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Abstract

Various applications in science and engineering depend upon solving nonlinear systems of
equations which depend upon parameters. Locally in the parameter space, the qualitative
behavior of the solutions remains the same except at critical parameter values. This ar-
ticle develops a singular value homotopy that aims to compute critical parameters values.
Several examples are presented including computing critical parameter values for nonlinear
boundary value problems, turning points for a steady-state system connected to learning
and memory, and computing the maximum Gaussian curvature of a surface.

1 Introduction

Systems of equations arising in science and engineering typically depend upon parameters such
as temperature, pressure, concentration, and length. The solutions to these equations vary
with the parameters with the implicit function theorem, e.g., see [22, Thm. A.2.8], showing
that the qualitative behavior of the solutions remains the same except at critical parameter
values. Therefore, computing critical parameter values is important for creating a complete
understanding of the solutions over the parameter space.

Two main applications that benefit from computing critical parameter values are steady-state
bifurcations and differential equations with a multiplicity of solutions. Bifurcation diagrams
demonstrate the steady-state solutions of differential equations as they depend on one or more
parameters of the equations. While most points on a bifurcation diagram can be found through
typical computations, the critical parameter values correspond to limit points or turning points
which are more difficult to compute as this is where the number of solutions change. Most of
the work in determining bifurcation diagrams is in finding these critical parameter values [24].

Many nonlinear differential equations can be shown to have multiple solutions for a particular
range of parameter values. For instance, the two-point boundary value problem

y′′(x) = −λ(1 + y2), 0 < x < 1

y(0) = 0 (1)

y(1) = 0
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is known to have a critical parameter value λ∗ > 0 such that there are two solutions for
0 < λ < λ∗ and no solutions for λ > λ∗ [15, 17]. While the existence of such a critical pa-
rameter value λ∗ is known, there is typically no analytical method for computing the value.
Therefore, it is left to numerical methods to approximate λ∗ via discretization.

Since the computation of critical parameter values is used in a variety of contexts, there are
numerous approaches such as [6, 7, 12, 20]. In this work, we develop a homotopy continuation
algorithm (see [5, 22] for a general overview) based on the singular value decomposition which
aims to drive the minimum singular value of the Jacobian matrix to zero corresponding to a crit-
ical parameter value. This idea can be easily modified when the Jacobian matrix is symmetric,
the minimum singular value is degenerate, i.e., has two or more linearly independent singular
vectors, or to create a degenerate singular value.

The structure of the paper is as follows. Section 2 provides a short introduction to homotopy
continuation and discretization. Section 3 describes the singular value homotopy and some
modifications. Section 4 presents several applications of the singular value homotopy applied to
differential equations.

2 Homotopy continuation and discretization

The following provides some background information on homotopy continuation and the dis-
cretization of differential equations.

2.1 Homotopy continuation and path tracking

The essential idea of homotopy continuation, e.g., see [5, 22] for more details, is to track along
a solution path over a segment which, without loss of generality, we may assume is the in-
terval [0, 1]. In particular, suppose that H(y; t) = 0 is a system of n analytic equations with
variables y = (y1, . . . , yn) and parameter t ∈ [0, 1]. Let JyH(y; t) and JtH(y; t) be the Jacobian
matrix and vector with respect to y and t, respectively. Suppose that one is given a point z
such that H(z; 1) = 0 and JyH(z; 1) is invertible, i.e., z is a nonsingular solution of H(•; 1) = 0.
Then, the implicit function theorem shows that there is an analytic solution path y(t) such
that y(1) = z and H(y(t); t) ≡ 0 for t in an open neighborhood of 1. In particular, this open
neighborhood can be extended from 1 towards 0 until there exists t∗ < 1 such that either

lim
t→(t∗)+

‖y(t)‖ =∞ or det JyH(y(t∗); t∗) = 0. (2)

If there is no t∗ ∈ (0, 1] such that (2) occurs, then the path y(t) is said to be track-
able [14, Defn. 4.5]. Therefore, one can use predictor-corrector path tracking methods as il-
lustrated in Figure 1 to compute y(t) for t ∈ (0, 1] as well as the endpoint

y(0) = lim
t→0+

y(t).

