
Numerically Testing Generically Reduced Projective
Schemes for the Arithmetic Gorenstein Property

Noah S. Daleo1 and Jonathan D. Hauenstein2

1 Department of Mathematics, North Carolina State University,
Raleigh, NC 27695 (nsdaleo@ncsu.edu, www.math.ncsu.edu/~nsdaleo).

2 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556 (hauenstein@nd.edu, www.nd.edu/~jhauenst).

Abstract. Let X ⊂ Pn be a generically reduced projective scheme. A fundamental goal in
computational algebraic geometry is to compute information about X even when defining
equations for X are not known. We use numerical algebraic geometry to develop a test
for deciding if X is arithmetically Gorenstein and apply it to three secant varieties.
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1 Introduction

When the defining ideal of a generically reduced projective scheme X ⊂ Pn is unknown, numeri-
cal methods based on sample points may be used to determine properties of X. In [4], numerical
algebraic geometry was used to decide if X is arithmetically Cohen-Macaulay based on the
Hilbert functions of subschemes of X. In our present work, we expand this to decide if X is
arithmetically Gorenstein. Our method relies on numerically interpolating points approximately
lying on a general curve section of X as well as a witness point set for X, which is defined
in Section 2.4. This test does not assume that one has access to polynomials vanishing on X,
e.g., X may be the image of an algebraic set under a polynomial map. In such cases, our method
is an example of numerical elimination theory (see [2, Ch. 16] and [3]).

Much of the literature regarding arithmetically Gorenstein schemes focuses on the case in
which the codimension is at most three (see, e.g., [6,8,10]), but less is known for larger codimen-
sions. Our test is applicable to schemes of any codimension. For example, Sections 4.2 and 4.3
consider schemes of codimension 6.

The rest of this article is organized as follows. In Section 2, we provide prerequisite back-
ground material. In Section 3, we describe a numerical test for whether or not a scheme is
arithmetically Gorenstein. In Section 4, we demonstrate this test on three examples.

2 Background

2.1 Arithmetically Cohen-Macaulay and arithmetically Gorenstein

If X ⊂ Pn is a projective scheme with ideal sheaf IX , then X is said to be arithmetically
Cohen-Macaulay (aCM) if

Hi
∗(IX) = 0 for 1 ≤ i ≤ dimX

where Hi
∗(IX) is the ith cohomology module of IX . In particular, all zero-dimensional schemes

are aCM and every aCM scheme is pure-dimensional. If X is aCM, then its Cohen-Macaulay
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type is the rank of the last free module in a minimal free resolution of IX . An aCM scheme X
is said to be arithmetically Gorenstein (aG) if X has Cohen-Macaulay type 1.

We will make use of the following fact about Cohen-Macaulay type [11, Cor. 1.3.8].

Theorem 1. Let X ⊂ Pn be an aCM scheme with dimX ≥ 1 and H ⊂ Pn be a general
hypersurface of degree d ≥ 1. Then X∩H is aCM and has the same Cohen-Macaulay type as X.

2.2 Hilbert functions

Suppose that X ⊂ Pn is a nonempty scheme and consider the corresponding homogeneous ideal
I ⊂ C[x0, . . . , xn]. Let C[x0, . . . , xn]t denote the vector space of homogeneous polynomials of
degree t, which has dimension

(
n+t
t

)
, and It = I ∩ C[x0, . . . , xn]t. Then, the Hilbert function

of X is the function HFX : Z→ Z defined by

HFX(t) =

{
0 if t < 0(
n+t
t

)
− dim It otherwise.

The Hilbert series of X, denoted HSX , is the generating function of HFX , namely,

HSX(t) =

∞∑
j=0

HFX(j) · tj .

There is a polynomial P (t) = c0 + c1t+ c2t
2 + · · ·+ crt

r with degX = P (1) such that

HSX(t) =
P (t)

(1− t)dimX+1
.

The vector of coefficients [c0 c1 c2 · · · cr] is called the h-vector of X. If X is aG, i.e., aCM
of Cohen-Macaulay type 1, then the h-vector of X is symmetric: ci = cr−i [13, Thm. 4.1].
Therefore, two necessary conditions on X to be aG are pure-dimensionality and a symmetric
h-vector. These conditions can be used to identify schemes which are not aG, e.g., see Section 4.2.

