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Abstract

Given a parameterized family of polynomial equations, a fundamental question is
to determine upper and lower bounds on the number of real solutions a member
of this family can have and, if possible, compute where the bounds are sharp. A
computational approach to this problem was developed by Dietmaier in 1998 which
used a local linearization procedure to move in the parameter space to change the
number of real solutions. He used this approach to show that there exists a Stewart-
Gough platform that attains the maximum of forty real assembly modes. Due to
the necessary ill-conditioning near the discriminant locus, we propose replacing
the local linearization near the discriminant locus with a homotopy-based method
derived from the method of gradient descent arising in optimization. This new
hybrid approach is then used to develop a new result in real enumerative geometry.

Keywords. real solutions, parameter space, discriminant, numerical algebraic ge-
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Introduction

Parameterized families of systems of real polynomial equations naturally arise in many
areas including economics, engineering, enumerative geometry, and physics where the
real solutions for each member are often the solutions of interest. A fundamental and
difficult question is to compute upper and lower bounds on the number of real solutions
and, if possible, compute parameter values where such bounds are attained. For systems
arising from geometry, some bounds on the number of real solutions are known and
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summarized in [22]. Two notable examples are the real analog of Steiner’s problem of
conics [23] and the number of real assembly modes of Stewart-Gough platforms [8, 24].

Steiner’s problem of conics is to count the number of plane conics tangent to five
given plane conics in general position, with the answer being 3264. The solving of
Steiner’s problem lead to the development of intersection theory and ultimately to many
techniques used in the field of numerical algebraic geometry (see [21] for a general
introduction to numerical algebraic geometry). The real analog of Steiner’s problem,
proposed by Fulton [7], is to determine if there exists five real plane conics such that
there are 3264 real plane conics tangent to the given five conics. This was answered in
the affirmative later by Fulton, a result he did not publish, and independently in [16].

A general Stewart-Gough platform has 40 assembly modes. Dietmaier [6] consid-
ered, and answered in the affirmative, the existence of a Stewart-Gough platform with
40 real assembly modes. This platform was found using a computational approach that
is summarized in Section 1.4. In short, the approach moves through the real param-
eter space based on solving a linear optimization problem obtained by constructing a
local linearization of the system of equations. The shortcoming of this approach is the
linearization near the discriminant locus is necessarily ill-conditioned.

This shortcoming of Dietmaier’s method is addressed in Section 3 by introducing
a homotopy-based approach for moving to and through the discriminant locus. This
new approach uses homotopies that we call gradient descent homotopies, described in
Section 2, based on their relationship to the method of gradient descent used for solving
optimization problems. Gradient descent homotopies arise from the computation of
critical points of the distance function between a given point and the set of real solutions
of a system of polynomial equations. Such critical points have been used in several other
algorithms in real algebraic geometry including [1, 11, 18, 19].

Section 4 demonstrates using this hybrid approach together with an a posteriori real
certification technique developed in [13] arising from Smale’s α-theory [4, 20] to prove
the following real enumerative geometric theorem.

Theorem 1. There exists eight lines in R3 met by 92 real plane conics.

Since eight general lines in C3 are met by 92 plane conics, Theorem 1 shows that
the real analog of this enumerative geometry problem is answered in the affirmative.

1 Background

1.1 Algebraic sets

For a polynomial system g : CN → Cn, let

V(g) = {x ∈ CN | g(x) = 0} and VR(g) = V(g) ∩ RN = {x ∈ RN | g(x) = 0}

be the set of solutions and the set of real solutions of g(x) = 0, respectively. A set
A ⊂ CN is called an algebraic set if A = V(g) for some polynomial system g. An

2



algebraic set A ⊂ CN is reducible if there exists algebraic sets B,C ⊂ CN such that
B,C ( A and A = B∪C. If an algebraic set is not reducible, it is said to be irreducible.

Let Jg(x) denote the n×N Jacobian matrix of g evaluated at x. When N = n, the
system g is said to be a square system. In this case, a point x ∈ V(g) is nonsingular if
det Jg(x) 6= 0 and singular if det Jg(x) = 0.

1.2 Discriminant locus

Let P ⊂ CP be an irreducible algebraic set and PR = P ∩ RP . We will focus on
parameterized polynomial systems f : CN × P → CN having real coefficients such that
f(x, p) = 0 has finitely many isolated solutions in CN , all of which are nonsingular, for
general parameter values p ∈ P. Thus, there exists an integer MP ≥ 0 and an algebraic
set Q ( P such that, for all p ∈ P \ Q,

f(x, p) = 0 has exactly MP solutions, all of which are nonsingular. (1)

The discriminant locus of f , denoted ∆(f), is the set of p ∈ P such that (1) does not
hold. The real discriminant locus of f is ∆R(f) = ∆(f) ∩ RP .

If C is a connected component of PR\∆R(f), the number of real solutions is constant
on C. That is, there exist an integer 0 ≤ MC ≤ MP , with MP −MC even, such that
f(x, p) = 0 has exactly MC real solutions, all of which are nonsingular, for every p ∈ C.

Example 2. For P = C2 and f(x, p) = x2 + p1x + p2, we have MP = 2 and ∆(f) =
V(p21 − 4p2). In particular, the equation f(x, p) = 0 has two distinct real solutions for
p ∈ R2 such that p21 > 4p2, one real solution of multiplicity 2 when p21 = 4p2, and no
real solutions when p21 < 4p2.