Since H(y(t); t) ≡ 0, the predictor part arises from applying standard numerical solvers for
ordinary differential equations, e.g., Euler or Runge-Kutta, to

d

dt
H(y(t); t) ≡ 0 =⇒ ẏ(t) = −JyH(y(t); t)−1 · JtH(y(t); t). (3)

Given a fixed value of t and a numerical approximation of y(t), the corrector part arises from
applying standard local numerical solvers, e.g., Newton’s method, to H(•; t) = 0.
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Figure 1: Illustration of predictor-corrector path tracking for path y(t).

Example 1. As an illustrative example, consider H(y; t) = y2 − t with z = 1. Clearly, the
analytic solution path y(t) with y(1) = 1 and H(y(t); t) ≡ 0 is y(t) =

√
t. Since the critical

parameter value is t∗ = 0, this solution path is trackable with

ẏ(t) =
1

2y(t)
.

For singular endpoints, i.e., y(0) such that JyH(y(0); 0) is singular, endgame procedures (see
[22, Chap. 10] for a general overview) can be used to produce accurate approximations of y(0).

2.2 Discretizing differential equations

For parameterized systems of differential equations, critical parameter values are of great in-
terest for fully describing their bifurcation diagrams or finding where the number of solutions
changes [10, 17, 18, 21]. One way to construct systems of equations from differential equations
which can be used to numerically approximate critical parameter values is by using the finite
difference method [2, 9, 16].

The problems presented in Section 4 utilize finite difference discretization to construct sys-
tems of equations. To illustrate, consider the boundary value problem (1). Using n + 1 dis-
cretization nodes on the interval [0, 1], the spatial step size is h = (n + 1)−1 and the spatial
nodes are xj = j · h for j = 0, 1, . . . , n+ 1. Then, yj denotes an approximation of y(xj) at each
grid point for j = 1, . . . , n with y0 = yn+1 = 0 since y(0) = y(1) = 0.

Using a central difference approximation for y′′(xj), namely

y′′(xj) ≈
yj+1 − 2yj + yj−1

h2
,

one obtains a system of equations in variables y = (y1, . . . , yn) and parameter λ:

y0 − 2y1 + y2 + h2λ(1 + y21) = 0

y1 − 2y2 + y3 + h2λ(1 + y22) = 0 (4)

...

yn−1 − 2yn + yn+1 + h2λ(1 + y2n) = 0
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with y0 = yn+1 = 0. Therefore, (4) yields a system of n polynomial equations F (y;λ) = 0 in n
variables y = (y1, . . . , yn) and parameter λ.

3 Singular value homotopy

The basic setup is as follows. First, one has a system of n analytic equations F (y;λ) = 0
in n variables y = (y1, . . . , yn) and parameter λ. Second, one is given a parameter value λ
and a nonsingular solution y to F (•;λ) = 0. With this setup, the goal is to track along the
solution path through y to find a critical parameter value λ∗ which is a parameter value such
that F (•;λ∗) = 0 has a singular solution, i.e., a solution with a singular Jacobian matrix JyF .

A common technique used in a variety of problems, e.g., [3, 6, 7, 11, 12, 20], is to incremen-
tally move, i.e., “sweep,” along the solution path looking for critical parameter values. This
is inherently sensitive to how one numerically steps along the solution path and the numerical
criterion for identifying critical parameter values. Therefore, an alternative is to use a homo-
topy that forces the determinant of the n×n Jacobian matrix JyF to be zero. Due to potential
numerical computational issues with evaluating and differentiating det JyF when n is large, we
instead propose a homotopy-based approach based on the minimum singular value. Although
this adds more variables and equations, the highly-structured nature of the equations permits
large-scale computations as demonstrated on examples in Section 4.

Since the applications in Section 4 depend on tracking real solution paths and computing
real solutions, we formulate everything in terms of real computations. The singular value de-
composition of a matrix A ∈ Rn×n is

A = U · Σ · V T

where U, V ∈ Rn×n are orthogonal, i.e., UT · U = V T · V = I, and

Σ =

 σ1
. . .

