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Abstract

Approximating probability distributions can be a challenging task, particularly when
they are supported over regions of high geometrical complexity or exhibit multiple
modes. Annealing can be used to facilitate this task which is often combined with
constant a priori selected increments in inverse temperature. However, using constant
increments limits the computational efficiency due to the inability to adapt to situ-
ations where smooth changes in the annealed density could be handled equally well
with larger increments. We introduce AdaAnn, an adaptive annealing scheduler that
automatically adjusts the temperature increments based on the expected change in the
Kullback–Leibler divergence between two distributions with a sufficiently close anneal-
ing temperature. AdaAnn is easy to implement and can be integrated into existing
sampling approaches such as normalizing flows for variational inference and Markov
chain Monte Carlo. We demonstrate the computational efficiency of the AdaAnn sched-
uler for variational inference with normalizing flows on a number of examples, including
posterior estimation of parameters for dynamical systems and probability density ap-
proximation in multimodal and high-dimensional settings.

1 Introduction

One of the most fundamental challenges in statistics and machine learning is the ability to
learn a posterior distribution from its pointwise evaluations. In this context, Markov chain
Monte Carlo (MCMC) sampling is a popular paradigm to provide empirical approximations
of distributions and has given rise to a large family of sampling procedures such as the
Metropolis Hasting algorithm [12, 30], the Gibbs sampler [9], and slice sampling [32], among
others [37, 23]. However, MCMC can be computationally expensive and may fail to capture
complicated posterior distributions, leading to poor approximations.

Recently, optimization-based approaches using variational inference (VI) [5, 6, 15, 41] have
emerged which aim to provide a more efficient alternative to sampling-based methods with
the ability to support distributions with complex shapes such as multi-modality in high-
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dimensional settings [35]. More recently, VI approaches based on normalizing flows (NFs) [36],
a type of generative model, are able to characterize even complex dependence in multivariate
distributions. They offer a flexible framework by transforming a base distribution through
a composition of invertible mappings until the desired complexity has been attained.

There are many different types of NFs such as planar flows [36], radial flows [36], real-
NVP [7], autogressive flows (including inverse autoregressive flow (IAF) [19] and masked
autoregressive flow (MAF) [33]), and glow [18], among others. An introduction to the fun-
damental principles of NFs, including their expressive power and computational trade-offs,
together with a review of a wide verity of flow formulations is provided in [21, 33]. Since
their introduction, they have been often combined with VI for density estimation and sam-
pling tasks. For example, NFs are used to formulate Gaussian processes as function priors
in [29], while in [24], NFs are introduced in the setting of graph neural networks for predic-
tion and generation. In [44], NFs are applied to 3D point cloud generation; [26] applies NFs
to approximate the latent variables in Bayesian neural networks. Recent applications of NFs
include semi-supervised learning [14], coupling with surrogate modelling for inference with
computationally expensive models [42], and solving inverse problems [43], among others.

In this study we focus on VI via NFs, specifically on situations where the target distribution
to be approximated is supported over a geometrically complex subset of the parameter
space or has multiple modes. Rather than designing new types of NFs offering improved
representations of multimodal densities, we choose instead to approximate a collection of
intermediate smoother posteriors generated through a parameterization defined in terms of
an annealing temperature.

Annealing or tempering of probability density functions is used in optimization (e.g., simu-
lated annealing [20] and simulated tempering [28]) and MCMC sampling to generate realiza-
tions from complex and multimodal distributions (e.g. tempered transition [31] and parallel
tempering [10]). Tempering is also used in Bayesian statistics to study theoretical properties
and concentration rates for posterior distributions [4]. This has been extended in [2] to ana-
lyze the concentration of VI approximations of (tempered) posteriors and in [13] to develop
an annealed version of the objective functions in VI to improve inferential explorability. An
annealed version of the free energy formulation for VI via NFs by approximating a series of
tempered distributions with slowly increased inverse temperatures to provide better results
on the final approximated target distribution is given in [36].

Various temperature cooling schedules have been proposed to improve computational effi-
ciency in simulated annealing such as simple linear schedules [20], exponential multiplicative
cooling [20], and logarithmic multiplicative cooling [1], among others. There also exists work
on adaptive cooling where the temperature at each state transition depends on an adaptive
factor based on the difference between the current solution and the best achieved solution of
an objective function, including some recent work [16, 27]. Outside the realm of simulated
annealing, annealing strategies and cooling schedules have received little attention.

We use a simple instance of NFs, namely, planar flows [36], to motivate our methodological
development for an annealing scheduler in the settings of VI via NFs. Planar flows are
shown to be a universal approximator in L1 for one-dimensional problems in theory [22],
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but sometimes have been associated with a limited approximation power and more complex
flow formulations have often been preferred in applications. Therefore, this is limiting the
analysis of this flow in the literature, particularly for higher-dimensional latent spaces and
complicated posterior distributions. We outline cases where planar flows alone fail to capture
the structure of a multimodal density but the combination with annealing leads to successful
approximations.

Our main contribution is AdaAnn (Adaptive Annealing), a novel scheduler that adaptively
selects the change in temperature during the annealing process by tracking the Kullback–
Leibler (KL) divergence between successive temperature changes. Through six examples of
various types including multimodal distributions in high-dimensional settings, we demon-
strate that AdaAnn helps NFs converge to the target posterior and leads to significant com-
putational savings compared to a linear scheduler for all cases. In addition, we show how
planar flows with AdaAnn achieve better approximation to the target distribution compared
to more expressive flows without using annealing.

The remainder of the paper is organized as follows. Section 2 provides necessary background
information regarding NFs and VI. Section 3 describes AdaAnn, our new adaptive annealing
schedule for VI via NFs. Six examples are presented in Section 4 which demonstrate the
superior performance of using annealing for VI via NFs, and the computational advantage
of AdaAnn over linear annealing schedulers. We conclude with a discussion in Section 5.

2 Background

2.1 Normalizing Flows

Normalizing flows are compositions of invertible and differentiable mappings used to trans-
form samples from a base probability density function (pdf) q0, e.g., a standard Gaussian,
into samples from a desired distribution and vice-versa. Consider a single layer of a normal-
izing flow with a bijection f : Rd → Rd that maps a set of N sample points {z(i)0 }Ni=1 where

z
(i)
0 ∼ Z0, i = 1, . . . , N , from the base density to {z(i)1 }Ni=1 wherez

(i)
1 = f(z

(i)
0 ), i = 1, . . . , N ,

and d is the dimension of Z0 and Z1. Given Z0 ∼ q0, the density of the transformed vari-
ables Z1 ∼ q1 can be computed using the change of variables formula and the properties of
inverse functions, namely

q1(Z1) = q0(f
−1(Z1)) ·

∣∣∣ det
(∂f−1
∂Z1

)∣∣∣ = q0(Z0) ·
∣∣∣ det

( ∂f
∂Z0

)∣∣∣−1. (1)

One can easily generalize this to L layers of transformations so that the initial set of sample
points are transformed to

z
(i)
L = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1(z(i)0 ), i = 1, . . . , N, (2)

and the corresponding pdf is given by

qL(ZL) = q0(Z0) ·
L∏
`=1

∣∣∣ det
( ∂f`
∂Z`−1

)∣∣∣−1. (3)
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To simplify the computation, a desirable property of flow f` is that the Jacobian determinant
is easy to compute, e.g., through the product of the diagonal entries, as in lower triangu-
lar Jacobian matrices. Many different formulations of NFs have been investigated in the
literature. In this paper, we use planar flows and the real-valued Non Volume Preserving
(realNVP) flows to demonstrate our proposed methodology, which are summarized next.

