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Abstract

A standard question in real algebraic geometry is to compute the number of connected com-
ponents of a real algebraic variety in affine space. By adapting an approach for determining
connectivity in complements of real hypersurfaces by Hong, Rohal, Safey El Din, and Schost,
algorithms are presented for computing the number of connected components, the Euler charac-
teristic, and deciding the connectivity between two points for a smooth manifold arising as the
complement of a real hypersurface of a real algebraic variety. When taking such real hypersur-
face to be the set of singular points, this yields an approach for determining smooth connectivity
in a real algebraic variety. The method is based upon gradient ascent/descent paths on the real
algebraic variety and several examples are included to demonstrate the approach.
Keywords. Connectivity, smooth points, real algebraic sets, polynomial systems, homotopy
continuation, numerical algebraic geometry

1 Introduction

In real affine space Rn, a real algebraic variety has the form

X “ VRpg1, . . . , gkq “ tx P Rn | g1pxq “ ¨ ¨ ¨ “ gkpxq “ 0u (1)

where g1, . . . , gk P Rrx1, . . . , xns, that is, polynomials in x “ px1, . . . , xnq with real coefficients.
Many problems in science and engineering can be translated into questions regarding real algebraic
varieties. For example, the real algebraic variety X could describe the configuration space of a
mechanism and path planning (e.g., see [6, 13, 16]) corresponds with determining connected paths
between two points on X. Moreover, singularity-free path planning (e.g., see [10, 11]) corresponds
with determining smooth connections between two points on X. Due to its ubiquity, there are many
algorithms proposed for deciding connectivity with a non-exhaustive list being [3,5,14,15,17–19,27].

The approach in [20, 21] considers connectivity in RnzVRpfq, where f P Rrx1, . . . , xns, using
connections between critical points via gradient ascent paths. The algorithms described below are
based on this work, but generalized to consider Xf “ XzVRpfq which is assumed to be smooth.
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(a) (b)

Figure 1: (a) Four smoothly connected components for a pair of intersecting lines with the singular
point at the intersection. (b) Two smoothly connected components for the Whitney umbrella with
the singular points forming the “handle” of the umbrella.

That is, X X VRpfq is assumed to at least contain the singular points of X. Thus, connected
components of Xf are smoothly connected in X. For example, Figure 1(a) shows that the pair
of intersecting lines VRpx21 ´ x22q has four smoothly connected components using f “ 4px21 ` x22q

while Figure 1(b) shows that the Whitney umbrella VRpx21 ´ x22x3q has two smoothly connected
components using f “ 4x21 ` 4x22x

2
3 ` x42. Additionally, given a point in Xf , one can decide which

smoothly connected component the point belongs to yielding an approach to decide if two points
lie on the same smoothly connected component.

The rest of the paper is organized as follows. Section 2 provides a summary of preliminary
topics. Section 3 describes routing functions which are the basis for the algorithms in Section 4.
Section 5 proves the correctness of the algorithms while Section 6 demonstrates the algorithms on
some examples. A short conclusion is provided in Section 7.

2 Preliminaries

The following summarizes some background information that will be used throughout.

2.1 Smooth points

The following provides a short summary of smooth points with more details found in, e.g., [4].
For X as in (1), the dimension of X, denoted dimX, is the largest d such that p0, 1qd injects by a
semi-algebraic map into X. A point x P X is a smooth point of X if there is an open neighborhood
of x in X which is a d-dimensional submanifold, i.e., the tangent space of x with respect to X,
denoted TxX, is d-dimensional. A point x P X is a singular point of X if it is not a smooth
point. Let Xreg and Xsing be the set of smooth and singular points of X, respectively. Hence,
X “ Xreg Y Xsing and Xreg X Xsing “ H, i.e., Xreg “ XzXsing.

Example 2.1. For X “ VRpx21´x22q as in Figure 1(a), dimX “ 1 and Xsing “ VRpx1, x2q “ tp0, 0qu.
For X “ VRpx21´x22x3q as in Figure 1(b), dimX “ 2 and Xsing “ VRpx1, x2q “ tp0, 0, x3q | x3 P Ru,
called the “handle” of the Whitney umbrella.
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The following will be assumed throughout which relates the smooth points with respect to X
with the null space of the Jacobian matrix of the defining polynomials g1, . . . , gk.

Assumption 2.2. For X as in (1), let g “ tg1, . . . , gku and Jgpxq be the k ˆ n Jacobian matrix
of g at x. Then, it is assumed that the system g is such that the following holds:

Xreg “ tx P X | dimnull Jgpxq “ dimXu.

For m “ n ´ dimX, let Mm be the set of m ˆ m minors of Jgpxq and S “
ř

pPMm
p2. Therefore,

Xsing “ X X VRpMmq “ X X VRpSq “ VRpg1, . . . , gk, Sq and Xreg “ XzVRpSq.

For example, Assumption 2.2 can always be satisfied by replacing g1, . . . , gk with a generating
set for the real radical, e.g., see [9], of the ideal xg1, . . . , gky.

Example 2.3. For X “ VRpx21 ´ x22q, g “ x21 ´ x22 satisfies Assumption 2.2 with n “ 2 and
dimX “ 1. Moreover, M1 “ t2x1,´2x2u with S “ 4px21 ` x22q yields

Xsing “ X X VRpM1q “ X X VRpSq “ VRpx1, x2q.