Example 3. Let P = V(p23 − p1p3 + p2) ⊂ C3 and f : C2 × P → C2 defined by

f(x, p) =

[
x21 + p1x1 + p2
x1x2 + p3x2 − 1

]
.

We have MP = 1 and ∆(f) = P ∩ V(2p3 − p1). In particular, the system of equations
f(x, p) = 0 has one real solution for p ∈ PR such that 2p3 6= p1 and no solutions in C2

when p ∈ ∆(f). We note that MC3 = 2.

1.3 Trackable paths

Homotopy methods rely upon the construction of solution paths which are trackable.
The following, from [12], defines a trackable path starting at a nonsingular solution.

Definition 4. Let H(x, t) : CN × C → CN be polynomial in x and complex analytic
in t. If y ∈ CN is a nonsingular solution of H(x, 1) = 0, then y is said to be trackable
for t ∈ (0, 1] from t = 1 to t = 0 using H(x, t) if there is a smooth map ξy : (0, 1]→ CN
such that ξy(1) = y and, for t ∈ (0, 1], ξy(t) is a nonsingular solution of H(x, t) = 0.

The solution path starting at y is said to converge if limt→0+ ξy(t) ∈ CN , where
limt→0+ ξy(t) is called the endpoint (or limit point) of the path.
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A trackable path may converge to a nonsingular solution, converge to a singular
solution, or diverge. Numerical path tracking algorithms (see [21] for a general overview)
use endgames and projective space to handle the singular and divergent cases.

1.4 Dietmaier’s approach

The following is a summary of the approach used by Dietmaier [6] to compute a Stewart-
Gough platform [8, 24] that achieves the maximum of 40 real assembly modes. In
this section, we assume that P = CP and consider polynomial systems of the form
f : CN×CP → CN having real coefficients such that f(x, p) = 0 has MCP ≥ 2 solutions,
all of which are nonsingular, for general parameter values p ∈ CP . The basic idea is
to move in the real parameter space PR = RP so that two complex conjugate solutions
first merge and then become two distinct real solutions. Clearly, the parameter value
where the two solutions coincide is a point on the real discriminant locus ∆R(f).

Suppose that p∗ ∈ RP \ ∆R(f) and x∗ ∈ CN \ RN such that f(x∗, p∗) = 0. If
∆x∗ ∈ CN and ∆p∗ ∈ RP so that f(x∗+∆x∗, p∗+∆p∗) = 0, linearizing at (x∗, p∗) yields

∆x∗ ≈ −Jxf(x∗, p∗)−1Jpf(x∗, p∗)∆p∗

where Jxf(x∗, p∗) and Jpf(x∗, p∗) are the Jacobian matrices of f with respect to x and
p evaluated at (x∗, p∗), respectively. Since p∗ /∈ ∆R(f), the matrix Jxf(x∗, p∗) is indeed
invertible. The value of ∆p∗ is chosen to minimize the distance, using some appropriate
norm, between x∗ + ∆x∗ and RN subject to the following conditions:

1. Since this linearization is only acceptable on a small neighborhood, ∆p∗ must be
constrained to avoid too large of a step.

2. To maintain the same number of distinct real solutions, for every distinct pair
y1, y2 ∈ RN such that f(yi, p

∗) = 0, the distance between the approximations of
the corresponding solutions of f(x, p∗ + ∆p∗) = 0, namely yi + ∆yi, must remain
larger than a given bound.

3. To maintain the same number of finite solutions, for every z ∈ CN such that
f(z, p∗) = 0, the norm of the approximation of the corresponding solution of
f(x, p∗ + ∆p∗) = 0, namely z + ∆z, must remain below a given bound.

For a properly selected ∆p∗, the solutions to f(x, p∗+ ∆p∗) = 0 are computed with one
natural approach being a parameter homotopy (see [2, 21]). If no acceptable ∆p∗ can
be found, the process is restarted using a different nonreal solution of f(x, p∗) = 0. The
process repeats until some complex conjugate pair merges (up to numerical tolerance).
If no acceptable value of ∆p∗ can be found for all nonreal solutions, the process fails.

If a complex conjugate pair has successfully merged, the parameter value needs to
be moved so that the merged pair becomes distinct real solutions. We note that [6] does
not directly address how to move through the discriminant locus to initially yield two
distinct real solutions, but one approach is to simply continue to move in the direction
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of the last ∆p∗ computed. Updating p∗ to be the new parameter value with the newly
created solutions x1, x2 ∈ RN of f(x, p∗) = 0, the approach uses the same constraints
above with the objective of maximizing the distance between x1 + ∆x1 and x2 + ∆x2.
As before, once ∆p∗ is computed, the solutions to f(x, p∗+ ∆p∗) = 0 are computed and
this process is repeated until the two new real solutions are sufficiently far apart.

2 Gradient descent homotopies

Suppose that f : CN → Cn is a polynomial system with real coefficients and y ∈ RN .
Since we will be using deformations of f , we impose two assumptions on f . First, we
assume that N ≥ n so that f is not overconstrained. Second, we assume that Jf(x)
has rank n for general x ∈ CN . That is, there exists an algebraic set Q ( CN such that
rank Jf(x) = n for all x ∈ CN \ Q. We note that these assumptions can always be
satisfied by replacing f with sums of squares.