Planar flows [36] are one of the simpler instances of NFs where each layer transforms a set
of samples with expansions or contractions perpendicular to a d-dimensional hyperplane. A
planar flow f : Rd×R2d+1 → Rd consists of an activation function h : R→ R and parameters
φ = {u ∈ Rd,w ∈ Rd, b ∈ R} such that:

f(Z;φ) = Z + u · h(wTZ + b). (4)

When uTw ≥ −1, this flow is invertibile [36] and its Jacobian determinant is equal to∣∣∣ det
( ∂f
∂Z

)∣∣∣ = | det
(
I + u (wh′(wT Z + b))T

)
| = |1 + uT wh′(wT Z + b)|, (5)

where h′ is the derivative of h. With L layers, the transformed random variable

ZL = fL(•;φL) ◦ fL−1(•;φL−1) ◦ · · · ◦ f2(•;φ2) ◦ f1(Z0;φ1) (6)

has corresponding pdf

qL(ZL) = q0(Z0)
L∏
`=1

|1 + uT` w` · h′(wT
` Z`−1 + b`)|−1. (7)

To enhance the expressiveness of NFs while maintaining a linear complexity in the com-
putation of the Jacobian determinant, dependencies between different components of latent
vectorsZ`, ` = 1, . . . , L, can be introduced through autoregressive transformations. A widely
used auto-regressive flow is realNVP, defined as

Z`+1,j =

{
Z`,j, for j = 1, . . . , c`,

Z`,j exp(ask(Z`,1, . . . , Z`,c`))+atk(Z`,1, . . . , Z`,c`), for j=c`+1, . . . , d, k=j−c`,
(8)

where Z`+1,j denotes the jth component of Z`+1 in layer ` + 1, and ask and atk are scale
and translation functions in layer k, respectively, and are usually implemented as neural
networks. The components in Z are divided into two groups in Eq. (8). The variables in the
first group are copied directly into the next layer whereas the remaining variables go through
an autoregressive transformation. The roles of the two groups are reversed (or the variables
are randomly scrambled) after every layer. Since the c`-th component of Z`+1 in layer `+ 1
depends only on the components 1, . . . , c` of Z`, the Jacobian matrix is lower triangular and
its determinant is simply the product of the diagonal entries

∏d−c`
k=1 ak(Zk−1). In particular,

realNVP is efficient and has the same computational complexity for sampling and density
estimation [7]. Even if the mappings as and at are not invertible, the transformation in
Eq. (8) is still invertible since

Z`,j ={
Z`+1,i for j = 1, . . . , c`,

[Z`+1,j−atk(Z`,1, . . . , Z`,c`)] exp(−ask(Z`,1, . . . , Z`,c`)) for j=c` + 1, . . . , d, k=j−c`.
(9)
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2.2 Variational Inference via Normalizing Flows

Variational inference is a common method for statistical inference and machine learning
that approximates probability densities by minimizing their KL divergence from a target
distribution. In particular, VI provides an effective alternative to sampling-based approaches
for density approximation such as MCMC. It is based on optimization and designed to offer
improved computational efficiency. Additionally, one of the major applications of NFs is
VI. Without loss of generality, we illustrate the application of NFs for VI in approximating
the posterior distribution p(Z|X) of the model parameters Z given observed data X. Such
an approximation is obtained by minimizing the free energy F , the negative of which is a
lower bound to the marginal log-density function log p(X) (a.k.a., the evidence). Due to the
analytical difficulty in maximizing the marginal log-density function, the minimization of the
free energy is often used in VI. If qφ(Z|X) is the variational distribution with parameters φ
that approximates the true posterior p(Z|X), the free energy is

F(X, φ) = D[qφ(Z|X) ‖ p(Z)]− Eqφ [log p(X|Z)]

= Eqφ [log qφ(Z|X)− log p(Z,X)]
(10)

where D[·‖·] denotes the KL divergence between two distributions. Following the notation
in Section 2.1, we express the density qφ(Z|X) as qL(ZL) and apply the change of variables
formula in Eq. (3) to Eq. (10) to obtain

F(X, φ) = Eq0 [log qL(ZL)− log p(X,ZL)]

= Eq0 [log q0(Z0)]− Eq0

[
L∑
`=1

log

∣∣∣∣ det
∂f`
∂Z`−1

∣∣∣∣
]
− Eq0 [log(p(X,ZL))].

(11)

Minimization of the free energy F with respect to the parameters φ is often achieved through
gradient-based optimization, e.g., stochastic gradient descent, RMSprop [39], Adam [17], and
others. The expectations in Eq. (11) are often replaced by their Monte Carlo (MC) estimates
by using N realizations from the base distribution q0. Applying Eq. (7) for planar flows,
Eq. (11) becomes

F(X, φ)≈ 1

N

N∑
i=1

[
log(q0(z0,i))−log(p(zL,i,X))−

L∑
`=1

log
∣∣1+uT` w` h(wT

` z`−1,i+b`)
∣∣]. (12)

2.3 Annealing

Annealing (also called tempering) is a useful technique when sampling from complicated
distributions by smoothing them. Coupled with MCMC techniques or VI, annealing can
help improve sampling efficiency and accuracy. During the application of annealing, the
inverse temperature t continuously increases with

pt(Z,X) = pt(Z,X), for t ∈ (0, 1]. (13)

The result of exponentiation by t ∈ (0, 1) smooths out the distribution and reduces to a uni-
modal distribution as t→ 0+. Since the original distribution is obtained as t→ 1−, annealing
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provides a continuous deformation from an easier to approximate unimodal distribution to
the original distribution.

In practice, a discrete version of Eq. (13) is used by generating a sequence of functions

pk(Z,X) = ptk(Z,X), for k = 0, . . . , K (14)

where 0 < t0 < · · · < tK ≤ 1 is an annealing scheduler and pk(Z,X) is the annealed
or tempered distribution. A commonly used annealing schedule is linear [36] of the form
tj = t0 + j(1− t0)/K for j = 0, . . . , K with constant increments ε = (1− t0)/K. For exam-
ple, when combining annealing with VI and planar flows, the free energy F in Eq. (12) is

F(x, φ)≈ 1

N

N∑
i=1

[
log(q0(z0,i))− tk log(p(zL,i,X))−

L∑
`=1

log
∣∣1+uT` w`h(wT

` z`−1,i+b`)
∣∣]. (15)

2.4 A Motivating Example

Consider sampling from the pdf p : R→ R where

p(Z) = 0.954 · e−[(Z+2)2−3]2 . (16)

Hence, p(Z) is a bimodal distribution with peaks at Z = −2±
√

3 which is the “target” in
Figure 1. Consider its variational approximation qL(Z) ≈ p(Z) obtained by transforming a
base distribution N (µ, σ2) with µ = 0 and σ2 = 4 using a composition of L = 100 planar flow
layers with hyperbolic tangent activation. We use the Adam optimizer with a learning rate of
0.005 and train 8,000 iterations consisting of N = 100 sample points each. In our experiment,
the outcome yields Figure 1 which suggests that the optimal qL without annealing is only
able to capture a single mode. The plots at various iterations throughout this optimization
can be found in Figure 22 in Section A.1 of the appendix. Using the same planar flow but
with annealing as given in Eq. (15), our experiment showed that both modes were captured
as shown in Figure 2(d) with a final loss1 of 0.0024.

Figure 1: Variational approximation for bimodal density p(Z) without annealing.

The annealing strategy used in Figure 2 had a schedule with an initial inverse temperature
of t0 = 0.01 that increases with a constant step size of ε = 10−4. The Adam optimizer

1All final loss values computed as the average of 100 MC loss values using 1,000 sample points.
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ran for 500 iterations at t0
2 and one iteration afterwards throughout the annealing process.

Additional iterations were run at t = 1 with the number of samples points increased to
N = 1,000, indicated as the refinement training phase.3 The number of iterations in this
phase was determined by reaching a maximum of 8,000 iterations overall or reaching the
following convergence criteria: the percent change of the most recent average loss value
and the previous average loss value computed every 200 iterations4 is less than 0.5%. All
together, a total of 10,400 iterations were run through NFs before the annealing temperature
reached 1. Figures 2(a)-(c) show the the intermediate density approximation around one-
third and two-thirds into the annealing phase and before the refinement phase when the
temperature reached 1. Additionally, during refinement a step learning rate scheduler was
applied which decreased the learning rate by a factor γ = 0.5 after 1,000 iterations.

(a) Annealing Step: 3,300 (b) Annealing Step: 6,600

(c) Before Refinement (d) After Refinement

Figure 2: Variational approximation for bimodal density p(Z) with linear annealing.

This relatively large number of iterations is rather typical with linear annealing schedulers
to reach a variational approximation of a target distribution with satisfactory accuracy. The
large number of iterations is due to the typical small steps of constant size characterizing

2Since the basic distribution may be significantly different than the first annealed distribution, we used
a larger number of iterations at t0.

