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Convex programming aims to minimize a convex objective function over a con-
vex set, called the feasible set. For example, linear programming minimizes a
linear function over a polytope (intersection of finitely many linear half-spaces as
in Figure 1(a)) while semidefinite programming minimizes a linear function over
a spectrahedron (intersection of the cone of positive semidefinite matrices with a
linear space as in Figure 1(b)).

(a) (b)

Figure 1. Example of (a) a polytope and (b) a spectrahedron.

When the feasible set has a nonempty interior, a standard approach for solving
convex programs are interior point methods. Conversely, when the feasible set is
empty, the program is said to be infeasible and the traditional Farkas’ lemma is a
standard approach for verifying infeasibility. For example, every infeasible linear
program can be verified using the traditional Farkas’ lemma. However, there are
so-called weakly infeasible semidefinite programs where this is not the case. To
illustrate, consider the following semidefinite program:

(1)

minimize x11

subject to

[
x11 1
1 0

]
� 0

where A � 0 means that A is a positive semidefinite matrix. Since the determinant
of the matrix in (1) is −1, the program (1) is clearly infeasible. Moreover, (1) is
weakly infeasible since the corresponding alternative via the traditional Farkas’
lemma is also infeasible, i.e., there does not exist y ∈ R2 such that[

0 y1
y1 y2

]
� 0

2 · y1 + 0 · y2 = −1.
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One numerical challenge in identifying weakly infeasible semidefinite programs
is that perturbations can be strongly infeasible or strictly feasible. For example,

minimize x11

subject to

[
x11 1
1 ε

]
� 0

is strongly infeasible for ε < 0 and strictly feasible for ε > 0. Liu and Pataki [3]
showed that many commonly-used software packages in semidefinite programming
have difficulty identifying weakly infeasible semidefinite programs when the reason
for infeasibility is not trivially obvious. Such messy instances were obtained by
obscuring their structure via row operations and rotations. Thus, a change of
perspective was needed for identifying weakly infeasible semidefinite programs.

Using the lens of numerical algebraic geometry [1, 4], the mathematical founda-
tion of traditional interior point methods is to numerically track a solution path
of a homotopy from a point in the interior of the feasible set to an optimizer.
With this viewpoint, weakly infeasible semidefinite programs can be identified [2]
using the following three techniques from numerical algebraic geometry: projec-
tive space for compactifying infinite length solution paths, adaptive precision path
tracking for navigating through ill-conditioned areas, and endgames for accurately
computing singular endpoints.

To illustrate, we consider the following convex program modified from (1):

(2)

minimize λ

subject to

[
x11 + λ 1

1 λ

]
� 0.

The corresponding optimal value is easily observed to be λ∗ = 0, but this is actually
an infimum that is not attained as a minimum, a condition that is equivalent to (1)
being weakly infeasible. Therefore, optimizers to (2) are “at infinity” meaning
that a solution path defined by traditional interior point methods will have infinite
length and approach an asymptote as represented in Figure 2(a). Compactification
using projective space yields a finite length path that can be efficiently tracked as
represented in Figure 2(b).

Complex analysis enters the scene to accurately compute the endpoint. The
winding number (also called the cycle number) of the endpoint for the path dis-
played in Figure 2(b) is 2, meaning that the path over the complex numbers locally
behaves like the complex square root function. Hence, the Cauchy integral the-
orem can be used to compute the endpoint of this path by integrating along a
closed loop as shown in Figure 3. Due to periodicity, numerical integration by the
trapezoid rule is exponentially convergent [5]. Such a procedure for computing the
endpoint is called the Cauchy endgame. Since any endpoint with winding number
larger than 1 is necessarily singular, ill-conditioning that necessarily arises near
the endpoint can be controlled using adaptive precision path tracking methods.

This viewpoint for identifying weakly infeasible semidefinite programs using
numerical algebraic geometry and the software package Bertini [1] along with
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(a) (b)

Figure 2. (a) A plot of paths at a given (red) point may have
infinite length with limiting asymptote corresponding with λ∗ = 0.
(b) Compactification using projective space yields a finite-length
path that can be efficiently tracked.

(a) (b)

Figure 3. To compute the endpoint of a path as in Figure 2(b),
one uses the Cauchy integral theorem and integrates along a closed
loop like the one with winding number 2 with real (a) and imagi-
nary (b) parts pictured here.

several other interactions of numerical algebraic geometry and optimization will
be discussed in Arkansas.
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