For x ∈ RN , define dy(x) = ‖x− y‖2 = (x− y)T (x− y) and consider the polynomial
optimization problem

(P) min {dy(x) | x ∈ VR(f)}.

The basic idea is to construct a homotopy and defines a solution path emanating from
the given point y. The aim is to compute a real critical point for problem (P ), which is
a point x ∈ VR(f) such that

rank
[
x− y ∇f1(x)T · · · ∇fn(x)T

]
≤ n

where ∇fi(x) is the gradient vector of fi evaluated at x. In particular, the set of real
crtical points for (P ) is the set π(V(G))∩RN where π(x, λ) = x andG : CN×Pn → CN+n

is the polynomial system defined by

G(x, λ) =

[
f(x)

λ0(x− y) + λ1∇f1(x)T + · · ·λn∇fn(x)T

]
. (2)

Consider the homotopy H : CN × Pn × C→ CN+n defined by

H(x, λ, t) =

[
f(x)− tf(y)

λ0(x− y) + λ1∇f1(x)T + · · ·λn∇fn(x)T

]
. (3)

Since we are interested in one solution path, namely the path starting at (y, 1, 0, . . . , 0)
when t = 1, we will also consider an affine version of H which performs computations
on an affine patch in Pn. This homotopy Ha : CN ×Cn+1 ×C→ CN+n+1 is defined by

Ha(x, λ, t) =

 f(x)− tf(y)
λ0(x− y) + λ1∇f1(x)T + · · ·λn∇fn(x)T

λ0 + α1λ1 + · · ·+ αnλn − α0

 (4)

where αi ∈ R \ {0}. For Ha, we will consider the start point (y, α0, 0, . . . , 0) at t = 1.
Due to Proposition 6 below, we call H and Ha gradient descent homotopies.
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Remark 5. We note that even though we have constructed homotopies H and Ha for
a polynomial system f , one could consider these homotopies for a more general class of
systems, e.g., analytic systems or twice differentiable systems.

2.1 Gradient descent

Consider the homotopy Ha defined by (4) when f : CN → C is a polynomial with real
coefficients, y ∈ RN such that f(y) 6= 0 and ∇f(y) 6= 0, and α0, α1 ∈ R \ {0}. It is easy
to see that the Jacobian matrix of Ha with respect to x and λ is

JHa
x,λ(x, λ0, λ1, t) =

 ∇f(x) 0 0
λ0IN + λ1Hf (x) x− y ∇f(x)T

0 1 α1


where IN is the N ×N identity matrix and Hf (x) is the Hessian of f . In particular,

JHa
x,λ(y, α0, 0, 1) =

 ∇f(y) 0 0
α0IN 0 ∇f(y)T

0 1 α1


is full rank since

| det JHa
x,λ(y, α0, 0, 1)| = |α0|N−1‖∇f(y)‖2 6= 0. (5)

The implicit function theorem yields that the solution path starting at (y, α0, 0) at t = 1
exists, and is smooth, locally near t = 1. The following proposition shows that this path,
as t decreases from 1, moves in the direction of gradient descent if f(y) > 0 and in the
direction of gradient ascent if f(y) < 0.

Proposition 6. Let f : CN → C be a polynomial with real coefficients and y ∈ RN such
that f(y) 6= 0 and ∇f(y) 6= 0. Let α0, α1 ∈ R \ {0} and Ha be the homotopy defined
by (4). If (x(t), λ(t)) is the solution path starting with (y, α0, 0) at t = 1, then

dx

dt

∣∣∣∣
t=1

=
f(y)

‖∇f(y)‖2
∇f(y)T .

Proof. Define γ = f(y)/‖∇f(y)‖2. The result immediately follows from (5) and

JHa
x,λ(y, α0, 0)

 γ∇f(y)T

γα0α1

−γα0

 =

 f(y)
0
0

 = −JHa
t (y, α0, 0)

where JHa
t (y, α0, 0) is the vector corresponding to the Jacobian matrix of Ha with

respect to t evaluated at (y, α0, 0).
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Figure 1: Plot of the x coordinates of the solution path for the Rosenbrock polynomial
on (a) the graph and (b) a contour plot.

(a) (b)

Since the path need not move in the gradient descent or ascent directions for t 6= 1,
this solution path avoids one of the drawbacks of the method of gradient descent, also
known as the method of steepest descent (see [15, §3.2-3.3]), as shown in the following
classical example.

Example 7. Let f(x1, x2) = 100(x2−x21)2+(1−x1)2 be the Rosenbrock polynomial [17].
Clearly, VR(f) = {(1, 1)} and f > 0 on R2 \ VR(f). For this polynomial, the iterative
method of gradient descent has poor convergence due to this method using orthogonal
steps to move through the “curved valley,” which surrounds the parabola x2 = x21 and
contains the unique real root. Following [17], we took y = (−1.2, 1) so that the x
coordinates of the solution path descend into the “curved valley” and then follow the
valley around to the point (1, 1). Figure 1 plots the x coordinates of the solution path
on the graph and on a contour plot.

2.2 Theory

The following provides some theoretical results for gradient descent homotopies.