3This phase allows for a more refined approximation to p(Z) through an increased number of iterations
and sample points.

4The loss function value in each iteration is the average of 50 MC loss evaluations using the current
sample size.
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linear annealing schedulers (e.g., 10−4 in the above example). An exceedingly large tempera-
ture step during the annealing process could lead to a sub-optimal approximation that does
not capture the main structural features of the target distribution (e.g., missing a mode in
a multi-modal distribution).

In the following, we propose a new annealing strategy that can significantly cut down the
number of iterations in NFs for VI without sacrificing the quality of the final approximation.

3 Method

The following proposes the AdaAnn scheduler, a new adaptive annealing scheduler, that uses
an adjustable step size εk = εk(t) > 0, k = 1, . . . , K, designed to reduce the number of steps
K as much as possible while providing accurate distributional approximations in VI via NFs.

3.1 AdaAnn Scheduler

Intuitively, small temperature changes are desirable to carefully explore the parameter spaces
at the beginning of the annealing process, whereas larger changes can be taken as tk increases
after annealing has helped the approximate distribution to capture important features of
the target distribution (e.g., locating all the relevant modes). In VI, the KL divergence
based loss function in Eq. (10) can be used as a metric to adjust the annealing temperature
increment. In this context, the proposed AdaAnn scheduler determines the increment εk that
approximately produces a pre-defined change in the KL divergence between two distributions
tempered at tk and tk+1 = tk + εk, respectively. In particular, the KL divergence between
these two distributions is given by

D[ptk(Z)||ptk+εk(Z)] =

∫
c(tk) p

tk(Z) log

(
c(tk) p

tk(Z)

c(tk + εk) ptk+εk(Z)

)
dZ, (17)

where c(s) = 1/
∫
ps(Z) dZ denotes the normalizing constant associated with ps(Z). A

Taylor series expansion of the right hand side of Eq. (17) leads to the following theorem.

Theorem 1. For two tempered pdfs ptk and ptk+εk with annealing step εk, the KL diver-
gence is

D[ptk(Z)‖ptk+εk(Z)] =
ε2k
2
Vptk [log p(Z)] +O(ε3k) ≈

ε2k
2
Vptk [log p(Z)]. (18)

Letting the KL divergence equal a constant τ 2/2, where τ is referred to as the KL divergence
tolerance, the step size εk becomes

εk =
τ√

Vptk [log p(Z)]
. (19)

Proof. For simplifying the presentation, we avoid using subscripts. From the definition of
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KL divergence, we have

D[pt(Z)||pt+ε(Z)] =

∫
c(t) pt(Z) log

(
c(t) pt(Z)

c(t+ ε) pt+ε(Z)

)
dZ

=

∫
c(t) pt(Z) log

(
c(t)

c(t+ ε)
p−ε(Z)

)
dZ.

The Taylor expansion of c(t)/c(t+ ε) has the form

c(t)

c(t+ ε)
= c(t)

∫
pt+ε(Z) dZ = c(t)

∫
pt(Z)

[
1 + ε log p(Z) +

[ε log p(Z)]2

2
+ . . .

]
dZ

= c(t)

∫
pt(Z) dZ + c(t)

∫
pt(Z) ε log p(Z) dZ + c(t)

∫
pt(Z)

[ε log p(Z)]2

2
dZ+ · · ·

= 1 + εEpt [log p(Z)] +
ε2

2
Ept [log(p(Z))2] +O(ε3)

and its logarithm is

log

(
c(t)

c(t+ ε)

)
= log

(
1 + εEpt [log p(Z)] +

ε2

2
Ept [log

(
p(Z)2

)
] +O(ε3)

)
= εEpt [log p(Z)] +

ε2

2
Ept [(log p(Z))2]− ε2

2
Ept [log p(Z)]2 +O(ε3)

= εEpt [log p(Z)] +
ε2

2
Vpt [log p(Z)] +O(ε3).

Putting everything together with log p−ε(Z) = −ε log p(Z), we have

D[pt(Z)||pt+ε(Z)] =

∫
c(t) pt(Z)

{
εEpt [log p(Z)]+

ε2

2
Vpt [log p(Z)]+O(ε3)−ε log p(Z)

}
dZ

= εEpt [log p(Z)] +
ε2

2
Vpt [log p(Z)]− εEpt [log p(Z)]

=
ε2

2
Vpt [log p(Z)] +O(ε3).

The quantity Vptk [log p(Z)] in Theorem 1 can be approximated using a MC estimate with

samples from qtkL ≈ ptk available from NFs at a given temperature tk. Specifically, we draw

M samples, z
(i)
L , i = 1, . . . ,M , and compute the sample variance of {log p(z(i))}Mi=1 using

S2 =
1

M − 1

M∑
i=1

(
log p(z(i))− log p(z)

)2
, where log p(z) =

1

M

M∑
i=1

log p(z(i)). (20)

This MC approximation also provides the following intuitive interpretation of the AdaAnn
scheduler from Theorem 1.

At the beginning of the annealing process, t0 is small and the tempered distribution pt0 is
rather flat; the likelihood of samples coming from every region of the support of p is about
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the same, leading to a large variance of log(p). The combination of a large variance of log(p)
with the constant τ (see Eq. (19)) results in a small annealing increment εk. As t increases,
pt becomes closer and closer to the target p and most of the samples from qtL fall in high-
density regions of the target p. This causes the variance of log(p) to shrink, resulting in
larger increments εk.

In summary, the mathematical formulation in Eq. (19) reflects the sensitivity of the annealing
process in capturing the shape of the target distribution. In particular, t should increase
slowly at the beginning of the annealing process due to rapid changes in the KL divergence at
high temperatures, whereas the tempered distribution becomes less sensitive to temperature
changes as it becomes increasingly similar to the target distribution.

Algorithm 1 summarizes the implementation of the AdaAnn scheduler with NFs with an
implementation available at https://github.com/ercobian/AdaAnn-VI-NF.

Algorithm 1 AdaAnn Scheduler

input: initial inverse temperature t−10 , target distribution p, number of iterations T0 at
t0, number of iterations T1 at t = 1, number of iterations T for t ∈ (t0, 1), number of NF
samples N for t ∈ [t0, 1), number of NF samples N1 for t = 1, number of MC samples M
for calculation of ε, KL divergence tolerance τ , a prespecified NF structure with L layers
of transformation.
output: approximated distribution qL for p.
t← t0; ε← 0
while t+ ε < 1 do

t← t+ ε
Obtain an empirical approximation qt to pt with N samples using NF for the specified

number of iterations at t (T0 for t = t0 and T for t ∈ (t0, 1))
Calculate the MC estimate of Vpt [log p(Z)] in Eq. (19) using z(i) ∼ qt, i = 1, . . . ,M

samples in Eq. (20)
ε← τ/S

end while
t← 1
(Optional) Refine at t = 1 by running the NFs for T1 iterations to obtain a final approxi-
mation q to p with N1 samples.

4 Numerical Examples

We apply AdaAnn to six examples, where the target distributions range from bimodal uni-
variate distribution to multimodal high-dimensional distributions, and compare its approx-
imation accuracy and computational efficiency with linear annealing. Specifically, we first
compare AdaAnn to linear schedulers in one-dimensional settings with bimodal distribu-
tions. We then examine two-dimensional bimodal densities and compare the performance of
a planar flow with AdaAnn and a flow with greater approximation power (i.e., realNVP).
Next, we consider two applications in dynamical systems, where we obtain posterior varia-
tional inference of the parameters of a Lorenz attractor and a non-linear dynamical system
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simulating HIV viral dynamics, respectively, via NFs with AdaAnn. In example 6, we com-
pare AdaAnn and linear schedulers in a high-dimensional setting with for both unimodal
and bimodal posteriors. For all examples, unless otherwise noted, we use hyperbolic tangent
activation functions in planar flows, optimize the free energy loss function in VI via NFs
using Adam, use the convergence criteria as in Section 2.4, and run computations on an
AMD EPYC 7532 32-Core Processor.

