the rest are
saddle points. Only three of the 12 candidates, which are
labeled #3, #8, and #9, were singularity-free, making them
viable. Candidate #9, even though a minimum, returned a
poor approximation of the desired curves as can be inferred
from the value of the objective function when compared
against #3 and #8. Candidates #3 and #8 trace the design
curves fairly well for various values of the 3R base joint
input as shown in Figs. 6 and 7, respectively. Design #3
is undesirable since all pivots do not remain above the
polar workspace. Design #8, which is incidentally the global



TABLE II: Stationary points of the optimization.

Design parameters (mm) Obj. f
# bx1 by1 bx2 by2 bx3 by3 l qx qy Type ×10−4

1 −43.178 −22.658 −43.415 −22.679 34.133 −24.103 42.029 −15.005 8.891 Min. 0.3129
2 −31.137 −70.126 −19.840 −71.631 −13.376 −70.052 18.688 3.518 55.227 Saddle 0.3318
3 17.795 −163.628 3.356 −182.959 24.366 −143.559 64.843 23.416 142.118 Min.† 0.1934
4 −20.548 −70.860 −23.773 −70.849 −17.090 −70.483 17.390 2.663 55.365 Saddle 0.3320
5 −12.890 −10.275 −25.654 −9.983 −26.552 −9.529 18.754 −2.039 −5.312 Saddle 0.3231
6 15.631 −18.146 −46.649 −15.906 −46.668 −15.610 35.633 −4.395 1.608 Min. 0.3147
7 −19.670 −5.321 −2.311 −6.374 −20.829 −4.478 19.658 −10.118 −9.679 Saddle 0.3217
8 −75.247 30.456 −72.298 23.736 −77.389 37.014 61.802 −3.535 −44.795 Min.∗ † 0.1583
9 1.809 −98.362 −3.973 −103.388 −50.927 −100.136 33.690 6.624 80.925 Min.† 0.3309
10 −12.523 −75.408 −32.275 −72.952 −8.902 −73.991 19.154 0.638 59.540 Saddle 0.3323
11 −36.811 −8.322 −36.875 −8.053 −21.630 −9.503 19.246 7.582 −6.730 Saddle 0.3223
12 −16.252 −76.668 −19.917 −77.559 −30.819 −76.970 19.511 5.206 60.726 Saddle 0.3325
∗ Global minimum.
† Singularity-free 3R mechanism.

TABLE III: Power distributions between actuators during a characteristic
force/velocity command at the workspace points A-F shown in Fig. 8.

P1 P2
P1

Pkin
P1 P2

P1

Pkin
P1 P2

P1

Pkin

(W) (W) (%) (W) (W) (%) (W) (W) (%)

A B C
#8 40 120 25 −0.6 160 −0.4 64 95 40

D E F
#8 1.4 158 1 0.8 159 0.5 52 107 33

minimum, shows positive ground clearance, hence a natural
choice for building a physical robotic system based on its
specifications. In Fig. 7, two additional curves generated by
the mechanism are shown along with the ones corresponding
to the three design specifications to indicate the range over
which the straight line approximation holds.
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B3

D
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P

Primary
input

Secondary
 steering input

Output 
curves

Fig. 6: An optimal design candidate #3 for the design of a polar leg linkage.
The output curves are singularity-free. However, the mechanism has negative
ground clearance, making it undesirable.

V. PROTOTYPE

As a condition for achieving the energetic advantages
presented in Section II, we analyze the instantaneous power
distribution between the actuators of design #8. To repeat
the takeaway of Section II concisely: the behavior we desire

A

B1

B2

B3

D

C

P

Primary
input

Secondary
 steering input

Output curves

Fig. 7: Global design candidate #8 for the optimization problem. The
mechanism is a suitable one as it is singularity-free with sufficient ground
clearance.

is an instantaneous asymmetric power distribution between
joint angles given characteristic velocities and loading at the
endpoint at various places in the workspace. This distribution
should minimize the power requested at one joint, without
going negative, and maximize the power requested at the
other. Fig. 8 and Table III summarizes this analysis and
all the relevant parameters are found to be in order. When
compared with the three cases RR, PP, RP chains, the design
presented in Fig. 8 produces desirable power characteristics
similar to the RP chain without using prismatic joints. As
a further illustration of this behavior, we use kinematic
accuracy as a surrogate measurement. The factors defining
power requests at each input joint are not purely kinematic
in nature, but we believe kinematics play a dominant role.