2.3 Cayley-Bacharach property

Let Z ⊂ Pn be a nonempty reduced zero-dimensional scheme with h-vector [c0 c1 c2 · · · cr].
The scheme Z is said to have the Cayley-Bacharach (C-B) property if, for every subset Y ⊂ Z
with |Y | = |Z| − 1, HFY (r − 1) = HFZ(r − 1). The following, which is [5, Thm. 5], relates the
C-B property to aG schemes.

Theorem 2. If Z ⊂ Pn is a nonempty reduced zero-dimensional scheme, Z is arithmetically
Gorenstein if and only if Z has the Cayley-Bacharach property and its h-vector is symmetric.

2.4 Witness point sets

For a pure-dimensional generically reduced scheme X ⊂ Pn, let L ⊂ Pn be a general linear space
with dimL = codimX. The set W = X ∩ L is called a witness point set for X.



3 Method

For a pure-dimensional generically reduced scheme X ⊂ Pn, one can determine that X is arith-
metically Gorenstein by combining Theorems 1 and 2. We describe the zero-dimensional and
positive-dimensional cases below. A generalization of this approach, using Macaulay dual spaces,
for pure-dimensional schemes that are not generically reduced is currently being written by the
authors and will be presented elsewhere.

3.1 Reduced zero-dimensional schemes

If dimX = 0, we can simply apply Theorem 2 to determine if X is aG. That is, given a numerical
approximation of each point in X, we use the numerical interpolation approach described in [7]
to compute the Hilbert function of X. In particular, there is an integer ρX ≥ 0, which is called
the index of regularity of X, such that

0 = HFX(−1) < 1 = HFX(0) < · · · < HFX(ρX − 1) < HFX(ρX) = HFX(ρX + 1) = · · · = |X|.

The h-vector for X is [c0 c1 · · · cρX ] where ct = HFX(t)−HFX(t− 1). Thus, we can now test
for symmetry of the h-vector, i.e., ci = cρX−i.

If the h-vector is symmetric, we then test for the Cayley-Bacharach property. That is, for each
Y ⊂ X with |Y | = |X|−1, we use [7] to compute HFY (ρX−1). If HFY (ρX−1) = HFX(ρX−1)
for every such subset Y , then X has the C-B property.

Hence, if the h-vector is symmetric and X has the C-B property, then X is aG.

Example 1. Consider X = {[0, 1, 1], [0, 1, 2], [0, 1, 3], [1, 1,−1]} ⊂ P2. It is easy to verify that
ρX = 2 and the h-vector for X is [1 2 1], which is symmetric. However, X does not have the C-B
property and thus is not aG, sinceHFY (1) = 2 6= 3 = HFX(1) for Y = {[0, 1, 1], [0, 1, 2], [0, 1, 3]}.

3.2 Generically reduced positive-dimensional schemes

If dimX ≥ 1, Theorems 1 and 2 show that X is aG if and only if X is aCM and a witness point
set for X is aG, i.e., has a symmetric h-vector and has the C-B property. We start with the
witness point set condition and then summarize the aCM test presented in [4].

Let W = X∩L be witness point set for X defined by the general linear slice L. We apply the
strategy of Section 3.1 to W with one simplification for deciding that W has the C-B property.
This simplification arises from the fact that witness point sets for an irreducible scheme has the
so-called uniform position property. That is, if X is irreducible, then W has the C-B property if
and only if HFY (ρW − 1) = HFW (ρW − 1) for any Y ⊂W with |Y | = |W | − 1. In general, if X
has k irreducible components, say X1, . . . , Xk with Wi = Xi ∩L, then W has the C-B property
if and only if, for i = 1, . . . , k, HFZi(ρW − 1) = HFW (ρW − 1) where Zi =

⋃
j 6=iWj ∪Yi for any

Yi ⊂Wi with |Yi| = |Wi| − 1.
If W is aG, then X is aG if and only if X is aCM. The arithmetically Cohen-Macaulayness

of X is decided using the approach of [4] by comparing the Hilbert function of W and the Hilbert
function of a general curve section of X as follows. Let M⊂ Pn be a general linear space with
dimM = codimX+1 and C = X∩M, i.e., dimC = 1. By numerically sampling points approx-
imately lying on C, we compute HFC(t) via [7] for t = 1, . . . , ρW + 1. The following is a version
of [4, Cor. 3.3] that decides the arithmetically Cohen-Macaulayness of X via HFW and HFC .