4.1 Example 1: One-dimensional Bimodal Distribution

We apply AdaAnn to the bimodal density in Eq. (16) and compare with the linear annealing
scheduler in Section 2.4. The same planar flow as specified in Section 2.4 is employed.
We use Algorithm 1 with the following hyperparameters: t0 = 0.01 (identical to the linear
scheduler), T0 = 500, T = 2, T1 = 8,000, τ = 0.005 and M = 1,000. For the Adam optimizer,
we apply the same learning rate schedule as in Section 2.4. The number of points in each
iteration increases from N = 100 to N1 = 1,000 during the refinement stage at t = 1, and
we take T1 as the maximum number of iterations unless the convergence criteria has been
met. We present in Figure 3 the distribution approximately one-third and two-thirds in the
annealing phase, at t = 1 before refinement, and the final optimized variational distribution
via the planar flow with AdaAnn. The results suggest an accurate approximation of the
target distribution with a final loss value of 0.0019. The AdaAnn scheduler took 636 steps,
with 1,768 parameter updates before refinement, whereas the linear scheduler took 9,902
steps as presented in Figure 4. The rate of change in tk is slow for AdaAnn when tk is small
and increases as tk becomes larger; this adaptive behavior helps drive the computational cost
down for AdaAnn.

We repeated this optimization 50 times and summarized the results in Table 1. Though both
AdaAnn and the linear scheduler perform well in approximating the target distribution, the
computational cost associated with the linear scheduler is much higher. The total param-
eter updates and computational time (found in Table 2) for this example is approximately
half when using AdaAnn, compared to the linear schedule, while maintaining comparable
accuracy as indicated by the final loss values. These computations were performed on an
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz Haswell processors with 256 GB of RAM.

Table 1: Metrics comparing AdaAnn and linear schedules over 50 trials in Example 1.

AdaAnn Linear

Metric Mean SD Mean SD

Loss 0.0038 0.0022 0.0032 0.0033
Annealing Steps 636 14 9,902 -5

Refinement Iterations 6,708 1,971 6,800 2,256
Total Parameter Updates 8,476 1,972 17,200 2,256

We also examine how the choice of τ in AdaAnn affects the approximation quality and
computational complexity. Toward that end, we set the KL divergence tolerance τ at four

5Since all trials in the linear scheduler use 9,902 annealing steps, SD is not meaningful.
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(a) Annealing Step: 200 (b) Annealing Step: 400

(c) Before Refinement (d) After Refinement

Figure 3: Variational approximation of p(Z) in Example 1 with AdaAnn scheduler.

(a) AdaAnn (b) AdaAnn and Linear

Figure 4: (a) AdaAnn annealing schedule and (b) comparison between the AdaAnn and a
linear schedule for density approximation in Example 1.

different values (0.5, 0.05, 0.005, 0.0005) and obtained the final approximate distribution to
the target in each case before refinement. The results are presented in Figure 5. Although
all tolerance choices maintain the bimodal structure after further refinement, certain values
provide a better approximation to the target density at the conclusion of the annealing phase.
For τ = 0.5, the annealing phase completed in only 14 incremental temperature steps but
needs significant refinement to capture the height of the peaks. While τ = 0.05 captured the
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Table 2: Computational time (in minutes) for VI via NFs in Example 1, Example 2 (the
symmetric case at m = 4), and Example 3 (m = 4).

Example NF procedure 5th-Percentile Median 95th-Percentile

1
AdaAnn 5.14 11.46 12.15
Linear 12.82 20.35 22.14

2

No Annealing (L = 25) 2.80 2.84 2.97
No Annealing (L = 50) 5.63 5.71 6.24
No Annealing (L = 100) 10.87 11.28 11.98

AdaAnn 4.00 6.82 8.59
Linear 5.97 8.17 10.72

3
AdaAnn 5.53 8.36 12.12
Linear 7.66 10.37 14.61

(a) τ = 0.5 (b) τ = 0.05

(c) τ = 0.005 (d) τ = 0.0005

Figure 5: Comparison of optimized distributions from NFs with AdaAnn at t = 1 for various
KL tolerances τ without refinement.

peaks better in 83 annealing steps, a decent amount of refinement is still needed. For the
two smaller values τ = 0.005 and τ = 0.0005, both capture the features of the target density
while taking 659 and 5,496 steps, respectively. While τ = 0.0005 provides a slightly better
approximation than τ = 0.005, it takes significantly more steps (8.34 folds more) without
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significantly improving the quality of the resulting approximation.

In summary, this example illustrates that while AdaAnn and the linear annealing schedule
lead to favorable approximations to the target distribution, AdaAnn significantly reduces the
number of steps needed to the final approximation and ultimately reduces the computational
time. In addition, the choice of the KL divergence tolerance τ is critical for the accuracy of
the variational approximation: too large of a τ value can be too crude to capture important
characteristics of a distribution and too small a τ value may incur additional computational
costs without significantly improving the approximation.

4.2 Example 2: One-dimensional Mixture Gaussian Distribution

We consider a mixture of two Gaussian distributions in this example, namely

p(Z) =
1

2
√
π/8

e−8(Z+m1)2 +
1

2
√
π/8

e−8(Z+m2)2 . (21)

Here, p(Z) depends upon two parameters, m1 and m2, which are varied to investigate how
the distance between the two modes of p(Z) and their location relative to the mode of the
base distribution q0 = N (µ, σ2) with µ = 0 and σ2 = 16 impact the accuracy of the optimal
variational approximation. We examine two cases of p(Z): (1) when the two modes are
symmetrically located around 0, the mode of q0; that is, m1 = −m2, and (2) when one of the
modes is fixed at 0. We refer to these two cases as symmetric and asymmetric, respectively,
and use a single parameter m to denote the distance between the two modes in both cases.
For the symmetric case, we set m1 = m/2 and m2 = −m/2 while, for the asymmetric case,
m1 = m and m2 = 0. An example for each of the two cases is provided in Figure 6.

Figure 6: Illustration of symmetric and asymmetric bimodal distributions in Example 2.

We vary m from 1 to 16 in the symmetric case and 1 to 8 in the asymmetric case. For each
value of m, we run 50 trials without annealing, with a linear annealing schedule, and with
the AdaAnn scheduler to approximate the target distribution for VI via NFs. The number
of layers for the planar flow with annealing is L = 75. For the scenario without annealing,
we also vary the number of layers and consider L = 25, 50, 100 and train the planar flow
for 8,000 iterations with N = 100 samples per iteration. We set t0 = 0.01, T0 = 500, T = 4,
T1 = 8,000, τ = 0.002, M = 1,000, N = 100, and N1 = 1,000 for AdaAnn (Algorithm 1).

14



For the linear scheduler, we set ε = 10−4 and T = 1 while keeping t0, T0, T1, N, and N1

defined the same as in the AdaAnn scheduler. We again cease refinement when either the
convergence criteria has been met or T1 iterations has been reached (only in the annealing
scenarios). Also, a step learning rate scheduler is applied during refinement decreasing the
learning rate by a factor of γ = 0.8 every 500 iterations. The learning rates for the Adam
optimizer are reported in Table 3.

Table 3: Learning rates for different values of m used in Example 2.

Symmetric Case Asymmetric Case
(m1 = m/2,m2 = −m/2) (m1 = m,m2 = 0)

m Learning Rate m Learning Rate

1, 2 0.02 1, 2 0.01
3, 4, 5 0.001 3 0.002
6, 8, 10, 12, 14, 16 0.0005 4, 5, 6, 7, 8 0.001

We examine how likely an approximated distribution using VI via NFs captures the bimodal
structure in p(Z) with the results summarized in Figure 7. We also compare the computa-
tional time required by NFs without annealing using varying number of layers (computations
were performed on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz Haswell processors with
256 GB of RAM) and the proposed AdaAnn scheduler versus a linear scheduler.

(a) Symmetric (b) Asymmetric

Figure 7: Percentage of approximate distributions from VI via NFs which capture the bi-
modal target structure out of 50 trials in Example 2.