For X “ VRpx21 ´ x22x3q, g “ x21 ´ x22x3 satisfies Assumption 2.2 with n “ 3 and dimX “ 2.
Moreover, M1 “ t2x1,´2x2x3,´x22u with S “ 4x21 ` 4x22x

2
3 ` x42 yields

Xsing “ X X VRpM1q “ X X VRpSq “ VRpx1, x2q.

In particular, tx1, x2u is a generating set for the real radical of xg, Sy in both of these cases.

A semi-algebraic connected set C Ă X is said to be smoothly connected if C Ă Xreg. Moreover,
the smoothly connected components of X are the connected components of Xreg.

Example 2.4. For X “ VRpx21 ´ x22q, the smoothly connected components are

C1 “ tpt, tq | t ą 0qu, C2 “ tpt,´tq | t ą 0u, C3 “ tp´t, tq | t ą 0u, and C4 “ tp´t,´tq | t ą 0u

as illustrated in Figure 1(a). For X “ VRpx21 ´ x22x3q, the smoothly connected components are

C1 “ tpuv, u, v2q | u ą 0, v P Ru and C2 “ tpuv, u, v2q | u ă 0, v P Ru

as illustrated in Figure 1(b).

2.2 Gradient system

Let X be as in (1) which satisfies Assumption 2.2. Suppose that a, b P Rrx1, . . . , xns such that
X X VRpbq “ H and f “ a{b. Hence, f is a rational function defined everywhere on X with
VRpfq “ VRpaq. Moreover, suppose that

XzVRpfq Ă Xreg and, equivalently, Xsing Ă X X VRpfq. (2)

Let Xf “ XzVRpfq Ă Xreg Since Xf is a manifold, the gradient of f on Xf , denoted ∇Xf
f , is

well-defined. Note that f ‰ 0 on Xf so the connected components of Xf are the union of the
connected components of Xf X tf ą 0u and Xf X tf ă 0u. Thus, one can perform gradient ascent
on Xf when starting at a point with f ą 0 and gradient descent on Xf when starting at a point
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with f ă 0 and remain in Xf . In particular, suppose that x0 P Xf and σ0 “ sign fpx0q P t´1,`1u,
then the gradient system under consideration is formally written as

9xptq “ σ0 ¨ ∇Xf
fpxq on Xf

xp0q “ x0.
(3)

Of course, gradient systems on manifolds are well-studied, e.g., [24, 29]. Computationally, one can
consider (3) using a local tangential parameterization. Suppose that d “ dimX and x P Xf . Let
Vx P Rnˆd be an orthogonal matrix such that its columns form an orthonormal basis for TxXf .
Hence, JgpxqVx “ 0 and V T

x Vx “ Id, the d ˆ d identity matrix. Let πx : Xf Ñ Rd such that
πxpyq “ V T

x py ´ xq be the orthogonal projection from Xf to TxXf centered at x (see Figure 2),
i.e., πxpxq “ 0. Since x P Xf Ă Xreg, there exists ϵx ą 0 such that πx restricted to Xf X Bϵxpxq is
invertible, where

Bϵxpxq “ ty P Rn | }y ´ x} ă ϵxu with }y ´ x} “
a

py1 ´ x1q2 ` ¨ ¨ ¨ ` pyn ´ xnq2.

Since Ux “ πxpXf X Bϵxpxqq Ă Rd is an open neighborhood of the origin, (3) can be considered
locally in parameterizing coordinates p P Ux with yppq “ π´1ppq P Xf X Bϵxpxq. In particular,

∇Xf
fpxq “ ∇Rnfpxq ¨ Vx P Rd. (4)

Moreover, the corresponding Hessian matrix is

HXf
fpxq “

n
ÿ

i“1

Bf

Bxi
pxq ¨ W i

x ` V T
x ¨ HRnfpxq ¨ Vx P Rdˆd

where W 1
x , . . . ,W

n
x P Rdˆd are symmetric and satisfy the well-constrained linear system

n
ÿ

i“1

Bgj
Bxi

pxq ¨ W i
x ` V T

x ¨ HRngjpxq ¨ Vx “ 0 for j “ 1, . . . , k,

n
ÿ

i“1

pVxqij ¨ W i
x “ 0 for j “ 1, . . . , d.

In particular,

yppq “ x ` Vx ¨ p `
1

2

»

—

–

pT ¨ W 1
x ¨ p

...
pT ¨ Wn

x ¨ p

fi

ffi

fl

` higher order terms (5)

such that gpyppqq “ 0 since yppq P Xf .

Example 2.5. For X “ VRpx21 ´ x22q and f “ 4px21 ` x22q, let x “ p1, 1q so that

• Vx “ 1?
2

„

1
1

ȷ

, W 1
x “ r0s, W 2

x “ r0s;

• ∇Xf
fpxq “ ∇R2fpxq ¨ Vx “ 8

?
2;

• HXf
fpxq “

Bf
Bx1

pxq ¨ W 1
x `

Bf
Bx2

pxq ¨ W 2
x ` V T

x ¨ HR2fpxq ¨ Vx “ 8.
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Figure 2: An example of a tangential parameterization of X centered at x. The green point is x,
the red point is p “ x ` µv for v P TxX, and the blue point is y “ π´1

x ppq.