Theorem 3. With the setup described above, X is arithmetically Cohen-Macaulay if and only
if HFW (t) = HFC(t)−HFC(t− 1) for t = 1, . . . , ρW + 1.



4 Examples

It has been speculated that the homogeneous coordinate ring of any secant variety of any Segre
product of projective spaces is Cohen-Macaulay [12], but some examples of such secant varieties
are known to not be arithmetically Gorenstein [9]. We demonstrate our test on two such secant
varieties in Sections 4.1 and 4.2. Section 4.3 considers a secant variety of a Veronese variety.

4.1 σ3(P1 × P1 × P1 × P1)

Let X = σ3(P1 × P1 × P1 × P1) ⊂ P15, which is the third secant variety to the Segre product of
P1×P1×P1×P1 with dimX = 13. We computed a witness point set W for X using Bertini [1]
and found that degX = 16. Using [7], we compute

ρW = 6, HFW = 1, 3, 6, 10, 13, 15, 16, 16, and h = [1 2 3 4 3 2 1].

Clearly, the h-vector for W is symmetric. Since X is irreducible, we selected one subset Y ⊂W
consisting of 15 points. The witness point set W has the Cayley-Bacharach property since
HFY (5) = 15 = HFW (5) and thus we conclude W is arithmetically Gorenstein by Theorem 2.

Next, we consider the arithmetically Cohen-Macaulayness of X. Let M ⊂ P15 be a general
linear space with dimM = 3 and C = X ∩M. Via sampling C, we find that

HFC = 1, 4, 10, 20, 33, 48, 64, 80.

Therefore, by Theorem 3, X is arithmetically Cohen-Macaulay and, hence, we can conclude it
is arithmetically Gorenstein by Theorem 1. In fact, since X is aCM, we can observe from HFW
that two polynomials of degree 4 must vanish on X. We found that these two polynomials
generate the ideal of X meaning that X is actually a complete intersection.

4.2 σ3(P1 × P1 × P1 × P2)

We next consider X = σ3(P1 × P1 × P1 × P2) ⊂ P23 where dimX = 17. We computed a witness
point set W for X using Bertini and found that degX = 316. Using [7], we compute

ρW = 6, HFW = 1, 7, 28, 84, 171, 261, 316, 316, and h = [1 6 21 56 87 90 55].

Since h is not symmetric, we conclude that W and, hence, X are not arithmetically Gorenstein.

Remark 1. Although the lack of symmetry in h is sufficient to show that W is not aG, we note
that W satisfies the Cayley-Bacharach property and X is aCM. Since X is aCM, we can observe
from HFW that 39 polynomials of degree 4 must vanish on X which generate the ideal of X.

4.3 σ3(ν4(P2))

Let ν4 be the degree 4 Veronese embedding of P2 into P14 and X = σ3(ν4(P2)) ⊂ P14 where
dimX = 8. We computed a witness point setW forX using Bertini and found that degX = 112.
Using [7], we compute

ρW = 6, HFW = 1, 7, 28, 84, 105, 111, 112, 112, and h = [1 6 21 56 21 6 1].



Clearly, the h-vector for W is symmetric. Since X is irreducible, we selected one subset Y ⊂W
consisting of 111 points. The witness point set W has the Cayley-Bacharach property since
HFY (5) = 111 = HFW (5) and thus we conclude W is arithmetically Gorenstein by Theorem 2.

Next, we consider the arithmetically Cohen-Macaulayness of X. Let M ⊂ P14 be a general
linear space with dimM = 7 and C = X ∩M. Via sampling C, we find that

HFC = 1, 8, 36, 120, 225, 336, 448, 560.

Therefore, by Theorem 3, X is arithmetically Cohen-Macaulay and, hence, we can conclude it
is arithmetically Gorenstein by Theorem 1. In fact, since X is aCM, we can observe from HFW
that 105 polynomials of degree 4 must vanish on X and they generate the ideal of X.
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