σn

 ∈ Rn×n

such that σ1 ≥ · · · ≥ σn ≥ 0. The columns of U and V are called the left and right singular
vectors, respectively, and the nonnegative numbers σ1, . . . , σn are called the singular values. The
Eckart-Young theorem [8] shows that σn is equal to the 2-norm distance between A and the set
of singular n × n matrices. Moreover, a correlating set of left and right singular vectors and
singular value (ui, vi, σi) satisfies

uTi · ui = vTi · vi = 1, A · vi = σi · ui, and AT · ui = σi · vi. (5)

If σi 6= 0, then uTi · ui = 1 is redundant. Removing it from (5) results in 2n+ 1 equations in the
2n + 1 variables (ui, vi, σi). A singular value σi is called nondegenerate if there is unique (up
to sign) left and right singular vectors ui and vi. In Section 3.1, we consider the case when the
minimum singular value σn is nondegenerate with Section 3.3 considering the degenerate case.
Section 3.4 considers the case of making a singular value degenerate. A simplification for the
symmetric case, i.e., when AT = A, is provided in Section 3.2.
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3.1 Construction of singular value homotopy

With this setup, the following homotopy aims to drive the minimum singular value to zero:

H(y, u, v, λ; t) =


F (y;λ)

JyF (y;λ) · v − σ(t) · u
JyF (y;λ)T · u− σ(t) · v

vT · v − 1

 = 0. (6)

The start point (y, u, v, λ) at t = 1 and σ(t) are constructed as follows. Since y and λ are
given such that JyF (y;λ) is full rank, let σn be minimum singular value of JyF (y;λ) with
corresponding left and right singular vectors u and v, respectively. Finally, σ(t) = t · σn.

As with iterative methods such as Newton’s method, the starting solution (y, λ) will impact
the trackability of the corresponding solution path to (6). In particular, there is no guarantee
that the corresponding solution path will be trackable (as defined in Section 2.1) as shown
in Ex. 3. However, if the path is trackable and the endpoint is finite, then the solution path
ends at a point yielding a critical parameter value. This is summarized in the following.

Theorem 1. With the setup above, if the solution path for H in (6) starting at (y, u, v, λ) is
trackable for t ∈ (0, 1] and the endpoint (y∗, u∗, v∗, λ∗) is finite, then λ∗ is a critical parameter
value such that y∗ is a singular solution of F (•;λ∗) = 0.

Proof. Note that trackable solution paths to a homotopy defined by real equations that start at
a real point remain real over t ∈ (0, 1]. Hence, the result follows since H ensures F (y∗;λ∗) = 0
and 0 is a singular value of JyF (y∗;λ∗).

The next two examples are an illustrative example followed by a system where the solution
path is not trackable.

Example 2. Consider the polynomial system

F (y;λ) =

[
y21 + y22 − 1
y1 + y2 − λ

]
= 0

which describes the intersection of the unit circle and the family of lines with slope m = −1. The
following illustrates using (6) with two different starting points to compute critical parameter
values in which the line is tangent to the circle as shown in Figure 2.

(a) (b)

Figure 2: Computing tangent lines starting with (a) λ = 1.3 and (b) λ = −1.3.
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First, consider λ = 1.3. Rounding to four decimal places, we take y = (0.9284, 0.3716).
Then, the minimum singular value of JyF (y;λ) is σ2 = 0.4629 with left and right singular
values u = (0.5661,−0.8243)T and v = (0.4901,−0.8717)T , respectively. Applying (6) produces
a trackable path which ends with the critical parameter value λ∗ =

√
2 which corresponds with

a line that is tangent to the circle as shown in Figure 2(a).
Similarly, consider λ = −1.3 with y = (−0.9284,−0.3716). Then, the minimum singular

value of JyF (y;λ) is σ2 = 0.4629 with left and right singular values u = (0.5661, 0.8243)T and
v = (−0.4901, 0.8717)T , respectively. Applying (6) produces a trackable path which ends with
the critical parameter value λ∗ = −

√
2 which corresponds with a line that is tangent to the

circle as shown in Figure 2(b).

Example 3. Consider the system

F (y;λ) =

[
3y1 − 1

(1 + λ2)y2 − 1

]
= 0 with JyF (y;λ) =

[
3 0
0 1 + λ2

]
.

Clearly, for λ ∈ R, F (y;λ) = 0 has no singular solutions. Thus, every path of a singular value
homotopy H in (6) starting at a real solution can not be trackable. For example, with λ = 1
and y = (1/3, 1/2), one has u = v = (0, 1)T and σ2 = 2. The corresponding solution path of H
in (6) is not trackable at t = 1/2. This corresponds with λ = 0 which is the minimum of 1 + λ2.