Since X is locally linear at x, yppq “ x ` Vx ¨ p for p P R. Hence, for qppq “ fpyppqq, one has
∇Rqp0q “ ∇Xf

fp1, 1q and HRqp0q “ HXf
fp1, 1q.

Similarly, for X “ VRpx21 ´ x22x3q and f “ 4x21 ` 4x22x
2
3 ` x42, let x “ p1, 1, 1q so that

• Vx “ 1?
2

»

–

1 1{3
1 ´1{3
0 4{3

fi

fl, W 1
x “

„

0 4{27
4{27 ´16{81

ȷ

, W 2
x “ ´W 1

x , W
3
x “ ´W 1

x {2;

• ∇Xf
fpxq “ ∇R3fpxq ¨ Vx “ 2

?
2

3

“

15 7
‰

;

• HXf
fpxq “

Bf
Bx1

pxq ¨ W 1
x `

Bf
Bx2

pxq ¨ W 2
x `

Bf
Bx3

pxq ¨ W 3
x ` V T

x ¨ HR3fpxq ¨ Vx “ 2
81

„

567 303
303 127

ȷ

.

For yppq as in (5) and qppq “ fpyppqq, then ∇R2qp0q “ ∇Xf
fp1, 1, 1q and HR2qp0q “ HXf

fp1, 1, 1q.

3 Routing points and routing functions

The keys to the algorithms in [20,21] are routing points and routing functions. Suppose that X as
in (1) satisfies Assumption 2.2 and let r : X Ñ R be a twice continuously differentiable function
on X such that rpxq “ 0 for all x P Xsing, i.e., Xr “ XzVRprq Ă Xreg. A point z P X is called a
routing point of r on X if z P Xr, i.e., rpzq ‰ 0, and ∇Xrrpzq “ 0, which is equivalent to

dimnull
“

∇RnrpzqT ∇Rng1pzqT ¨ ¨ ¨ ∇RngkpzqT
‰

“ dimX. (6)

One can formulate (6) using [7] which, when k “ n ´ dimX, is equivalent to using Lagrange
multipliers. Moreover, a routing point z is nondegenerate if HXrrpzq is invertible. Since the
gradient system (3) depends upon the sign, the index of a nondegenerate routing point is also
sign dependent. In particular, the index of a nondegenerate routing point z is the number of
eigenvalues of HXrrpzq of the same sign as rpzq. Eigenvectors of HXrrpzq corresponding with the
eigenvalues of the same sign as rpzq are called unstable eigenvector directions. For example, if
rpzq ą 0, then, since (3) is aiming to increase the function value, the index is the dimension of
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the local ascending manifold at z which is the number of positive eigenvalues of HXrrpzq and the
eigenvectors corresponding with a positive eigenvalue are the unstable eigenvector directions.

Definition 3.1. The function r is called a routing function on X if the following conditions hold:

1. Xr “ XzVRprq Ă Xreg,

2. for all ϵ ą 0, there exists δ ą 0 such that if x P X with }x} ě δ, then |rpxq| ď ϵ,

3. the corresponding set of routing points on X is finite and each is nondegenerate,

4. for each α P Rzt0u, there is at most one routing point x on X satisfying rpxq “ α, and

5. the norms of r, ∇Xrr, and HXrr are bounded on Xr.

In particular, a routing function vanishes on Xsing as well as at infinity, and each level curve
contains at most one routing point. Therefore, if C is a connected component of Xr, then r on C
must obtain either a minimum (if r ă 0 on C) or a maximum (if r ą 0 on C), which must occur at
a routing point. The following formalizes this.

Proposition 3.2. With the assumptions and definitions above, there is at least one routing point
in each connected component of Xr of index 0.

Example 3.3. For X “ VRpx21´x22q, the function fpxq “ 4px21`x22q is not a routing function on X
since f is unbounded on X. Nonetheless, consider the following rational function related to f :

rpxq “
4px21 ` x22q

ppx1 ´ 1{2q2 ` px2 ´ 1{3q2 ` 1q2
, (7)

so that Xr “ Xf . Hence, r is a routing function with four routing points p˘7{p6
?
2q,˘7{p6

?
2qq.

Proposition 3.2 holds with exactly one point in each connected component of Xr as illustrated in
Figure 3. It is easy to verify that r takes different values at each of the routing points, which
corresponds with a local maximum of r along Xr, i.e., each has index 0.

The following provides a generalization of the construction used in Example 3.3 to create a
routing function derived from [20,21].

Theorem 3.4. Suppose that X as in (1) satisfies Assumption 2.2 and f P Rrx1, . . . , xns such that
Xf “ XzVRpfq Ă Xreg. Let ℓ P Zą0 such that 2ℓ ą deg f . Then, there is a Zariski open dense
subset U Ă Rn such that, for every c P U ,

rcpxq “
fpxq

ppx1 ´ c1q2 ` ¨ ¨ ¨ ` pxn ´ cnq2 ` 1qℓ

is a routing function on X.