First, for the symmetric case with m = 4, an increasing number of planar flow layers is
associated with a higher likelihood to capture the target bimodal structure without annealing
(Figure 7), but at a higher computational cost (Table 2). Second, without annealing, the
symmetric modes are well recovered for m > 8; for the asymmetric case, the two modes are
captured 100% of the time only when m = 1, independent of the number of layers, and the
percentage decreases with m until it reaches zero for m ≥ 3. Third, with annealing, the
target distributions can be accurately approximated for all the examined values of m in both
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the symmetric and asymmetric cases. Considering the symmetric case without annealing,
there is a large drop in the percentage of recovered bimodal distributions near m = 4 for
L = 25 and 50. When the modes of the target distribution are connected, i.e., not separated
by a segment of zero probability, NFs easily captures both modes. When the modes become
separated, NFs no longer capture both modes consistently. This is indicative of a rough loss
landscape where the optimizer is unable to determine the global minimum. As these modes
become further separated, NFs improve in capturing both modes, likely indicating the loss
landscape has become smoother and the global minimum is easier to attain. Although both
the linear and AdaAnn annealing schedules are able to produce bimodal approximations of
similar accuracy, AdaAnn requires significantly fewer parameter updates, as summarized in
Table 4 for the symmetric case; similar for the asymmetric case.6

Table 4: Mean and standard deviation (SD) of final loss and total parameter updates for
AdaAnn and linear schedulers in the symmetric case of Example 2.

Final Loss Total Parameter Updates

AdaAnn Linear AdaAnn Linear

m Mean SD Mean SD Mean SD Mean SD

1 0.0009 0.0009 0.0007 0.0009 11,160 2,128 17,520 2,038
2 0.0019 0.0013 0.0020 0.0021 12,011 1,600 17,000 2,518
3 0.0267 0.0185 0.0302 0.0561 11,091 2,602 14,848 2,916
4 0.0246 0.0123 0.0278 0.0317 11,380 2,649 14,900 2,804
5 0.0228 0.0147 0.0317 0.0383 11,682 2,451 14,932 2,870
6 0.0390 0.0132 0.0304 0.0149 10,436 2,635 13,904 2,571
8 0.0414 0.0185 0.0313 0.0181 10,742 2,611 14,764 2,670
10 0.0409 0.0155 0.0356 0.0187 10,553 2,520 14,128 2,579
12 0.0444 0.0206 0.0346 0.0168 10,701 2,465 14,216 2,550
14 0.0538 0.0184 0.0500 0.0758 10,296 2,421 13,940 2,491
16 0.0555 0.0177 0.0400 0.0188 10,470 2,390 14,216 2,606

In summary, the results suggest that for NFs without annealing: (1) the relative location of
the base distribution with respect to the locations of the modes of the target distribution may
affect the accuracy of the variational approximation and (2) when the location of the base
distribution is strongly biased toward one of the modes of the target distribution, successful
approximation may only occur when the modes are not separated (m ≤ 1 in this example).
Annealing helps to mitigate both problems.

4.3 Example 3: Two-dimensional Bimodal Distribution

In the third example, we compare the density approximation performance between planar
flows coupled with annealing and a more expressive flow such as realNVP. The target distri-

6Table 12 in Section A.2 of the appendix, contains these results for the asymmetric case.
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bution is a mixture of two bivariate Gaussian densities expressed as

p(Z1, Z2) =
8

π
e−16 [(Z1+m/2)2+(Z2−m/2+1)2] +

8

π
e−16 [(Z1−m/2)2+(Z2−m/2+1)2]. (22)

Here, p(Z1, Z2) depends upon a parameter m which is used to move the modes. In particular,
this density is similar to the bimodal symmetric density from Section 4.2 and has narrow
modes equally spaced from the origin. As m increases, the modes will move diagonally up
and away from the origin resulting in a larger separation, as seen in Figure 8.

(a) m = 2 (b) m = 3 (c) m = 4

Figure 8: Bivariate Gaussian mixture densities for increasing values of m in Example 3.

To approximate the target distribution p(Z1, Z2), we transform a distribution q0 = N (µ,Σ)
with µ = (0, 0) and Σ = 4I2 using four different configurations: (1) three planar flows
consisting of L = 50, 75, 100 layers without annealing trained for 5,000 iterations; (2) a
planar flow with L = 75 layers combined with the AdaAnn scheduler (t0 = 0.01, T0 = 500,
T = 3, T1 = 8,000, τ = 0.002, M = 1,000, N = 100, N1 = 1,000); (3) a planar flow with 75
layers combined with a linear scheduler (t0 = 0.01, T0 = 500, T = 1, T1 = 8,000, ε = 10−4,
N = 100, N1 = 1,000); and (4) realNVP without annealing. Both annealing schedulers apply
a step learning rate scheduler with γ = 0.9 every 1,000 iterations. For realNVP, the scale and
translation functions as and at, respectively, consist of fully connected neural networks with
two neurons for both the input and output layers, two hidden layers with H hidden neurons,
and the ReLU activation function. A hyperbolic tangent activation function is applied right
before the output layer on the scale function as. We examined three cases for H, namely
10, 25, and 100. We examined two scenarios of coupling layers, namely 6 and 12, and use
alternating masking that switches the variables being updated at each coupling layer. We
trained the realNVP for 5,000 iterations. For the Adam optimizer, we used a batch size of
N = 100 and the learning rates at m = 2 to 7 are 0.001 0.0008, 0.0005, 0.0005, 0.0005, and
0.0002 respectively.

For each m and each NFs setup, we conducted 50 trials and recorded how many times the
bimodal structure of the target distribution is captured in the final optimized distribution.
The results are summarized in Figure 10. In particular, both of the annealing methods
capture the bimodal structure in all 50 trials at every m, outperforming the planar flows
without annealing, which is consistent with the results from Examples 1 and 2. RealNVP,
despite having a more complicated structure than planar flow, still fails to capture both
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modes in a considerable number of repetitions, suggesting that the approximation accu-
racy resulting from planar flow plus an annealing schedule may not be achieved by a more
expressive flow alone.

(a) Planar Flow (b) RealNVP (# of layers, # of neurons)

Figure 9: Percentage of successful distribution reconstruction from VI via NFs out of 50
trials in Example 2.

Figure 10: Percentage of successful distribution reconstruction in Example 3.

Both annealing methods with planar flows achieve the comparable accuracy, but AdaAnn
has significantly fewer parameter updates during the annealing phase yielding fewer total
parameter updates (with the defined stopping criteria) as presented in Table 5. This leads
to superior computational efficiency, which is shown in Table 2 for m = 4.

Table 5: Comparing mean and standard deviation of final loss and total parameter updates
for AdaAnn and linear schedulers using planar flows in Example 3.

Final Loss Total Parameter Updates

AdaAnn Linear AdaAnn Linear

m Mean SD Mean SD Mean SD Mean SD

2 0.0460 0.0529 0.0446 0.0539 10,251 2,701 14,508 2,864
3 0.0335 0.0146 0.0250 0.0088 10,897 2,666 15,016 2,664
4 0.0459 0.0215 0.0416 0.0246 10,407 2,654 14,472 2,818
5 0.0461 0.0191 0.0436 0.0163 10,453 2,853 14,036 2,767
6 0.0413 0.0191 0.0439 0.0218 11,147 2,688 14,284 3,010
7 0.1044 0.0394 0.0828 0.0281 11,363 2,577 13,736 2,617

4.4 Example 4: Lorenz Attractor

After considering closed-form distributions in the first three examples, we investigate the
ability of VI via NFs with annealing to solve inverse problems involving dynamical systems.
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In such cases, evaluating the posterior distribution at a single realization of the input parame-
ters (up to a constant) necessitates the numerical solution of a system of ordinary differential
equations (ODEs). Specifically, in this section we consider the Lorenz attractor [25]:

ẋ = s(y − x)

ẏ = x(r − z)− y
ż = xy − bz.

(23)

This system of ODEs results from a simplified representation of Rayleigh-Bénard convection
and is derived from a Galerkin projection of a system of coupled Navier-Stokes and heat
transfer equations with thermal convection and buoyancy. It models convection between two
horizontal plates with the lower plate uniformly warmer than the upper plate. Described by
this system, x is proportional to the intensity of the convective motion, y is proportional to
the temperature difference between ascending and descending currents, and z is proportional
to the discrepancy between the vertical temperature distribution in the model and a linear
profile [25]. Restricted to positive values, s is the Prandtl number, r is the Rayleigh number,
and b is a geometric factor, i.e., the aspect ratio of the convection vortices [25, 38]. The
system is unstable for σ > (b+ 1) and r > rc ≈ 24.74. In particular, for s = 10, b = 8/3, and
r = 28, it follows a chaotic butterfly-like dynamics revolving around two strange attractors.
Starting from almost identical initial conditions (∆ = 10−6), the system is known to generate
chaotic trajectories for t > 15 [40].