3.2 Symmetric problems

The homotopy H in (6) depends on 3n + 1 variables. One way to reduce this is to exploit
symmetry of the problem. A common structure that arises from discretizations such as the one
in (4) is a symmetric Jacobian matrix. When the Jacobian matrix JyF (y;λ) is symmetric, the
left and right singular vectors agree up to sign. Hence, one can identify the proper sign choice
δ ∈ {+1,−1} based on the start point (y, λ) and remove n variables and equations yielding

H(y, v, λ; t) =

 F (y;λ)

JyF (y;λ) · v − δ · σ(t) · v
vT · v − 1

 = 0. (7)

Theorem 1 can naturally be extended to (7).

3.3 Degenerate minimum singular value

The construction of the singular value homotopy in (6) is applied when the minimum singular
value at the start point and along the solution path is nondegenerate. The following considers
the degenerate case.

Suppose that σn is the minimum singular value of JyF (y;λ) which we aim to drive to zero.
Let r ≥ 1 be such that σn−r+1 = · · · = σn, i.e., the minimum singular value σn is repeated r
times so that one needs to consider r left and right singular vectors. One obvious generalization
of (6) is to replace vectors u and v by n× r matrices U and V yielding

H(y, U, V, λ; t) =


F (y;λ)

JyF (y;λ) · V − σ(t) · U
JyF (y;λ)T · U − σ(t) · V

UT · U − I
V T · V − I

 = 0. (8)
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However, the corresponding starting values of U and V associated with y and λ need not be
isolated as shown in the following.

Example 4. Consider the system

F (y;λ) =

[
λ(y1 − 1)
λ(y2 − 1)

]
= 0 with JyF (y;λ) =

[
λ 0
0 λ

]
.

For y = (1, 1) and t = λ = σ1 = σ2 = 1, i.e., r = 2, the constraints from (8) on U and V simplify

to U = V and U
T ·U = I which defines the one-dimensional family of 2×2 orthogonal matrices.

Since path tracking using (3) needs the Jacobian matrix with respect to the variables to be
nonsingular, this implies that the solution is isolated. Therefore, one needs to remove the extra
degrees of freedom as illustrated in Ex. 4. Theoretically, this is accomplished by working in a
corresponding Grassmannian which is a space whose points correspond with linear spaces. To
avoid ununnecessary technical details, the following works on an affine patch of the Grassman-
nian [4]. The key observation is that, for any invertible r × r matrix K, the following sets of
equations are equivalent:

JyF (y;λ) · V = σ(t) · U
JyF (y;λ)T · U = σ(t) · V and

JyF (y;λ) · V ·K = σ(t) · U ·K
JyF (y;λ)T · U ·K = σ(t) · V ·K.

One approach to remove this freedom is to write the n×r matrix U in a particular way. Since U
has rank r, one can always pick K to be the inverse of an r × r submatrix of U . Therefore, we
can select a permutation matrix P ∈ Rn×n and write

U(Λ) = P ·
[
I
Λ

]
(9)

where Λ is an (n − r) × r matrix of variables. The disadvantage of this representation is that
one loses the orthogonality of both U(Λ) and corresponding V . Therefore, (8) simplifies to

H(y,Λ, V, λ; t) =

 F (y;λ)
JyF (y;λ) · V − σ(t) · U(Λ)
JyF (y;λ)T · U(Λ)− σ(t) · V

 = 0 (10)

where U(Λ) as in (9) and σ(t) = t · σn as before. Although U(Λ) and V are not orthogonal, one
still maintains the relationship

U(Λ)T · U(Λ) = V T · V. (11)

One can easily translate between the two representations: (1) orthogonal U and V typically
computed by singular value decomposition algorithms and (2) Λ and V satisfying (11). Suppose
that (Uo, Vo) and (Λp, Vp) are two such representations, respectively.

Given (Uo, Vo), one can compute a permutation matrix Q ∈ Rn×n such that the first r rows
of Q · Uo form an invertible r × r matrix, say K. Let M ∈ R(n−r)×r such that

Q · Uo =

[
K
M

]
.