Proof. Let c P Rn and define Dcpxq “ px1 ´c1q2 `¨ ¨ ¨`pxn ´cnq2 `1. Thus, rcpxq “ fpxq ¨Dcpxq´ℓ.
Since Dc does not vanish on Rn, rc is infinitely differentiable with Xrc “ Xf Ă Xreg. Moreover,
2ℓ ą deg f ensures that rc is bounded on Rn (and hence onX) and vanishes at infinity. Additionally,

∇Rnrcpxq “ ∇Rnfpxq ¨ Dcpxq´ℓ ´ 2 ¨ ℓ ¨ fpxq ¨ Dcpxq´ℓ´1 ¨ px ´ cq (8)
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Figure 3: Pair of intersecting lines colored based on the value of the routing function with the four
routing points marked, each corresponding to a local maxima of the routing function.

is also bounded on Rn for the same reason. Since Vx in (4) is orthonormal, this shows that ∇Xrc
rc is

bounded onX. A similar argument shows thatHXrc
rc is also bounded onXrc since the matricesW j

x

describe the local curvature of Xf Ă Xreg and Vx is orthonormal.
All that remains is showing that the set of routing points is finite, each is nondegenerate, and

evaluate to different values of rc for values c in a Zariski open dense subset of Rn. Since f and Dc

are nonzero on Xrc , (6) can be equivalently formulated as

dimnull
”

1
2¨ℓ ¨

∇RnfpzqT

fpzq
´

pz´cq

Dcpzq
∇Rng1pzqT ¨ ¨ ¨ ∇RngkpzqT

ı

“ dimX.

Since the last k columns has a null space equal to dimX on Xrc “ Xf Ă Xreg via Assumption 2.2,
this shows that adjusting the value of c will change both the location and value of r of routing
points z to ensure that the first column is contained in the span of the last k columns. Therefore,
the result follows from an algebraic version of Sard’s theorem, e.g., see [28, Thm. A.4.10].

Theorem 3.4 shows that one can obtain a routing function using a generic c P Rn.

Example 3.5. To demonstrate a value of c that does not work, consider X “ VRpx21 `x22 ´ 1q with
f “ 4px21 ` x22q. For ℓ “ 2, consider c “ 0 so that r0pxq is an in (7). With this, every point on X
is a routing point so that r0 is not a routing function on X. For, say c “ p1{2, 1{3q, then

rcpxq “
4px21 ` x22q

ppx1 ´ 1{2q2 ` px2 ´ 1{3q2 ` 1q2

is a routing function with two routing points: p3{
?
13, 2{

?
13q is a maximum and its antipodal point

p´3{
?
13,´2{

?
13q is a minimum.
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Example 3.6. For X “ VRpx21 ´ x22x3q, consider fpxq “ 4x21 ` 4x22x
2
3 ` x42 from Example 2.3.

Consider c P R3 and ℓ “ 3 so that

rcpxq “
4x21 ` 4x22x

2
3 ` x42

ppx1 ´ c1q2 ` px2 ´ c2q2 ` px3 ´ c3q2 ` 1q3
.

When c “ 0, then r0 is not a routing function since the two routing points p0,˘
?
2, 0q are degenerate,

i.e., HXrr is not invertible at these two points. With, say c “ p1{2, 1{3, 1{4q, then rc is a routing
function with six routing points: 4 local maxima and 2 saddles with index 1.

Example 3.7. For X “ VRpx21 ´ x22x3q, consider fpxq “ x1x2x3 which means that Xf is the set of
all points in X where all three coordinates are nonzero. The function

r0pxq “
x1x2x3

px21 ` x22 ` x23 ` 1q2

is not a routing function since two pairs of routing points are in the same level set. However, as
suggested by the proof of Theorem 3.4, perturbing away from being centered at the origin destroys
the symmetric structure so that, say c “ p1{6, 1{5, 1{4q, yields a routing function, namely

rcpxq “
x1x2x3

ppx1 ´ 1{6q2 ` px2 ´ 1{5q2 ` px3 ´ 1{4q2 ` 1q2
. (9)

This yields four routing points, two are local maxima with r ą 0 and two are local minima with
r ă 0. With the sign dependent notion of index, all four have index 0.

For a routing function r on X, the Euler characteristic of Xr is determined by counting the
number of routing points of each index as summarized in the following.

Figure 4: Whitney umbrella with coordinate axes removed and four routing points marked, each
corresponding to a local optima of rc as in (9).
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Theorem 3.8. When r is a routing function for X as in (1) which satisfies Assumption 2.2, then
the Euler characteristic of Xr is

χpXrq “

d
ÿ

j“0

p´1qjrkXr
j (10)

where rkXr
j is the number of routing points of r on Xr of index j.

Proof. Let C1, . . . , Cs be the connected components ofXr. Since the Euler characteristic is additive,
it is enough to prove the formula on each connected component.

Suppose that C is a connected component of Xr and let z1, . . . , zk be the routing points of r
contained in C. Since r has the same sign on C, we will consider the positive and negative
cases separately. Suppose that r ą 0 on C and let 0 ă δ ă mintrpz1q, . . . , rpzkqu. Thus, r is
a Morse function on C corresponding to the gradient vector field ∇Xrr and we can retract C to
Cδ “ pr|Cq´1prδ,8qq via the vector field, where r|C is the restriction of r to C. Since Cδ is a smooth
compact manifold with boundary as r|C is bounded, it is well-known, e.g. [26, §2.3], that

χpCδq “

d
ÿ

j“0

p´1qjrkCj

where rkCj is the number of routing points in C of index j (corresponding to positive eigenvalues).
As the Euler characteristic is invariant under homotopy, χpCq “ χpCδq as claimed.