The parameters s, b, and r in Eq. (23) are often of inferential interest given a set of obser-
vations on x, y, and z. We use VI via NFs to estimate s, b, and r in a Bayesian framework.
Specifically, we simulate observations given s = 10, b = 8/3, and r = 28 as follows. Using
a fourth order Runge-Kutta method (RK4) with initial conditions x0 = y0 = z0 = 1, the
Lorenz equations are integrated in time from t = 0 to t = 1.5 with step size ∆t = 0.025.
From this solution [(xi, yi, zi)]

60
i=1, we choose n = 30 equally spaced data points and add

Gaussian noise N (µ,Σ) where µ = (0, 0, 0) and Σ = σ2I3 with σ2 = 0.001 and σ2 = 0.2,
generating two sets of noisy (x, y, z) realizations as shown in Figure 11.

The following is the posterior distribution of the parameters θ = {s, b, r} with a non-
informative uniform prior on the parameters and Gaussian likelihood function:

p(θ|(x, y, z)) ∝ 1√
(2πσ2)D·n

exp
(
− 1

2σ2

n∑
i=1

∥∥(xi, yi, zi)
T −Gi(θ)

∥∥2
2

)
. (24)

The operator G outputs the RK4 solution of the Lorenz equations with respect to the input
parameters θ, D = 3 is the dimension of the output, and n = 30 as above.

Starting with a base q0 = N (µ,Σ) with µ = (10, 10, 10) and Σ = 4I3, we use planar flow
with L = 250 layers and apply the AdaAnn scheduler in Algorithm 1 with the following
hyperparameters: t0 = 0.05, T0 = 500, T = 5, T1 = 5,000, τ = 0.2, M = 100, N = 100, and
N1 = 200. For the linear scheduler, we set ε = 10−4 and T = 1, while keeping the remaining
parameters identical to the AdaAnn scheduler. The learning rate for the Adam optimizer at
t < 1 is 0.005; during the refinement phase at t = 1, the batch size is increased to N1 = 200
and a step learning rate scheduler is applied with a reduction of γ = 0.75 every 500 training
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(a) 3D Trajectory (b) Trajectory of x

(c) Trajectory of y (d) Trajectory of z

Figure 11: Trajectories of the Lorenz system and observations (x, y, z).

iterations. The annealing schedules are shown in Figure 12, where AdaAnn took 694 and 76
steps for σ2 = 0.001 and σ2 = 0.2, respectively, while the linear scheduler took 9,502 steps.
Using the convergence criteria, AdaAnn had an additional 1,800 refinement iterations leading
to 5,760 total parameter updates, while the linear scheduler had an additional 800 iterations
and 10,800 total updates for σ2 = 0.001. This leads to significant computational savings with
the optimization completing in 80 minutes when employing the AdaAnn scheduler, versus
112 minutes for the linear scheduler.

The resulting variational approximation qL(s, b, r|X) is shown in Figure 13, for σ2 = 0.001,
comparing both schedulers. The marginal histogram for each of the three parameters and the
pairwise scatter plots are depicted in Figure 14. The inferred distributions agree well with
the true parameter values for both AdaAnn and the linear scheduler. The MC estimates for
the marginal means and standard deviations (SD) of the posterior distributions are computed
from the final optimized approximate distribution qL using 10,000 samples and reported in
Table 6. We also used Monte Carlo integration to approximate the “true” mean and SD of
the posterior distribution, referenced as MC True, using 10,000 points (see Table 14). For
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(a) AdaAnn (b) AdaAnn and Linear

Figure 12: (a) AdaAnn annealing schedule and (b) comparison between the AdaAnn and a
linear schedule for density approximation in Example 4.

each parameter, its true value is within one SD of the corresponding estimated parameter
value. The corresponding plots for σ2 = 0.2 can be found in Figures 23 and 24 in Section A.3
of the appendix, and the posterior estimates can be found in Table 13.

(a) AdaAnn (b) Linear

Figure 13: Approximate posterior distribution of parameters (s, b, r) for the Lorenz attractor
obtained by VI via NFs with σ2 = 0.001 using AdaAnn and linear schedulers.

4.5 Example 5: ODE system for HIV dynamics

This example infers the parameters of a system of ODEs that models the HIV dynamics [3]
based on the original system [34]:

ẋ1 = p1 − p2x1 − p3x1x3, ẋ2 = p3x1x3 − p4x2, ẋ3 = p1p4x2 − p5x3,
y = x3.

(25)

In this system, x1 is the number of CD4+ T-cells that are susceptible to being infected by the
HIV-1 virus and x2 is the number of productively infected CD4+ T-cells. The concentration
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(a) AdaAnn

(b) Linear

Figure 14: Marginal posterior distributions and pairwise scatter plots of parameters (s, b, r)
for the Lorenz attractor with σ2 = 0.001 using AdaAnn and linear schedulers.

of HIV-1 free virus, x3, is measured in HIV-1 RNA per mL of plasma. The dynamics of
the system are driven by the following five parameters: p1 is the rate of target cells being
produced from a source, p2 is the rate of target cells dying, p3 is the rate of target cells being
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Table 6: Posterior mean and standard deviation for the parameters of the Lorenz attractor,
based on 10,000 samples obtained by VI via NFs with σ2 = 0.001 using AdaAnn and linear
schedulers, and “true” posterior values using Monte Carlo integration.

True MC True AdaAnn Linear

Value Post. Mean Post. SD Post. Mean Post. SD Post. Mean Post. SD

s = 10 10.0028 0.0044 10.0028 0.0052 10.0038 0.0045
b = 8/3 2.6663 0.0008 2.6663 0.0009 2.6658 0.0009
r = 28 27.9986 0.0037 27.9970 0.0046 27.9989 0.0040

infected by the HIV-1 virus, p4 is the death rate of productively infected cells x2, and p5 is
the clearance rate of infectious HIV-1 virus particles from the body.

We use VI via NFs to estimate the parameters p1 and p2 along with the initial condition x20 .
The remaining parameters and initial conditions are considered known and fixed. The pos-
terior distribution of p1 and p2 may have a multimodal structure if this system has an iden-
tifiability degree greater than one [3]. In fact, for this problem, the identifiability degree is 2
indicating two sets of parameter values producing an identical output, namely {p1, p2, x20}
and {−p1, p2,−x20}, generating the same observed trajectory on output y(t) = x3(t).

The system in Eq. (25) is numerically integrated using RK4 until time t = 2 months with step
size of ∆t = 0.05 months using the parameters and initial conditions in Table 7. Synthetic
data were generated using n = 40 equally spaced data points from y = x3 and adding
Gaussian errors N (µ, σ2) with µ = 0 and σ2 = 0.0005 to the output solution x3, as shown
in Figure 15.

Table 7: Parameter values and initial conditions in the HIV dynamics ODE system.

Unknown Parameters Known Parameters Fixed Initial Conditions

p1 = 1.2 p3 = 4.1 x10 = 0
p2 = 0.8 p4 = 10.2 x30 = 1
x20 = 1.5 p5 = 2.6

The posterior distribution of parameters θ = {p1, p2, x20} given n observed data points on x3
is p(θ|x3) ∝ (2πσ2)−n/2 exp

(
σ−2

∑n
i=1 (x3i −Gi(θ))2

)
given the Gaussian likelihood function

and a uniform prior on θ. To approximate this posterior, we transform a base distribution
N (µ,Σ) with µ = (0, 0, 0) and Σ = 4I3 using a composition of L = 250 planar flows. We
run AdaAnn with t0 = 0.00005, T0 = 1,000, T = 5, τ = 0.005, M = 100, and N = 100. The
learning rate for the Adam optimizer is 0.0005. Once we reach t = 1, we refine the posterior
approximation by training for an additional T1 = 5,000 iterations (without the convergence
criteria), increasing the batch size to N1 = 200, and adopting a step learning rate scheduler
for the Adam optimizer (with the learning rate reduced by a factor of γ = 0.75 after 1,000
training iterations).