Proposition 8. Let N ≥ n, f : CN → Cn be a polynomial system with real coefficients,
y ∈ RN such that f(y) 6= 0, α ∈ (R \ {0})n+1, and Ha be the homotopy defined by (4).
If the solution path defined by Ha starting at (y, α0, 0, . . . , 0) ∈ RN × Rn+1 is trackable
on (0, 1] and converges as t→ 0 with endpoint (x∗, λ∗), then x∗ ∈ VR(f) is a real critical
point for (P ).

Proof. Since the homotopy Ha has real coefficients and the start point is real, trackabil-
ity and convergence immediately imply that every point on the path for t ∈ [0, 1] is real.
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Figure 2: Plot of the x1 coordinate of the solution path on the graph of f(x1, 0).

Since α0 6= 0 and Ha(x∗, λ∗, 0) = 0, we know λ∗ 6= 0. Therefore, if we consider λ∗ ∈ Pn,
this yields G(x∗, λ∗) = 0 where G is defined in (2). Thus, by definition, x∗ ∈ VR(f) is a
real critical point for (P ).

Even though the endpoint is a real critical point for (P ), the following example
shows that it need not be the global minimizer of the distance measured from y.

Example 9. Consider the polynomial f(x1, x2) = x22 + x21(x1 − 1)(x1 − 2) with y =
(0.6, 0). It is easy to verify that the Euclidean distance between y and VR(f) is 0.4
which is attained at the point (1, 0) ∈ VR(f). For the homotopy Ha defined in (4)
with α = (4, 2), the endpoint of the path starting at (0.6, 0, 4, 0) is (0, 0, 0, 2). That is,
this path ended at the real critical point x∗ = (0, 0) which is not the global minimizer
of (P ). Since every point on the path has an x2 coordinate of zero, Figure 2 plots the x1
coordinate of the solution path on the graph of f(x1, 0). The local maximum of f(x1, 0)
between 0 and 1 occurs at β = (9 −

√
17)/8 ≈ 0.6096 which yields that the gradient

descent path for y = (z, 0) will yield (0, 0) when 0 < z < β and (1, 0) when β < z < 1.

Proposition 8 immediately yields the following.

Corollary 10. Let N ≥ n and f : CN → Cn be a polynomial system with real coef-
ficients such that VR(f) = ∅. For any y ∈ RN and any α ∈ Rn+1, the solution path
defined by the homotopy Ha from (4) starting at (y, α0, 0, . . . , 0) is either not trackable
on (0, 1] or does not converge in CN × Cn+1 as t→ 0.

The following examples demonstrate the two cases of Corollary 10.
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Example 11. Consider the univariate polynomial f(x) = x2 + 1 for which VR(f) = ∅
with y = 1 and α = (3, 2). For the homotopy Ha defined by (4), namely

Ha(x, λ, t) =

 x2 + 1− 2t
λ0(x− 1) + 2λ1x
λ0 + 2λ1 − 3

 ,
it is easy to verify that the solution path starting at (1, 3, 0) is not trackable on (0, 1]
due to a singularity at t = 1/2.

Example 12. Consider the polynomial f(x1, x2) = x21 +(x1x2−1)2 from [10] for which
VR(f) = ∅ with y = (1, 1) and α = (3, 2). Clearly, f > 0 on R2, but 0 is the infimum
of f on R2 since lims→∞ f(1/s, s) = 0. For the homotopy Ha defined by (4), it is easy
to verify that the solution path starting at (1, 1, 3, 0) is trackable on (0, 1], but does not
converge in C2 × C2 as t→ 0.

2.3 Application to discriminants

With only a few changes, the gradient descent homotopies can be applied to param-
eterized polynomial systems for computing points on the real discriminant locus. For
simplicity, we assume that r : CP → Cu is a polynomial system with real coefficients such
that P = V(r) is an irreducible algebraic set of dimension P −u. Let f : CN ×P → CN
be a polynomial system with real coefficients such that (1) holds generically on P.
That is, there is an algebraic set A ( P such that (1) holds for all p ∈ P \ A. Given
(y, q) ∈ RN × RP such that q ∈ RP \ ∆R(f), we will use gradient descent homotopies
with the aim of computing a point on ∆R(f) of minimal distance to q. We note that q
is not assumed to be in PR.

Let Jxf(x, p) be the Jacobian matrix of f with respect to x evaluated at (x, p). Con-
sider the polynomial system g : CN ×CP → CN+u+1 having real coefficients defined by

g(x, p) =

 f(x, p)
r(p)

det Jxf(x, p)

 . (6)

One may attempt to use a gradient descent homotopy for g starting with (y, q). If
successful, the limit point (x∗, p∗) ∈ VR(g) is a critical point of the distance function
defined over RN × RP and x∗ is a singular solution of f(x, p∗) = 0. However, since it
is more natural to consider the critical points of the distance function defined over RP ,
i.e., remove the dependence on x, we simply replace

λ0

[
x− y
p− q

]
with λ0

[
0

p− q

]
in the gradient descent homotopies.
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Figure 3: Plot for (a) f(x) = x22 + x21(x1 − 1)(x1 − 2) and (b) g(x) = x22 − x21(x1 + 1).