A kinematic model of design solution #8 (Fig. 7) was
constructed to validate that it achieves at least an approx-
imate polar motion. This exercise demonstrates that the
dimensional sensitivity and tolerancing required of design
#8 fall within the capabilities of conventional fabrication
techniques. The approximate straight line generator was
cut out of 6061 aluminum by a CNC mill, see Fig. 9.
The 3R linkage add-on was 3D printed with PLA. Joints
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Fig. 8: Instantaneous power distribution between actuators for a char-
acteristic force/velocity command for the Design #8 shown in Fig. 7.
Corresponding values at points A-F are given in Table III.

were accommodated with a mix of plastic bushings and
ball bearings. The kinematic model was video recorded and
processed [27] to test its kinematic accuracy. Since one
half of the generator curve possessed smoother transmission
characteristics than the other, the smoother half was used
for the recordings. The generator curve and approximate
polar motion are shown in Fig. 10. The curves marked I-
V correspond to motions produced when the 3R input joint
is held fixed at various angles. Our metric of merit is the
straightness of these radiating curves. To assess this for a
single curve, temporal data points from the video recordings
were resampled to be made spatially uniform. This was
accomplished by interpolating splines through data points,
then choosing new spatially uniform data points from those
splines. A line was fitted through the resampled points and a
raw error metric e was computed as the average distance
of data points from this line. Then, all data points were
projected onto the line and the two extremes were used to
bound the line into a segment. The length of the segment, Γ,
was then used to normalize error into a percentage, ê = e/Γ.
The angle of the line segment was used to describe the rough
angle of each curve. Over the five recorded curves, radial
polar straight lines deviated from the ideal by an average
error of 2.17%.

VI. CONCLUSION

This work described a procedure for designing polar
linkages in the absence of prismatic joints. This is accom-
plished by transforming pre-existing single DOF straight
line generators into two DOF polar linkages. The procedure
begins with an approximate straight line generator curve,
forming one of the two DOF. A 3R serial link structure
should attach to the generator curve to form a closed chain.

Straight line
generator

Design #8

Fig. 9: A view of the partially assembled kinematic model.

The terminal link of the 3R is required to trace a series
of approximate straight lines while holding its proximal
link fixed in order to approximate the radial movements
of a polar workspace. The design challenge is to find 3R
dimensions that actually accomplish this, which was solved
by forming an optimization problem and applying numerical
homotopy continuation to compute critical points. To form
the objective, kinematic loop equations are formed over n
design configurations corresponding to discretized versions
of the desired curves. These equations introduce hundreds
of configuration dependent unknowns, making any ensuing
optimization intractable. Instead, all configuration dependent
variables are algebraically eliminated so that the objective
is formed by treating kinematic constraints as quantities
rather than equalities, and summing their squares. The re-
sulting objective is polynomial and its monomial structure
is invariant to the number of discretization points. This is
a nice advantage because it enables homotopy continuation
to numerically reduce the problem once and those results
are applicable to any discretization using a technique called
parameter homotopy. This has a large positive effect on both
computational efficiency and completeness of the resulting
optimization. Our technique can find nearly all minima of
this objective in less than 30 seconds. We demonstrate
the importance of finding all minima through a numerical
example to design a polar robot leg. In this example, we
found five minima including the global minimum. The global
minimum design is found to be sufficiently practical and
subsequent fabrication demonstrated kinematic accuracy.

We are motivated to design polar linkages since, when
used as robotic legs, they can be shown to demonstrate
energetic advantages. In particular, polar linkages do a better
job than RR linkages distributing requested instantaneous
power between actuated joints for common motion and
loading scenarios of legged robots. The power distribution
sought is for one joint to shoulder the energetic burden while
the other joint’s role is energetically minimal and does not
generate negative power. This is advantageous as only one
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Fig. 10: A compilation of curves traced during video recordings of the
kinematic model.

motor needs to be sized for large power output. Note that
the typical RR mechanism requires each motor to shoulder
nearly the entire energetic output by itself at different points
in its workspace meaning that both motors need to be
sufficiently powerful. Moreover, our design procedure leads
to polar two DOF mechanisms absent of prismatic joints.
The motivation to circumvent prismatic joints is due to the
general cumbersome nature of their implementation with
rotary EM actuators.
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