The AdaAnn schedule is depicted in Figure 16 with a total of 4,645 steps. We also overlay the
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Figure 15: Trajectory of the output x3 in units 104 HIV RNA per mL of plasma over 2
months along with noisy data in example 5.

adaptive step size εk using a running average over the past 40 steps. The plot of εk illustrates
how AdaAnn is able to adaptively modulate the increments in inverse temperature, and
therefore differs substantially from an exponential scheduler. The resulting approximation qL
captures the bimodal structure of the target posterior distribution, as presented in Figure 17.
For comparison, we also run the planar flow without annealing for 20,000 iteration. The
resulting qL inconsistently converges to either a unimodal or bimodal approximation. Since
only the mode with positive parameters is biologically relevant, converging to one with
negative parameters may lead to the conclusion that the model is unable to reproduce the
observed behavior with physically sound parameters.

Figure 16: AdaAnn schedule and running average of adaptive step size in Example 5.

The marginal distributions are also shown in Figure 18. Since the left mode is not biologically
meaningful due to negative parameter values, we also included the marginal distributions
for the right mode plotted against the true parameter values in Figure 19. The true model
parameters are accurately inferred by combining VI and NFs with the proposed adaptive
annealing schedule. The posterior marginal means and standard deviations are computed
using 10,000 samples and displayed in Table 8, along with the MC integrated “true” values.
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(a) No-Annealing (b) AdaAnn

Figure 17: Approximate posterior distributions without annealing versus with AdaAnn in
Example 5.

Figure 18: Marginal distributions for the HIV dynamics ODE system.

4.6 Example 6: Friedman 1 Data

We use a Friedman 1 dataset [8] to examine the performance of AdaAnn in a high-dimensional
setting. The model that a Friedman 1 dataset is simulated from is given in Eq. (26)

yi = µi(β) + εi, where µi(β) = β1sin(πxi1xi2) + β2(xi3 − β3)2 +
∑10

j=4 βjxij, (26)

β = (β1, . . . , β10) = (10, 20, 0.5, 10, 5, 0, 0, 0, 0, 0) and εi ∼ N (0, 1). This model contains
linear, non-linear, and interaction terms of the input variables X1 to X10, five of which (X6
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Figure 19: Marginal distribution of the biologically admissible mode for the HIV dynamics
ODE system.

Table 8: Posterior mean and standard deviation of the parameters for the HIV dynamics
ODE system (Example 5).

Mode True MC True AdaAnn

Type Value Post. Mean Post. SD Post. Mean Post. SD

Biologically
Admissible

p1 = 1.2 1.2015 0.0169 1.2019 0.0274
p2 = 0.8 0.8520 0.1348 0.8609 0.2196
x20 = 1.5 1.5048 0.0277 1.5060 0.0452

Biologically
Unadmissible

p1 = -1.2 -1.2017 0.0172 -1.2014 0.0249
p2 = 0.8 0.8545 0.1385 0.8485 0.2001
x20 = -1.5 -1.5049 0.0280 -1.5067 0.0412

to X10) are irrelevant to Y . Each X is drawn independently from U(0, 1). We used R package
tgp [11] to generate a Friedman 1 dataset with a sample size of n = 1,000. We assume the
variance of the error term ε, which is 1, is known, and apply VI via NFs to obtain posterior
inferential on β given the simulated data. With the Gaussian likelihood constructed from the
model in Eq. (26) and a non-informative prior p(β) ∝ constant, the posterior distribution
of β is

p(β|y) =
n∏
i=1

exp {−(yi − µi(β))2/2} . (27)
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Starting with a base distribution N (0, 4I10), we apply planar flows with L = 250 layers using
both AdaAnn and linear schedulers. For AdaAnn, we set the following hyperparameters:
t0 = 0.05, T0 = 500, T = 5, T1 = 5,000, τ = 0.2, M = 1,000, N = 100, and N1 = 1,000.
For the linear scheduler, we set ε = 0.001 and T = 1, while the remaining hyperparameters
are defined the same as in the AdaAnn scheduler. The learning rate for the Adam optimizer
starts at 0.005 and decreases by a factor of γ = 0.5 every 1,000 iterations when reaching the
refinement phase. The AdaAnn scheduler took 145 steps, leading to 715 parameter updates
between t0 and t = 1 as seen in Figure 20(a). In this case, we chose an epsilon value that lead
to a similar number of parameter updates in the annealing phase for the linear scheduler.
With 951 steps, this scheduler performed 6,449 total parameter updates versus 6,215 total
updates when using AdaAnn (the convergence criteria was not used). In this set-up, both
schedulers approximated the values for β similarly, as reported in Table 9.

Table 9: Posterior mean and standard deviation of the parameters for unimodal posterior in
Friedman 1 data (Example 6).

True AdaAnn Linear

Value Post. Mean Post. SD Post. Mean Post. SD

β1 = 10 9.9856 0.0921 9.9863 0.0931
β2 = 20 20.3344 0.4140 20.3426 0.3976
β3 = 0.5 0.4982 0.0028 0.4981 0.0028
β4 = 10 10.1329 0.1059 10.1274 0.1060
β5 = 5 5.0234 0.1081 5.0306 0.1067
β6 = 0 0.0621 0.1051 0.0617 0.1044
β7 = 0 -0.0384 0.1014 -0.0378 0.1023
β8 = 0 -0.0858 0.1060 -0.0899 0.1055
β9 = 0 -0.0667 0.1090 -0.0674 0.1079
β10 = 0 0.0112 0.0998 0.0125 0.1010

We made a slight modification to the model in Eq. (26) that generated the Friedman 1
dataset by setting

µi(β) = β1sin(πxi1xi2) + β2
2(xi3 − β3)2 +

∑10
j=4 βjxij, (28)

where β = (β1, . . . , β10) = (10,±
√

20, 0.5, 10, 5, 0, 0, 0, 0, 0). Again, we impose a non-
informative prior p(β) ∝ constant; though the formulation of the posterior distribution
on β is the same as in Eq. (27) with µi(β) defined in Eq. (28), the posterior distribution of β
is now bimodal. We approximated this bimodal distribution using NFs with a similar set-up
as the unimodal Friedman 1 case with the following changes: t0 = 0.001, τ = 0.005, and
T0 = 1,000. When applying the AdaAnn scheduler, both modes were recovered with 3,787
annealing steps. The MC estimated values for β are reported in Table 10. We chose a linear
scheduler with approximately the same number of parameter updates as in the annealing
phase of AdaAnn (18,925 updates) and examined three settings of ε (5 × 10−5, 2.5 × 10−5,
and 1.25 × 10−5). The linear scheduler (19,980 updates) failed to recover both modes at
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all three ε values. The annealing schedules over the first 2,000 steps in Figure 20(c) sug-
gests that the AdaAnn scheduler begins with a significantly smaller step size than any of
the linear schedulers, ultimately leading to recovering both modes in this high-dimensional
setting. After the bimodal structure is obtained, the AdaAnn schedule quickly increases
given it adaptive nature and surpasses the linear schedules, as depicted in Figure 20(b).

Table 10: Posterior mean and standard deviation of the parameters for bimodal posterior in
Example 6.

True Mode 1 Mode 2

Value Post. Mean Post. SD Post. Mean Post. SD

β1 = 10 9.9865 0.0901 9.9829 0.0920

β2 = ±
√

20 4.5095 0.0461 -4.5070 0.0456
β3 = 0.5 0.4978 0.0027 0.4978 0.0027
β4 = 10 10.1330 0.1049 10.1255 0.1051
β5 = 5 5.0273 0.1058 5.0289 0.1038
β6 = 0 0.0594 0.1043 0.0572 0.1022
β7 = 0 -0.0419 0.1023 -0.0299 0.1024
β8 = 0 -0.0883 0.1052 -0.0827 0.1052
β9 = 0 -0.0715 0.1055 -0.0665 0.1060
β10 = 0 0.0162 0.1008 0.0104 0.1027

(a) Unimodal (b) Bimodal (c) Bimodal zoomed in

Figure 20: Annealing schedules for the unimodal and bimodal posteriors in Friedman 1 data
using AdaAnn and linear schedulers.