Similarly, if r ă 0 on C, let maxtrpz1q, . . . , rpzkqu ă δ ă 0. Thus, r is a Morse function on C
corresponding to the gradient vector field ´∇Xrr and we can retract C to Cδ “ pr|Cq´1pp´8, δsq

via the vector field. The same formula holds with index corresponding to negative eigenvalues.

Example 3.9. For Example 3.3, the corresponding Euler characteristic is p´1q0 ¨ 4 “ 4. Addi-
tionally, the Euler characteristic of the unit circle is p´1q0 ¨ 1 ` p´1q1 ¨ 1 “ 0 from Example 3.5.
From Example 3.6, the Euler characteristic of the Whitney umbrella with the “handle” removed
is p´1q0 ¨ 4 ` p´1q1 ¨ 2 “ 2. Finally, the Euler characteristic of the Whitney umbrella with the
coordinate axes removed is p´1q0 ¨ 4 “ 4 from Example 3.7.

4 Connectivity algorithms

The number of connected components is bounded above by the number of routing points of index 0
via Proposition 3.2. The following shows how to partition the set of routing points into subsets
precisely corresponding to the connected components using the gradient system (3). The key to this
computation is tracking from routing points with positive index. Since a routing point is a stationary
point of (3), for routing points of positive index, one needs to consider (3) in an instantaneous initial
direction in order to have non-stationary trajectory. By adapting the approach of [20,21], this yields
a connectivity algorithm. Thus, this gradient representation of smoothly connected components
via a routing function and routing points provides an analog to witness sets for complex irreducible
varieties which permit membership testing, e.g., see [28, Chap. 13-15].

To set the stage, first consider an initial point which is not a routing point.

Proposition 4.1. Suppose that X in (1) satisfies Assumption 2.2 and r is a routing function on X.
If x0 P Xr is not a routing point, i.e., ∇Xrrpx0q ‰ 0, then (3) defines a unique trajectory which
limits to a routing point of r on Xr.
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Proof. Recall that for a routing function, r, ∇Xrr, and HXrr are all bounded on Xr and hence,
for any a ą 0, Xr X r´1pp´8,´as Y ra,8qq is compact. Standard existence and uniqueness
theory for initial value problems, e.g., [22, § 8.1, Thm. 3], adapted to manifolds shows that (3)
has a unique solution xptq P Xr for all t ě 0. Moreover, since x0 is not a routing point, rpxptqq

is strictly monotonic while xptq must be bounded. Hence, z “ limtÑ8 xptq is well-defined with
|rpzq| ą |rpx0q| ą 0. Boundedness also implies that one must have ∇Xrrpzq “ 0, i.e., the trajectory
limits to a routing point.

Proposition 4.1 together with stationary trajectories starting at routing points shows that the
gradient vector field on Xr defined by signprpxqq ¨ ∇Xrrpxq is complete.

Next, consider an initial point which is a routing point z P Xr with an initial direction v P Rn

in the tangent space of Xr at z with }v} “ 1 Since z is nondegenerate, there exists ϵ0 ą 0 such
that z is the unique routing point in Xr X Bϵ0pzq and the orthogonal projection from Xr to TzXr

centered at z is invertible. Thus, for ϵ P p0, ϵ0q, one can apply Proposition 4.1 with initial condition
x0 “ π´1pz ` ϵ ¨ vq to yield trajectory xϵptq. By uniqueness, limϵÑ0` xϵptq is well-defined and limits
to a routing point of r on Xr. This is summarized in the following.

Proposition 4.2. Suppose that X in (1) satisfies Assumption 2.2 and r is a routing function
on X. Suppose that z P Xr is a routing point and v P Rn is a unit vector in the tangent space of
Xr at z. Letting xϵptq be the trajectory from Proposition 4.1 starting at the orthogonal projection
of z ` ϵ ¨ v onto Xr, then xptq “ limϵÑ0` xϵptq is well-defined trajectory which limits to a routing
point of r on Xr.

Example 4.3. To illustrate Propositions 4.1 and 4.2, consider Example 3.6 with c “ p1{2, 1{3, 1{4q.
First, consider the trajectory emanating from the non-routing point x0 “ p´2.25, 1.5, 2.25q which
limits to a routing point that is a local maximum. In Figure 5, x0 is shown in red with the trajectory
(yellow) limiting to a routing point (black). Second, consider the trajectories emanating from the
index 1 saddle points, approximately p´0.5002, 1.0635, 0.2212q and p´0.5255,´1.3526, 0.1509q, in
the two directions arising from the unstable eigenvector. In Figure 5, each of these two trajectories
are shown (green and magenta) which limit to a routing point that is a local maximum.

As observed in Figure 5, the trajectories from the saddles in an unstable eigenvector direction
connect the local optimum that lie in the same connected component. This holds in general and is
summarized in Algorithm 1 and Theorem 4.4.

The matrix A in Algorithm 1 is constructed to be reflexive (diagonal entries are 1) and sym-
metric. Thus, transitive closure means to enforce the transitivity property, i.e., if zi is connected
to zj which is connected to zk, then zi is connected to zk. Using Boolean matrix multiplicity and
addition, the transitive closure of A P Rmˆm is

M “ A ` A2 ` ¨ ¨ ¨ ` Am.