(a) (b)

Example 13. Consider P = C3 with polynomial f(x, p) = p1x
2+p2x+p3, y = 0.5, and

q = (1,−3, 1). A gradient descent homotopy for g defined in (6), where r(p) is simply
removed since P = C3, starting with (y, q) yields, to four decimal places, x∗ = 0.9172
and p∗ = (1.4478,−2.6559, 1.2180). One can verify that (x∗, p∗) solves

min{‖(x, p)− (y, q)‖2 | f(x, p) = 0, p ∈ ∆R(f)}

where ‖z‖2 = zT z for z ∈ R4.
After removing the dependency upon x, the gradient descent homotopy yields x∗ = 1

and p∗ = (4/3,−8/3, 4/3). One can verify that p∗ solves

min{‖p− q‖2 | p ∈ ∆R(f)}

where ‖w‖2 = wTw for w ∈ R3.

2.4 Illustrative examples

We conclude our discussion of gradient descent homotopies with illustrative examples.

Example 14. Let f be as in Example 9 and g(x1, x2) = x22 − x21(x1 + 1). Clearly, the
curve VR(f) is compact while VR(g) is unbounded. Figure 3 displays VR(f) and VR(g)
along with 500 random points and their corresponding endpoint on the real curves
connected by a straight line computed using a gradient descent homotopy.

Example 15. For the Griewank-Osborne [9] polynomial system

f(x1, x2) =

[
29/16x31 − 2x1x2

x2 − x21

]
,
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Figure 4: Plot of ∆R(f) for (a) P = VC(p3 − 1) and (b) P = V(p21 + p22/2− p23 − 1).

(a) (b)

Newton’s method diverges starting from every point in C2 \ {(0, 0)}. Using a graident
descent homotopy starting at the point (1, 1), the path converges to (0, 0). We note
that the path starting with (1,−1) is not trackable on (0, 1].

Example 16. Example 13 demonstrates computing points on the discriminant locus of
a quadratic polynomial with P = C3. We used gradient descent homotopies starting at
1000 random points to compute points on the real discriminant locus using the plane
P = V(p3 − 1) ⊂ C3 and the hyperboloid of one sheet P = V(p21 + p22/2− p23 − 1). The
points obtained are displayed in Figure 4.

Example 17. Let P = C2 and consider the polynomial system F : C2 × P → C2

from [5] defined by

F (x, p) =

[
x61 + p1x

3
2 − x2

x62 + p2x
3
1 − x1

]
.

The discriminant locus ∆(F ) is an algebraic curve of degree 90, which was studied in [5]
via A-discriminants. Figure 5 plots the points on ∆R(F ) computed by using gradient
descent homotopies starting at 2300 random points.

3 Changing the number of real solutions

Dietmaier’s approach [6], which is summarized in Section 1.4, uses a local linearization
approach to move through a real parameter space changing the number of real solutions.
Due to the necessary ill-conditioning near the discriminant locus, we propose incorpo-
rating a modified gradient descent homotopy into Dietmaier’s approach. The modified
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Figure 5: Plot of ∆R(F ).

homotopies are presented in Section 3.1 and used in Sections 3.2 and 3.3 to increase
and decrease, respectively, the number of real solutions.

Throughout this section, we assume that P = CP so that PR = RP and f : CN ×
CP → CN is a polynomial system with real coefficients such that f(x, p) = 0 has
MCP ≥ 2 solutions, all of which are nonsingular, for general parameter values p ∈ CP .

3.1 Modified gradient descent homotopies

Let y ∈ CN \ RN and q ∈ RP \ ∆R(f) such that f(y, q) = 0. For the first modified
gradient descent homotopy, we aim to move q to the real discriminant locus so that the
solution corresponding to y becomes a real singular solution. Let y = yr + iyi where
yr, yi ∈ RN and i =

√
−1. Consider g, h : CN × CN × CP → CN defined by

g(a, b, p) =
f(a+ ib, p) + f(a− ib, p)

2
and h(a, b, p) =

f(a+ ib, p)− f(a− ib, p)
2i

.

which are the real and imaginary parts of f(a+ ib, p), respectively, with

g(a,−b, p) = g(a, b, p), g(a, 0, p) = f(a, p),
h(a,−b, p) = −h(a, b, p), h(a, 0, p) = 0.

Let α ∈ R2N+1 and consider Hc : CN × CP × C2N+1 × C→ C3N+P+1 defined by

Hc(x, p, λ, t) =


g(x, t · yi, p)
h(x, t · yi, p)

λ0

[
0

p− q

]
+
∑N

j=1 λj

[
∇agj(x, t · yi, p)T
∇pgj(x, t · yi, p)T

]
+
∑N

j=1 λN+j

[
∇ahj(x, t · yi, p)T
∇phj(x, t · yi, p)T

]
λ0 + α1λ1 + · · ·+ α2Nλ2N − α0


(7)
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where ∇aF (a, b, p)T and ∇pF (a, b, p)T are the gradient vectors of a polynomial F with
respect to a and p evaluated at (a, b, p), respectively, with start point (yr, q, α0, 0, . . . , 0).
Suppose that this solution path is trackable and converges to (x∗, p∗, λ∗). Since the start
point and the coefficients of Hc are real, the endpoint is real, i.e., x∗ ∈ RN and p∗ ∈ RP .
Since x∗ arises as the limit of complex solutions to a family of real polynomial systems,
it immediately follows that x∗ is a real singular solution of f(x, p∗) = 0.