Then, P = QT , Λp = M ·K−1 and Vp = Vo ·K−1 so that Uo = U(Λp) ·K and Vo = Vp ·K.
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Conversely, given (Λp, Vp), compute a QR decomposition Vp = Q · R where Q ∈ Rn×r

orthogonal and R ∈ Rr×r upper triangular and invertible. Then, both Uo = U(Λd) · R−1 and
Vo = Vd ·R−1 = Q are orthogonal.

Theorem 1 can naturally be extended to (10). Moreover, note that (10) has n+2nr equations
in n + 2nr + 1 − r2 variables. Since this is overdetermined for r > 1, [13] provides adaptive
techniques for constructing a well-constrained homotopy.

Example 5. Reconsider the system from Ex. 4. Using the orthogonal approach from (8), one
has U = V is any 2×2 orthogonal matrix. However, for (10), one has n = r = 2 so that one can
take P = I and there is no Λ. Hence, one has U(Λ) = I and V = I at the start point. Running
the homotopy (10) yields a trackable path that ends at a critical parameter value λ∗ = 0.

3.4 Two equal singular values

The previous approaches were focused on driving the minimum singular value to zero. However,
this method can be easily modified to instead drive two consecutive singular values towards each
other using the following homotopy:

H(y, u, v, σ, µ, ν, s, λ; t) =



F (y;λ)
JyF (y;λ) · v − σ · u
JyF (y;λ)T · u− σ · v

vT · v − 1
JyF (y;λ) · ν − s · µ
JyF (y;λ)T · µ− s · ν

νT · ν − 1
σ − s− t · (σ − s)


= 0. (12)

In particular, the second and third blocks of equations enforce that (u, v, σ) and (µ, ν, s) are
both correlating collections of left and right singular vectors and singular value for the ma-
trix JyF (y;λ). The last equation aims to drive singular values σ and s together where σ and s
are the corresponding starting values.

A natural extension of Theorem 1 can be applied to (12).

4 Numerical results

The following presents four applications of singular value homotopies for differential equations.
The first two are boundary value problems. The third is a biological model for signal transduction
and gene network used to study long-term memory. The last is a fully nonlinear, second order
elliptic partial differential equation which computes a surface of constant Gaussian curvature.

For each of these problems, Bertini [5] was used to perform the path tracking. For the bound-
ary value problems, Matlab was used to determine determine the start point by computing
a corresponding singular value decomposition. The start point for the biological model was
computed in Maple. The Gaussian curvature problem was implemented in Python. The start
point for the corresponding discretized system was calculated using Newton’s method in Python
which was also used to generate the input files for Bertini.

4.1 Boundary value problem

As mentioned in the Introduction, the two-point boundary value problem (1) has a critical
parameter value λ∗ > 0 such that (1) has two solutions for 0 < λ < λ∗ which merge at λ∗ and
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Figure 3: (a) Plot of y(0.25) for the two solutions to (1) as a function of λ. (b) The two solutions
y(x) to (1) plotted for selected values of λ which converge to each other as λ→ λ∗ ≈ 4.755.

has no solutions for λ > λ∗ as illustrated in Figure 3(a) which plots y(0.25) as a function of λ.
For selected values of n, we applied a (symmetric) singular value homotopy to the discretization
in (4) to approximate λ∗. To generate a start point, one can, for example, use shooting methods
or Newton’s method at λ = 0.1 which was chosen to ensure that λ < λ∗. Note that [1] suggests
λ∗ = 4. Table 1 shows the results of computing λ∗ for various values of n showing that the
theoretical value of λ∗ is approximately 4.755 and Figure 3(b) shows how the two solutions y(x)
to (1) converge to each other as λ→ λ∗ ≈ 4.755.

n λ∗

10 4.73438
50 4.75415

100 4.75476
200 4.75491
400 4.75495

Table 1: Value of λ∗ for (1) using increasingly refined discretizations.

4.2 Another boundary value problem

Consider computing radially symmetric solutions u(x, y) on the annulus

Ω = {(x, y) | 1 < x2 + y2 < 2}

satisfying the following boundary value problem:

∆u = −λ
(

1 + u+
u2

2
+
u3

6

)
in Ω (13)

u(x, y) = x2 + y2 on ∂Ω.