In particular, Mij “ 1 if and only if zi and zj lie on the same connected component of Xr.
Algorithm 2 uses the output of Algorithm 1 as input to answer connectivity queries.

Theorem 4.4. Algorithms 1 and 2 are correct.

A proof is presented in Section 5.
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Figure 5: Whitney umbrella with “handle” removed and six routing points marked (black). Illus-
tration of a trajectory (yellow) from a non-routing point (red) along with two trajectories (green
and magenta) emanating from each index 1 saddle in the unstable eigenvector direction which con-
nects the local maxima on the same connected component.

Input: Polynomials g1, . . . , gk P Rrx1, . . . , xns with X “ VRpg1, . . . , gkq satisfying
Assumption 2.2 and routing function r.

Output: Euler characteristic of Xr and partitioned subset of the routing points of r on
Xr corresponding to the connected components of Xr.

Computing routing points r on Xr, say z1, . . . , zm, and corresponding index, say i1, . . . , im.
Compute χ “

řm
j“1p´1qij .

Initialize A “ Im, the m ˆ m identity matrix.
for j “ 1, . . . ,m do

foreach unstable eigenvector v for HXrrpzjq do
Compute limit routing point from zj in the direction v with respect to r, say zw`

.
Set Ajw`

“ Aw`j “ 1.
Compute limit routing point from zj in the direction ´v with respect to r, say zw´

.
Set Ajw´

“ Aw´j “ 1.

end

end
Set M to be the transitive closure of A.
Partition tz1, . . . , zmu based on the connected components of M , say C1, . . . , Cs.
return (χ,tC1, . . . , Csu)

Algorithm 1: Euler characteristic and connected components

Example 4.5. From Example 4.3, one can write the matrices A and M in Algorithm 1 as

A “

»

—

—

—

—

—

—

–

1 0 1 0 0 0
0 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and M “

»

—

—

—

—

—

—

–

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

11



Input: Polynomials g1, . . . , gk P Rrx1, . . . , xns with X “ VRpg1, . . . , gkq satisfying
Assumption 2.2, routing function r, partitioned subsets C1, . . . , Cs of the routing
points of r on Xr corresponding to the connected components of Xr, and points
p, q P Xr.

Output: True if p and q lie on the same connected component of Xr and False otherwise.
if p is a routing point then

Set p1 P t1, . . . , su so that p P Cp1 .
else

Compute limit routing point zjp via Proposition 4.1 starting at p.
Set p1 P t1, . . . , su so that zjp P Cp1 .

end
if q is a routing point then

Set q1 P t1, . . . , su so that q P Cq1 .
else

Compute limit routing point zjq via Proposition 4.1 starting at q.
Set q1 P t1, . . . , su so that zjq P Cq1 .

end
return True if p1 “ q1, else False

Algorithm 2: Connectivity query

That is, M shows that Xr has two connected components each corresponding with three routing
points, two local maxima and a saddle of index 1 as illustrated in Figure 5. Thus, since Xr “ Xreg

where X is the Whitney umbrella, the Whitney umbrella has two smoothly connected components.

Example 4.6. From Example 3.7, the Whitney umbrella with the coordinate axes removed decom-
poses into four connected components.

5 Correctness proofs

The following presents a proof to Theorem 4.4. Clearly, the Euler characteristic follows from The-
orem 3.8. The correctness of Algorithm 2 follows from the statement and proof of Proposition 4.1
with strict monotonicity showing p and zjp as well as q and zjq lie on the same connected component
of Xr. Hence, the correctness of Algorithm 2 follows from the correctness of Algorithm 1. Simi-
larly, in Algorithm 1, Proposition 4.2 yields that routing point zj is connected to routing points zw`

and zw´. Since the transitive closure ensures the transitivity of the connections described by A,
the only thing left to show regarding Algorithm 1 is that the connections derived from unstable
eigenvectors suffice for determining the connected components via the mountain pass theorem.

For a routing point z, the stable manifold of z with respect to r on Xr is

Mrpzq “ tzu Y tx0 P Xr | ∇Xrrpx0q ‰ 0 and trajectory from Proposition 4.1 limits to zu.

The proof of [2, Thm 4.2] can be trivially adapted to this case with appropriate adjustments to
conclude that codimMrpzq is the index of z with respect to r, e.g., if z is a routing point with
rpzq ą 0 and is a local maximum (index 0), then dimMrpzq “ dimXr. Clearly, uniqueness of
trajectories yields

Xr “
ğ

routing points z

Mrpzq.

12



Therefore, for a connected component C of Xr, one has

C “
ğ

routing points z P C

Mrpzq. (11)

In this way, one is identifying each connected component with the finitely many routing points that
lie inside of it.

Suppose that z0 P C is a routing point. If dimMrpz0q ă dimXr, i.e., the index of z0 is positive,
then select any unstable eigenvector direction and let z1 be the corresponding routing point as in
Proposition 4.2. Hence, z1 P C and |rpz0q| ă |rpz1q|. If dimMrpz1q ă dimXr, one can repeat
this process yielding a sequence of routing points z0, z1, . . . with |rpzjq| ă |rpzj`1q|. Hence, this
must be a sequence of distinct routing points. Since there are only finitely many routing points,
this process must terminate after finitely many steps yielding, say, a routing point zℓ P C with
dimMrpzℓq “ dimXr, i.e., the index of zℓ is 0. Therefore, this shows that every routing point in C
is connected to some routing point of index 0 in C by trajectories following unstable eigenvector
directions. Hence, all that remains is showing connectivity between routing points of index 0 in C.