Similarly, let y1, y2 ∈ RN and q ∈ RP \∆R(f) such that f(yj , q) = 0. For the second
modified gradient descent homotopy, we aim to move q to the real discriminant locus
so that the solutions corresponding to y1 and y2 coincide. Let α ∈ R2N+1 and consider
the homotopy Hr : CN × CP × C2N+1 × C→ C3N+P+1 defined by

Hr(x, p, λ, t) =


f(x, p)

f(x+ t(y2 − y1), p)

λ0

[
0

p− q

]
+
∑N

j=1 λj

[
∇xfj(x, p)

T

∇pfj(x, p)
T

]
+
∑N

j=1 λN+j

[
∇xfj(x+ t(y2 − y1), p)T
∇pfj(x+ t(y2 − y1), p)T

]
λ0 + α1λ1 + · · ·+ α2Nλ2N − α0


(8)

with start point (y1, q, α0, 0, . . . , 0). Suppose that this solution path is trackable and
converges to (x∗, p∗, λ∗). As in the Hc case, since the start point and the coefficients of
Hr are real, the limit point is real, i.e., x∗ ∈ RN and p∗ ∈ RP . Since x∗ arises as the
limit of two real solutions to a family of real polynomial systems, it immediately follows
that x∗ is a real singular solution of f(x, p∗) = 0.

3.2 Increase the number of real solutions

Given y ∈ CN \ RN and q ∈ RP \ ∆R(f) such that f(y, q) = 0, the first part of our
two-part approach for attempting to increase the number of real solutions is outlined in
the following summary.

1. Attempt to use Hc defined by (7) to yield a new parameter value such that the
corresponding polynomial system has a real singular solution.

(a) If successful, compute all solutions for the new parameter value.

(b) If the real solutions have persisted, update the parameter values and solu-
tions, and terminate the process.

2. If using Hc was not successful or some real solutions have disappeared, compute
∆q using the approach of Dietmaier [6] attempting to move y closer to RN .

(a) If ∆q can not be computed, the process is terminated. Otherwise, compute
all solutions for the new parameter value.

(b) If the real solutions have persisted, update the parameter values and the
solutions, and return to Item 1. Otherwise, return to Item 2 computing a
shorter ∆q.

13



If this process terminates, it has either computed a parameter p∗ ∈ ∆R(f) and a
point x∗ ∈ RN that is a singular solution of f(x, p∗) = 0, or has failed. If it has failed,
the approach is repeated starting with a different nonreal solution to f(x, q) = 0. If all
nonreal solutions of f(x, q) = 0 fail, the procedure has failed. One could then restart
the procedure after picking another value of q and a nonreal solution of f(x, q) = 0.

If the first part has succeeded, the second part attempts to produce new distinct
real solutions and is outlined in the following summary.

1. Use points along the solution path tracked using Hc to compute a unit vector
v ∈ RN which is approximately tangent to the projection of path into the param-
eter space at t = 0 and points in the direction of the path as t decreases.

2. Compute ∆p∗ to be a nonzero vector in the direction of v.

3. Compute all solutions of f(x, p∗ + ∆p∗) = 0.

(a) If the number of real solutions has increased, use the approach of Dietmaier
[6] to attempt to increase the distance between the real solutions and then ter-
minate the process. Otherwise, return to Item 2 and compute a shorter ∆p∗.

If successful, the two-part process has passed through the discriminant locus in such
a way to increase the number of real solutions.

3.3 Decrease the number of real solutions

The process for attempting to decrease the number of real solutions follows the same
basic setup as the process for attempting to increase the number of real solutions in
Section 3.2, with only a few minor changes.

The first part of the two-part process starts with two real solutions, y1 and y2, and
uses the homotopy Hr defined in (8). The persistence of the real solutions in Items 1b
and 2b is replaced with the persistence of nonreal solutions. Also, the local linearization
in Item 2 is setup to minimize the distance between y1 and y2. Upon failure, this part
is repeated using a new pair of real solutions.

For the second part, we replace Hc with Hr in Item 1. The only other change occurs
in Item 3a where, if ∆p∗ has been computed such that the number of nonreal solutions
has increased, we use the approach of Dietmaier [6] to attempt to increase the distance
between the nonreal solutions and RN .

3.4 Illustrative example

As an illustration, reconsider the polynomial f : C× C2 → C from Example 2, namely

f(x, p) = x2 + p1x+ p2.
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We first consider increasing the number real solutions starting with y = −1 + 2i and
q = (2, 5). For α = (2,−5, 7), the homotopy Hc defined by (7) yields x∗ = −2 and p∗ =
(4, 4). The first part was successful since x∗ is a real singular solution of f(x, p∗) = 0.

In the second part, we took, to three decimal places, v = (0.970,−0.243), which is
the unit vector pointing in the direction of the vector between the parameter values at
t = 10−5 and p∗. Taking ∆p∗ = 10−4v, the equation f(x, p∗ + ∆p∗) = 0 has two real
solutions separated by a distance of 0.030.

We now consider decreasing the number of real solutions starting with y1 = −1,
y2 = 3, and q = (−2,−3). For α = (2,−5, 7), the homotopy Hr defined by (8) yields,
to three decimal places, x∗ = −0.388 and p∗ = (−0.777, 0.151). The first part was
successful since x∗ is a real singular solution of f(x, p∗) = 0.