4.7 Summary of the Examples

The target distributions in these six examples are of varying degrees of complexity and
AdaAnn produces distinct annealing schedules that are well adapted to the complexity of
the underlying posterior distribution. This is evident from Figure 21 that illustrates the
evolution of the inverse temperature generated by AdaAnn for Examples 1, 4, 5, and 6. A
larger noise variance in the data for the Lorenz system (i.e., σ2 = 0.2) leads to a wider
posterior distribution that AdaAnn is able to approximate in few, mainly large, steps. A
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reduced variance (σ2 = 0.001) corresponds instead to a more sharply peaked posterior which
requires more small increments near the beginning. For the bimodal HIV dynamics posterior
in 3D, characterized by two well separated peaks, AdaAnn requires significantly more steps
and a smaller initial temperature, as expected. It is also interesting to observe that, in
the schedule for the HIV dynamical system example, εk is reduced after ∼ 4,500 iteration,
producing a small but visible “kink” in the temperature schedule and it appears consistently
in multiple runs. Further investigation is needed to better understand this phenomenon
and what features of the target distribution or the approximate distribution at t causes
the annealing process to slow down. In the high-dimensional Friedman 1 data example,
only a few steps are sufficient to accurately capture the unimodal posterior distribution,
where a much larger amount of significantly smaller steps are required in the bimodal case,
particularly at the beginning, when the inverse temperature tk is small.

Figure 21: Comparison of annealing schedules for one-dimensional bimodal density (Example
1), the Lorenz attractor (Example 4), the HIV dynamical system (Example 5), and the
Friedman 1 dataset (Example 6).

The relevant hyperparameters for AdaAnn (Algorithm 1) in the five examples are summa-
rized in Table 11. One may also want to allow for more gradient updates to be performed

Table 11: Summary of the AdaAnn hyperparameters used in all 6 examples.

Example Description τ t0 T0 T T1 N N1 M

1 1D Bimodal 0.005 0.01 500 2 8,000 100 1,000 1,000
2 1D Parametric Bimodal 0.002 0.01 500 4 8,000 100 1,000 1,000
3 2D Bimodal Density 0.002 0.01 500 3 8,000 100 1,000 1,000
4 Lorenz Attractor 0.2 0.05 500 5 5,000 100 200 100
5 HIV Model 0.005 0.00005 1,000 5 5,000 100 200 100
6 Unimodal Friedman 1 0.2 0.05 500 5 5,000 100 1,000 1,000
6 Bimodal Friedman 1 0.005 0.001 1,000 5 5,000 100 1,000 1,000

for each tk so that NFs can provide a better approximation of ptk(Z,X), especially for more
complex or higher dimensional densities. Except for the one and two dimensional densities,
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we use 5 updates per temperature increase in all of the other examples. At the target temper-
ature of t = 1, it is also desirable to perform additional iterations to refine the approximation
of the target distribution. For the Lorenz, HIV dynamical system, and Friedman 1 dataset,
5,000 appears to be a reasonable number of iterations leading to an accurate posterior. At
t = 1, we also typically increase the the batch size.

5 Discussion

We introduced AdaAnn, an adaptive scheduler that automatically suggests changes in the
annealing temperature. This scheme has third-order accuracy and is obtained from a Taylor
series expansion of the KL divergence between two annealed densities which differ by a
sufficiently small inverse temperature increment.

AdaAnn requires two main parameters to be defined: the initial temperature t−10 and the
KL divergence tolerance τ . The choice of t0 is dependent on the separation and width of the
modes in the target distribution. As observed for the HIV dynamical system in Section 4.5,
a posterior with very narrow or separated modes requires a smaller t0, leading to a more
uniform initial density. Regarding the KL divergence tolerance, an exceedingly large τ can
provide a poor approximation that misses relevant features in the target distributions, e.g.,
could miss one of the modes in a multimodal posterior. Conversely, a too small τ may
result in unnecessary incremental steps and added computational cost yielding no edge in
computational efficiency over linear schedulers.

AdaAnn is simple to implement and can lead to significant computational saving compared to
a priori selected annealing schedules. We demonstrate the application of AdaAnn in planar
flows for distribution approximation and variational inference, but no problem is foreseen in
applying AdaAnn with other types of flows or other algorithms for the solution of inverse
problems (e.g., MCMC).

In future work, we will look into further improving the computational efficiency of AdaAnn.
We will also compare AnaAnn with other non-adaptive schedulers besides linear schedulers
such as exponential schedulers.
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A Appendix

A.1 Motivating Bimodal

Without using annealing, when the variational distribution moves towards one of the two
modes and samples are no longer generated near the other, it is very unlikely that the
bimodal character of the density will ever be recovered. This is illustrated in Figure 22.

A.2 1D Case Study

Table 12 provides summarizes results from the asymmetric case of Example 2.

A.3 Lorenz

Figures 23 and 24 compare AdaAnn and linear schuduler for the Lorenz attractor with
σ2 = 0.2. Tables 13 and 14 compare posterior mean and standard deviation using Monte
Carlo integration with values obtained using VI via NFs with AdaAnn and linear schedulers.
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(a) Iteration: 10 (b) Iteration: 20

(c) Iteration: 100 (d) Iteration: 8,000

Figure 22: Variational approximation for bimodal density p(Z) without annealing at various
iterations.

Table 12: Comparing mean and standard deviation of final loss and total parameter updates
for AdaAnn and linear schedulers in the asymmetric case of Example 2.

Final Loss Total Parameter Updates

AdaAnn Linear AdaAnn Linear

m Mean SD Mean SD Mean SD Mean SD

1 0.0012 0.0011 0.0007 0.0005 11,463 1,957 17,640 1,643
2 0.0050 0.0037 0.0034 0.0028 11,207 2,299 17,224 2,142
3 0.0298 0.0216 0.0350 0.0354 10,832 2,432 14,964 2,838
4 0.0405 0.0189 0.0361 0.0265 11,561 2,802 14,364 2,675
5 0.0391 0.0145 0.0380 0.0277 9,996 2,557 14,536 2,194
6 0.0415 0.0211 0.0391 0.0425 10,434 2,675 14,996 2,712
7 0.0459 0.0298 0.0398 0.0311 10,606 2,882 14,468 2,909
8 0.0325 0.0147 0.0343 0.0229 10,979 2,815 14,736 2,771
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(a) AdaAnn (b) Linear

Figure 23: Approximate posterior distribution of parameters (s, b, r) for the Lorenz attractor
obtained by VI via NFs with σ2 = 0.2 using AdaAnn and linear schedulers.

Table 13: Posterior mean and standard deviation for the parameters of the Lorenz attractor,
based on 10,000 samples obtained by VI via NFs with AdaAnn and linear schedules for
σ2 = 0.2.

True MC True AdaAnn Linear

Parameter Mean SD Mean SD Mean SD

s = 10 10.0152 0.0624 10.0212 0.0632 10.0103 0.0608
b = 8/3 2.6668 0.0120 2.6633 0.0118 2.6680 0.0121
r = 28 28.0508 0.0556 28.0287 0.0555 28.0366 0.0546

Table 14: Computing mean and standard deviations for posterior distribution with σ2 =
0.001 using Monte Carlo integration for varying number of samples.

Sample s b r

Points Post. Mean Post. SD Post. Mean Post. SD Post. Mean Post. SD

500 10.002752 0.004875 2.666225 0.000832 27.999229 0.003858
1,000 10.002318 0.004163 2.666298 0.000890 27.998961 0.003628
5,000 10.002459 0.004313 2.666234 0.000840 27.998519 0.003649
10,000 10.002827 0.004376 2.666279 0.000819 27.998618 0.003650
20,000 10.002668 0.004350 2.666295 0.000851 27.998585 0.003629
30,000 10.002782 0.004388 2.666294 0.000852 27.998369 0.003740
40,000 10.002782 0.004338 2.666319 0.000855 27.998617 0.003727
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(a) AdaAnn

(b) Linear

Figure 24: Marginal posterior distributions and pairwise scatter plots of parameters (s, b, r)
for the Lorenz attractor with σ2 = 0.2 for AdaAnn and linear schedulers.
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