For a routing point z, let Mrpzq denote the Euclidean closure of Mrpzq in Xr. Since

ğ

index ą 0 routing points z P C

Mrpzq

has positive codimension, it immediately follows that

C “
ď

index 0 routing points z P C

Mrpzq.

Let z and z1 be distinct routing points in C of index 0 such that Sz,z1 “ MrpzqXMrpz1q ‰ H. Hence,
rpzq ‰ rpz1q. Since r vanishes at infinity, for any α ‰ 0, VRpr ´ αq is compact. Thus, r satisfies
the Palais-Smale condition and the Mountain Pass Theorem [1] (see also [25, Thm. 3]) shows the
existence of an index 1 routing point z2 in Sz,z1 so that z and z1 are connected by trajectories
emanating from the unstable eigenvector direction at z2.

Since C is connected and there are only finitely many routing points, one can repeat this
argument to create a sequence of connecting trajectories between any two index 0 routing points
in C. Therefore, Algorithm 1 correctly identifies the connected components of Xr.

6 Examples

The following considers various examples for computing smoothly connected components. The
routing points were computed using Bertini [8] and the trajectories were computed using Matlab.

6.1 Positive solutions

In order to compute the number of smoothly connected components in the positive orthant, one can
choose a routing function r so that Xr Ă pR˚qn where R˚ “ Rzt0u and then only consider routing
points in positive orthant. For example, one can reconsider both Example 3.3 and Example 3.7
to see that each has a single routing point in the positive orthant, i.e., each has one smoothly
connected component in the positive orthant.
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Figure 6: Four routing points for a quartic curve away from the coordinate axes

For another example, consider the compact quartic curve X Ă R2 from [12, Ex. 9] defined by

gpxq “ x41 ` x42 ´ px1 ´ x2q2px1 ` x2q “ 0.

Since X X pR˚q2 Ă Xreg, one can consider the routing function

rpxq “
x1x2

ppx1 ´ 1{3q2 ` px2 ´ 1{2q2 ` 1q2
.

This yields four routing points as shown in Figure 6. Two of the routing points have a negative
coordinate and are ignored. This leaves two routing points with positive coordinates, each of which
is a local maximum yielding that X X pRą0q2 has two smoothly connected components.

6.2 Some surfaces

With the Whitney umbrella used as an illustrative example, the following summarizes comput-
ing the Euler characteristic and the number of smoothly connected components for the following
surfaces in R3:1

• (Dingdong) gpxq “ x21 ` x22 ´ x23 ` x33

• (Calypso) gpxq “ x21 ` x22x3 ´ x23

• (Chubs) gpxq “ x41 ` x42 ` x43 ´ px21 ` x22 ` x23q ` 1{2

• (Twilight) gpxq “ px21 ` x22 ´ 3q3 ` px33 ´ 2q2

• (Eistute) gpxq “ px21 ` x22q3 ´ 4x21x
2
2px23 ` 1q

• (Seepferdchen) gpxq “ x41 ´ 5x21x
3
2{2 ` x62 ´ px1 ` x22qx33

Table 1 summarizes the results of the computations when taking fpxq “ }∇R3gpxq}2 and

rpxq “
fpxq

ppx1 ´ c1q2 ` px2 ´ c2q2 ` px3 ´ c3q2 ` 1qdeg g
where c “

»

–

0.7978234324
0.6623073432
0.2347907832

fi

fl

in which c was selected randomly.

1See https://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html, https://silviana.org/
gallery/hauser/, and https://www-sop.inria.fr/galaad/surface/ for additional information.
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Surface # index 0 # index 1 # index 2 χ # smoothly connected components

Dingdong 2 2 1 1 2

Calypso 2 2 0 0 2

Chubs 32 44 4 ´8 8

Twilight 2 1 1 2 2

Eistute 7 4 1 4 4

Seepferdchen 7 11 2 ´2 1

Table 1: Summary data for some algebraic surfaces in R3

6.3 Connectivity in real projective space

In [23, Ex. 6.4], for small ϵ ą 0, the following octic curve in P4
R is shown to consist of six ovals:

»

–

px2 ` x3qpx2 ` x3 ´ x4q ` ϵpx21 ` 2x1x3 ´ x1x4 ` x23 ´ x3x4q ` ϵ2x20
x0px2 ` x3 ´ x4q ` ϵpx0x3 ´ x0x4 ` x1x3 ´ x1x4 ` x2x4 ` x3x4 ´ x24q ´ ϵ2x24

x0px1 ` x3q ` ϵpx0x4 ` x1x2 ` x1x3 ` x1x4 ` x2x3 ´ x2x4 ` x23q

fi

fl “ 0.