In the second part, we took, to three decimal places, v = (0.149, 0.989), which is
the unit vector pointing in the direction of the vector between the parameter values at
t = 10−5 and p∗. Taking ∆p∗ = 10−4v, the equation f(x, p∗+∆p∗) = 0 has two complex
solutions separated by a distance of 0.021.

4 Real enumerative geometry: points, lines, and conics

The approach presented in Section 3 can be used to develop new results in real enu-
merative geometry. To demonstrate, consider the geometric problem of computing the
plane conics in C3 which meet k given points and 8 − 2k given lines for k = 0, 1, 2.
Table 1 shows the number of plane conics Nk when the k points and 8− 2k lines are in
general position.

Table 1: Number of plane conics
k 2 1 0

Nk 4 18 92

By solving random instances of these problems, data is presented in [13] showing
that every possible number of real solutions can be achieved except

• 18 nonreal solutions for k = 1, and

• 92 real solutions for k = 0.

The following sections summarize using the approach presented in Section 3 to reproduce
some of these results as well as complete the k = 0 case. That is, this approach has
indeed computed eight lines in R3 with 92 real plane conics meeting them.

The following computations used Bertini [3] to perform the the path tracking and
updating of solutions, Matlab to solve the linear programs, and alphaCertified [14]
to certify the number of real solutions using rational arithmetic. We note that all
numbers provided in the following sections are exact. The website of the last author
contains additional details regarding the computations described below.
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4.1 Two points and four lines

We started with two randomly selected points (−0.506, 1.57,−6.01) and (0.725, 0.604,
2.84), and four randomly selected lines Li = {pi + tvi | t ∈ C} where

p1 = (−0.297, 0.164,−0.846) v1 = (1.52, 1.69,−0.767)
p2 = (−0.972,−1.32, 2.34) v2 = (−1.88, 69.9, 1.03)
p3 = (0.475,−0.368,−0.863) v3 = (−0.696, 0.0421, 1.35)
p4 = (1.1, 0.67, 0.902) v4 = (54.3, 0.0202,−3.24).

There are four nonreal plane conics passing through these two points and meeting these
four lines. The following summarizes using the approach of Section 3 to systematically
increase the number of real solutions.

Since there are four nonreal plane conics, the first goal was to find two points and
four lines which describe two real and two nonreal plane conics. This was accomplished
using the approach of Section 3 which yielded the two points (−0.469, 1.53,−6.05) and
(0.738, 0.594, 2.8), and the four lines Li defined by

p1 = (−0.334, 0.201,−0.809) v1 = (1.48, 1.73,−0.793)
p2 = (−1.01,−1.36, 2.3) v2 = (−1.85, 69.9, 1.03)
p3 = (0.482,−0.405,−0.853) v3 = (−0.722, 0.00478, 1.32)
p4 = (1.14, 0.644, 0.939) v4 = (54.3, 0.0462,−3.28).

The next goal was to force the two remaining nonreal solutions to merge and then be-
come two distinct real solutions. The two points (−0.416, 1.48,−6.1) and (0.756, 0.54, 2.76),
and the four lines Li defined by

p1 = (−0.362, 0.251,−0.756) v1 = (1.47, 1.74,−0.772)
p2 = (−0.963,−1.31, 2.33) v2 = (−1.86, 69.9, 1.02)
p3 = (0.429,−0.459,−0.906) v3 = (−0.776,−0.049, 1.27)
p4 = (1.17, 0.641, 0.979) v4 = (54.2, 0.5006,−3.32)

were computed by the approach of Section 3. It is easy to verify that there are four real
plane conics passing through these two points and meeting these four lines.

4.2 One point and six lines

We started with the randomly selected point (−1.01,−0.011, 0.01) and six randomly
selected lines Li = {pi + tvi | t ∈ C} where

p1 = (1.6, 0.136,−4.43) v1 = (2.99,−2.16, 2.05)
p2 = (−2.59, 4.38, 4.43) v2 = (−3.63,−0.01,−4.24)
p3 = (1.1, 2.67, 0.9) v3 = (−1.38, 2.47,−2.13)
p4 = (−4.77, 1.52,−1.31) v4 = (1.51, 1.1, 1.42)
p5 = (0.204, 0.85, 1.44) v5 = (−1.69,−1.37, 0.987)
p6 = (−4.6,−1.01, 0.841) v6 = (−2.01, 0.755,−0.436).
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There are 4 real and 14 nonreal plane conics passing through this point and meeting these
six lines. The approach of Section 3 was able to decrease the number of real solutions
down to 2, but failed when trying to remove the remaining two real solutions. This
computation is consistent with the results presented in Table 5 of [13]. In particular,
for the point (−1.01, 0.001,−0.001) and the six lines Li defined by

p1 = (1.59, 0.126,−4.44) v1 = (3.001,−2.16, 2.04)
p2 = (−2.57, 4.39, 4.41) v2 = (−3.61, 0.0092,−4.26)
p3 = (1.12, 2.65, 0.883) v3 = (−1.4, 2.49,−2.11)
p4 = (−4.78, 1.51,−1.3) v4 = (1.49, 1.09, 1.44)
p5 = (0.215, 0.839, 1.43) v5 = (−1.68,−1.36, 0.996)
p6 = (−4.38,−1.01, 0.851) v6 = (−1.99, 0.745,−0.446),

there are 2 real and 16 nonreal plane conics passing through this point and meeting
these lines.