Similar to (1), there exists critical parameter value λ∗ > 0 such that there are two solutions
for 0 < λ < λ∗ which merge at λ∗ and no solutions for λ > λ∗ [17]. Using a discretization with
a central difference scheme and a singular value homotopy, Table 2 shows that the theoretical
value of λ∗ is approximately 2.292.
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n λ∗

10 2.28757
50 2.29225

100 2.29240
200 2.29243

Table 2: Value of λ∗ for (13) using increasingly refined discretizations.

4.3 Biological example

The next application is to compute bifurcations for the steady-state behavior of a a biologi-
cal model connected to learning and memory [19]. This model simulates the levels of various
proteins that are responsible for long-term facilitation after exposure to serotonin and is math-
ematically represented by a system of 15 ordinary differential equations with 40 parameters.
In particular, [23] studies steady-state behavior under different model parameter values. They
utilized singularity theory which generates bifurcation diagrams as one particular parameter,
called the bifurcation parameter λ, is varied. The bifurcation parameter was chosen to be the
level of serotonin as this is what is most often varied in experiments. Another branch of solutions
were found in [12].

Although the original system depended upon rational functions, one can, at steady-state,
clear denominators to produce the following parameterized system of 15 polynomial equations
in state variables y1, . . . , y15, bifurcation parameter λ, and other model parameters k1, . . . , k39:

3.6λ− (y1 − 0.06)(λ+ 14) = 0

k1 + k2y4y
2
1 − k7y2y3 − k3y2(y15 − k4)− k5y2 = 0

k1 + k2y4y
2
1 − k7y2y3 + k3y2(y15 − k4)− k5y3 = 0

k7y2y3 − k2y4y21 − k3y4(y15 − k4)− k5y4 = 0

k9y7(y12 + k29)(y5 + k13)− k12y5 − k14y5(y5 + k13) = 0

k10(y12 + k29)(y5 − y6)(y5 + k13)− k12y6(y5 − y6 + k11) = 0

−k14y6(y5 + k13)(y5 − y6 + k11) = 0

k15 − λk16y7 − k18y7(y7 + k17) = 0

−λk19y8 + k22(k25 − y8) = 0

−k20(k25 − y8)y9(k26 − y9 − y10 + k28) + k23(k26 − y9 − y10)(y9 + k28) = 0

k20(k25 − y8)(y10 + k28)− k23y10(k26 − y9 − y10 + k28) = 0

−k21y10y11(k27 − y11 − y12 + k28) + k24(k27 − y11 − y12)(y11 + k28) = 0

k21y10(k27 − y11 − y12)(y12 + k28)− k24y12(k27 − y11 − y12 + k28) = 0

k30y3(1− y13)− k31k32y13 = 0

k33(y12 + k29)(1− y14)− k34k32y14 = 0

k35y
2
13y

2
14 + k36(y213 + k237)(y214 + k238)− k39y15(y213 + k237)(y214 + k238) = 0

All model parameters except k35 are fixed to be the constants given in [23] with k35 fixed at
different values to obtain qualitatively different diagrams. In particular, for k35 = 0.015, 0.020,
and 0.030, we utilized a singular value homotopy to determine a critical parameter value λ∗

corresponding with a turning point of the bifurcation diagram for three values of k35 from [23].
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While [23] only provides drawings without giving explicit values, the values presented in Table 3
appear to be in correspondence with their drawings.

k35 λ∗

0.015 0.116
0.020 0.105
0.030 0.0859

Table 3: Critical level of serotonin λ∗ at the turning points of the bifurcation diagrams for
selected values of k35 from [23].

4.4 Maximum Gaussian curvature

The final application considers K-surfaces which are surfaces with constant Gaussian curva-
ture K > 0. For a domain Ω ⊂ R2 and a function u(x, y), consider the surface S ⊂ R3 given by
the graph of u over Ω, namely

S = {(x, y, u(x, y)) | (x, y) ∈ Ω}. (14)

The Gaussian curvature on S is given by

K =
det(D2u)

(1 + ‖∇u‖2)2

where D2u = uxxuyy−u2xy and ‖∇u‖2 = ∇u ·∇u. Therefore, the surfaces S represented in (14)
which have a constant Gaussian curvature K > 0 arise from functions u(x, y) on Ω which solve
the following partial differential equation:

det(D2u) = K · (1 + ‖∇u‖2)2 in Ω (15)

u(x, y) = g(x, y) on ∂Ω

for some boundary function g(x, y). Hence, given a domain Ω, boundary function g(x, y), and
curvature K > 0, one obtains a K-surface by solving (15). Figures 4 and 5 show solutions to