To verify this, fix ϵ “ 10´2, and consider the double cover on the unit sphere in R5 by appending
x20 ` ¨ ¨ ¨ `x24 ´ 1 to the system above yielding a smooth compact degree 16 curve X Ă R5. Since X
is smooth and compact with X X V px4q “ H, we can use the routing function rpxq “ x4 with
X “ Xr. This yields 40 routing points which arise as 20 pairs of antipodal points. Thus, one only
needs to consider the 20 routing points with x4 ą 0 which arise as 10 local maxima (index 0) and
10 local minima (index 1). Using gradient ascent from the local minima, this yields 6 connected
components, 2 with a single local maximum and local minimum and 4 with two local maxima and
local minima, confirming the results in [23, Ex. 6.4].

To justify our choice of ϵ, we also considered the system where ϵ was a free parameter and
computed the discriminant with respect to ϵ. This computation showed that the smallest positive
root of the discriminant with respect to ϵ to be approximately 0.01438729081. Hence, for any ϵ ą 0
less than this value, the structure of the routing points will be the same yielding an octic curve
with the same real geometry. In particular, this justifies our choice of ϵ “ 10´2 as it is smaller than
the smallest positive root of the discriminant.

6.4 Counting input modes for a five-bar mechanism

Input modes of a five-bar mechanism, which is illustrated in Figure 7 with more details provided
in [16, Fig. 2], are the connected components of the corresponding configuration space after remov-
ing the input singularities [16]. There are transmission problems at input singularities causing a
loss of control authority of the end-effector. Hence, in [16], a margin around the input singularities
was avoided, which may be for the application to provide a safety margin, e.g., to accommodate
manufacturing tolerances. Nonetheless, the following considers computing the actual number of
input modes without the safety margin.

Adapted from [16], the configuration space is defined by g “ tg1, . . . , g4u “ 0 with parameters
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pbx, ℓ1, ℓ2, ℓ3, ℓ4, p, qq and variables px, y, c1, s1, c2, s2q where cj “ cos θj and sj “ sin θj , such that

g1 “ x2 ` y2 ` ℓ21 ´ 2ℓ1pxc1 ` ys1q ´ p2 ´ q2,
g2 “ ℓ22px2 ` y2q ` ℓ21ppℓ2 ´ pq2 ` q2q ` pbx2 ` ℓ23 ´ ℓ24qpp2 ` q2q ´ 2bxℓ2ppx ` qyq

´ 2ℓ2ℓ3pppxc2 ` ys2q ´ qpxs2 ´ yc2qq ` 2ℓ1ℓ3ppℓ2p ´ p2 ´ q2qpc1c2 ` s1s2qq

` 2bxℓ3pp2 ` q2qc2 ` 2bxℓ1ppℓ2p ´ p2 ´ q2qc1 ` ℓ2qs1q ´ 2ℓ1ℓ2ℓ3qpc1s2 ´ s1c2q

` 2ℓ1ℓ2ppp ´ ℓ2qpxc1 ` ys1q ´ qpxs1 ´ yc1qq,
g3 “ c21 ` s21 ´ 1,
g4 “ c22 ` s22 ´ 1.

The input singularities are defined by

f “ det

«

Bg1
Bx

Bg1
By

Bg2
Bx

Bg2
By

ff

“ 0.

For the parameters, corresponding with [16, Ex. 1],

bx “ 0.19882665671846764, ℓ1 “ 0.46540235567944005,
p “ 0.048759206368821334, ℓ2 “ 0.3486213752206714,
q “ 0.32778886030888477, ℓ3 “ 0.24863642973175545,

ℓ4 “ 0.4110712177344681,

X “ VRpgq is a smooth surface in R6 and f is a quadratic polynomial such that tg, fu “ 0 defines
two irreducible curves of degree 6 in C6. Using the routing function

r “
f

ppx ´ x0q2 ` py ´ y0q2 ` pc1 ´ c10q2 ` ps1 ´ s10q2 ` pc2 ´ c20q2 ` ps2 ´ s20q2 ` 1q2

where

x0 “ 0.919487917032162, y0 “ ´0.319228546667734, c10 “ 0.170535501959555,
s10 “ 0.502534118611306, c20 “ ´0.552376121017726, s20 “ ´0.489809769081462,

were randomly selected, there are 8 routing points: four each with f ą 0 and f ă 0. For f ą 0,
there is a maximum and three saddles of index 1. For f ă 0, there is a minimum and three
saddles of index 1. Hence, Proposition 3.2 immediately yields that Xr has two smoothly connected
components, one with f ą 0 and the other with f ă 0. When partitioning with a “thicker kerf,” [16]
reports 6 input modes with the comment that the “counts generally do not match the true number
of regions” due to the safety margin around the input singularities.

Figure 7: Illustration of a five-bar mechanism

16



7 Conclusion

By using gradient ascent/descent paths on a real algebraic variety, algorithms were developed for
computing the Euler characteristic, counting the number of smoothly connected components, and
performing membership in a smoothly connected component. In particular, Algorithm 1 computes
a representation of each smoothly connected component consisting of routing points and gradient
ascent/descent paths which can be used to decide membership via Algorithm 2. Such algorithms
could naturally be extended to atomic semi-algebraic sets, with an example presented for considering
the intersection of a real algebraic variety with the positive orthant.

As constructed, the algorithms rely upon the ability to construct a routing function, which
relies upon a generic choice of a constant vector c. An element of more concern when implementing
such a theoretical algorithm is is the proper tracking of gradient ascent/descent paths emanating
from unstable eigenvector directions. Future work could be to investigate using certified differential
equation solvers for validating the numerically computed trajectories.
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