4.3 Eight lines

We started with the eight randomly selected lines Li = {pi + tvi | t ∈ C} where

p1 = (0.4096,−3.903,−2.287) v1 = (3.222, 1.433,−0.3969)
p2 = (3.027, 0.5909, 3.208) v2 = (0.3143, 1.228, 4.478)
p3 = (0.2573, 0.9133, 0.6372) v3 = (−3.261,−1.43, 1.502)
p4 = (−4.276, 3.802,−1.097) v4 = (−0.926, 3.681,−2.706)
p5 = (1.505,−0.7109,−4.401) v5 = (−3.741, 4.067,−2.589)
p6 = (0.6752,−4.367,−2.557) v6 = (1.009, 1.772,−1.654)
p7 = (−3.625, 3.66, 1.698) v7 = (−4.53, 1.966, 1.868)
p8 = (1.444, 3.607, 0.5243) v8 = (−3.045,−2.643,−0.7563)

for which there are 82 real and 10 nonreal plane conics meeting these eight lines. The
approach of Section 3 systematically increased the number of real solutions up to 92.
The following theorem is a restatement of Theorem 1 which includes the eight lines.

Theorem 18. There are 92 real plane conics meeting the 8 lines Li = {pi + tvi | t ∈ C}
defined by

p1 = (0.46978,−3.988,−2.3527) v1 = (2.9137, 1.546,−0.27448)
p2 = (3.19, 0.5752, 3.0953) v2 = (0.56569, 1.108, 4.3629)
p3 = (0.40308, 0.78659, 0.9053) v3 = (−3.0656,−1.4638, 1.4096)
p4 = (−4.3743, 4.0046,−1.0243) v4 = (−0.9163, 3.6495,−2.6528)
p5 = (1.5198,−0.86125,−4.5963) v5 = (−3.8418, 3.9541,−2.5494)
p6 = (0.46801,−4.0308,−2.4411) v6 = (1.0225, 1.6422,−1.5925)
p7 = (−3.3382, 3.8432, 1.693) v7 = (−4.4657, 1.9618, 1.6865)
p8 = (1.3536, 3.6311, 0.42864) v8 = (−3.1442,−2.4915,−0.63586).
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Proof. For i = 1, . . . , 8, let xi(t), yi(t), and zi(t) be the first, second, and third coordi-
nates of pi+tvi, respectively. Consider the polynomial system F : C16 → C16 defined by

F (t1, . . . , t8, c1, . . . , c5, a1, a2, a3) =

[
a1xi(ti) + a2yi(ti) + a3 − zi(ti), i = 1, . . . , 8
C(xi(ti), yi(ti), c1, . . . , c5), i = 1, . . . , 8

]
where C(x, y, c1, . . . , c5) = c1x

2 + c2xy+ c3y
2 + c4x+ c5y− 1. In particular, if (t, c, a) ∈

V(F ) where t = (t1, . . . , t8), c = (c1, . . . , c5), and a = (a1, a2, a3), then the plane conic

Ca,c = {(x, y, a1x+ a2y + a3) ∈ C3 | c1x2 + c2xy + c3y
2 + c4x+ c5y = 1}

passes through the point pi + tivi ∈ Li ⊂ C3 for i = 1, . . . , 8.
Suppose that (t, c, a), (t̃, c̃, ã) ∈ V(F ) such that Ca,c = Cã,c̃, and define Pa = V(a1x+

a2y + a3 − z) and Pã = V(ã1x + ã2y + ã3 − z). If Pa 6= Pã, then Ca,c is contained in
the line Pa ∩ Pã. However, since one can easily verify that no line meets the eight lines
Li, we must have Pa = Pã which immediately implies that a = ã. This shows that
if (t, c, a), (t̃, c̃, ã) ∈ V(F ) such that a 6= ã, then Ca,c and Cã,c̃ are distinct plane conics
meeting the eight lines Li.

We used Bertini [3] to compute a set of 92 points X ⊂ C16, represented using
floating point, such that each point in X is heuristically within 10−50 of a point in
V(F ). Since F is a square system with rational coefficients, after approximating the
coordinates of the points in X using rational numbers, the results of [13] based on
α-theory [4, 20] implemented in alphaCertified [14] using exact rational arithmetic
proved the following statements.

• Newton’s method with respect to F starting at each point in X quadratically
converges to a point in V(F ).

• If Z ⊂ V(F ) is the set of points which arise as the limit of Newton’s method with
respect to F starting at some point in X, then Z consists of 92 distinct real points.

This computation also proved that the maximum distance from each point in X to the
corresponding point in Z ⊂ V(F ) is bounded above by 3 · 10−53. Since, for distinct
(t, c, a), (t̃, c̃, ã) ∈ X, we have ‖a − ã‖ ≥ 0.01, the triangle inequality with these two
bounds show that the 92 points in Z indeed correspond to 92 distinct real conics passing
through the eight given lines Li.

Theorem 18 together with Table 6 of [13] shows that, for ` = 0, 2, 4, . . . , 92, there
exists 8 real lines such that there are ` real and 92−` nonreal plane conics meeting them.
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