(a) (b) (c)

Figure 4: K-surfaces obtained by solving (15) on Ω = [−0.57, 0.57]2 with boundary condition

g1(x, y) =
√

1− x2 − y2 and curvature (a) K = 1, (b) K = 1.5, and (c) K = 2.
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(a) (b) (c)

Figure 5: K-surfaces obtained by solving (15) on Ω = [−0.57, 0.57]2 with boundary condition
g2(x, y) = 1− x2 − y2 and curvature (a) K = 1, (b) K = 1.5, and (c) K = 2.2.

this problem for Ω = [−0.57, 0.57]2 on two different sets of boundary conditions for various
values of K. Moreover, if (15) has a solution for some K0 > 0, then it has a solution for all
K ∈ (0,K0] [3]. Due to geometric constraints, there is a maximum curvature Kmax > 0 for which
a well-defined solution to (15) exists for K ∈ (0,Kmax] and no solution for K > Kmax. The value
of Kmax can be computed explicitly for simple cases, but there is no analytic method for com-
puting Kmax in general. In [3], a type of “sweeping” method was used to approximate Kmax by
incrementing the value of K on a discretization of (15) until some termination criteria suggesting
that no solution could exist. However, it is unclear what termination criteria was used.

Since the value of Kmax is a critical parameter value, we utilize a singular value homotopy
applied to a discretization to approximate it. Assuming that the domain is rectangular, say

Ω = [ax, bx]× [ay, by],

we following a setup similar to Section 2.2. In particular, using n + 1 of grid points in each
direction, the mesh size in the x and y directions, respectively, are

hx =
bx − ax
n+ 1

and hy =
by − ay
n+ 1

.

With grid points xj = ax + j · hx and yj = ay + j · hy for j = 0, . . . , n + 1, let ui,j be an
approximation of u(xi, yj). We utilized the following standard discretized approximations:

uxx(xi, yj) ≈
ui+1,j − 2ui,j + ui−1,j

h2x
,

uyy(xi, yj) ≈
ui,j+1 − 2ui,j + ui,j−1

h2y
,

uxy(xi, yj) ≈
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4hxhy
,

ux(xi, yj) ≈
ui+1,j − ui−1,j

2hx
,

uy(xi, yj) ≈
ui,j+1 − ui,j−1

2hy
.
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To compare with results in [3], we consider two problems from [3] on the square domain
Ω = [−.57, .57]2 with boundary conditions

g1(x, y) =
√

1− x2 − y2 and g2(x, y) = 1− x2 − y2. (16)

For each boundary condition, we started with the parameter value K = 1.8 and computed a
starting solution obtained using Newton’s method applied to the discretized system. Table 4
shows the computed values for Kmax for selected values of n which are similar to the values
reported in [3], namely 2.10 and 2.24, respectively.

g1(x, y)

n Kmax

16 2.12
24 2.085
32 2.07

g2(x, y)

n Kmax

16 2.24
24 2.21
32 2.20

Table 4: Computed values of maximum Gaussian curvature for domain Ω = [−.57, .57]2 with
boundary condition g1(x, y) and g2(x, y) from (16) for selected values of n.

5 Conclusion

The singular value homotopy is an approach for determining critical parameter values by forcing
the minimum singular value to zero. These critical parameter values are of great interest in
many applications as they can determine where the qualitative behavior, such as the number of
solutions, can change.

Classical approaches for computing critical parameter values use a “sweeping” approach along
the parameter space. For instance, the maximum Gaussian curvature Kmax can be found by find
a starting solution for some K < Kmax and then slowly increasing the parameter value K. The
disadvantage of this approach is one has to decide how to increase the parameter and when one
reaches the critical parameter value. In [3], K was increased by a fixed value of ∆K = 0.02. Using
a singular value homotopy, one can utilize homotopy continuation path tracking techniques (e.g.,
see [5, Chaps. 2-3]) to adaptively determine the step size for predictor-corrector path tracking
and endgames to accurately compute the endpoint corresponding with the critical parameter
value. A variety of problems arising from differential equations are used to demonstrate some
of the many applications of singular value homotopies.
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