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Abstract—Numerical algebraic geometry provides a toolbox
of numerical methods for performing computations involving
systems of polynomial equations. Even though some of the com-
putations which are performed on a computer using floating-
point arithmetic are not certified, they can often be made very
reliable using adaptive precision computations. Moreover, there
is a wealth of information regarding the original problem which
can be extracted from various numerical computation that can
be used to improve subsequent symbolic computations to certify
the result. This paper highlights two applications of such hybrid
numeric-symbolic methods in algebraic geometry.
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I. INTRODUCTION

Systems of nonlinear polynomial equations naturally arise
in a variety of fields in mathematics, engineering, and
science. Algebraic geometry is the mathematical field which
studies the interplay of algebraic methods for manipulating
systems of polynomial equations and geometric methods for
computing and manipulating solution sets. Computational
algebraic geometry has also followed along similar lines
with methods based on both algebraic (e.g., Gröbner basis
methods [1], [2]) and geometric manipulation (e.g., numeri-
cal algebraic geometry [3], [4]), each with their own advan-
tages and disadvantages. Hybrid methods aim to combine
computational approaches that accentuate advantages and
minimize disadvantages.

Two applications of hybrid methods in computational
algebraic geometry are described in Sections II and III. In
particular, Section II describes witness sets which are used in
numerical algebraic geometry to geometrically represent sol-
ution sets and applies them to analyzing some components
arising from the cubic-centered 12-bar mechanism shown
in Figure 2. Section III describes pseudowitness sets which
are used in numerical elimination theory to geometrically
represent projections of solution sets and applies them to a
problem arising from 2× 2 matrix multiplication.

II. WITNESS SETS AND THE CUBIC-CENTERED
12-BAR MECHANISM

The solution set of a polynomial system f : CN → Cn is

V(f) = {x ∈ CN | f(x) = 0},

which is called the variety associated to f . Geometrically,
each variety can be decomposed uniquely into inclusion
maximal irreducible components. In particular, a variety V
is reducible if there exists varieties V1, V2 ( V with
V = V1 ∪ V2. An irreducible variety is a variety that is not
reducible. Thus, the irreducible decomposition of V consists
of irreducible varieties V1, . . . , Vk called the irreducible
components of V which are unique up to relabeling with

Vi 6⊂
⋃
j 6=i

Vj and V =

k⋃
i=1

Vi.

Each irreducible variety Vi naturally has a dimension,
denoted dimVi, which is equal to the minimum of the
dimension of the tangent space at each point x ∈ Vi. Then,

dimV = max
i=1,...,k

dimVi.

Example II.1. The variety V = V(f) where

f(x, y, z) =

[
xy − x− z
xz − 2x− 2z

]
(1)

is reducible with two irreducible components:

V1 = V(x, y) and V2 = V(z − 2y, xz − 2x− 2z).

The real part is pictorial represented in Figure 1. Clearly,
dimV(f) = dimV1 = dimV2 = 1.

Figure 1. Real points in V(f) for f in (1) with two irreducible components

In numerical algebraic geometry (see [3], [4] for a general
overview), each irreducible component Vi of V(f) is repre-
sented by a witness set {f,L, Vi ∩ L} where L ⊂ CN is a
general linear space with codimL = dimVi. Therefore, Vi
and L intersect in the maximum number of isolated points,



called the degree of Vi, i.e., deg Vi = #(Vi∩L). In summary,
a witness set for Vi consists of (1) a witness system f such
that Vi is an irreducible component of V(f), (2) a witness
slice L which is of complimentary dimension to Vi and
intersects Vi transversely, and (3) a witness point set Vi ∩L
consisting of deg Vi many points.

Example II.2. Continuing with Ex. II.1, for the linear space
L = V(2x+3y+z+1), the witness points sets for V1 and V2,
respectively, are approximately

{(0,−0.3333, 0)} and
{(0.6180,−0.4472,−0.8944), (−1.6180, 0.4472, 0.8944)}

with deg V1 = 1 and deg V2 = 2.

The small integer coefficients for L in Ex. II.2 were
selected for illustrative purposes. In practice, the coefficients
are randomly selected complex numbers to ensure genericity
of the corresponding L with probability 1.

A witness set for each irreducible component Vi can be
used to sample points on Vi by using a homotopy that
deforms the linear space L along Vi. Let M be another
general linear space with codimM = dimVi, and ` and m
be systems of linear polynomials such that L = V(`) and
M = V(m). Consider the homotopy

H(x, t) =

[
f(x)

(1− t) ·m(x) + t · `(x)

]
= 0 (2)

with start point w ∈ Vi ∩ L at t = 1 so that H(w, 1) = 0.
Thus, there is a path x(t) ⊂ Vi for t ∈ [0, 1] such that
H(x(t), t) ≡ 0 and x(1) = w. In particular, x(0) ∈ Vi∩M.
Numerically, x(t) can be tracked from t = 1 to t = 0 using
adaptive precision path tracking [5] and the endpoint x(0)
can be computed to arbitrary accuracy (e.g., see [3, Ch. 7]
to perform this computation using Bertini [6]).

Sample points can be used to gain insights into polyno-
mials which identically vanish on an irreducible component.
In fact, adding some new low degree polynomials to the
other generators can provide significant improvements to the
computational time used by Gröbner basis computations.
With one sufficiently accurate sample point, an approach
using exactness recovery algorithms such as LLL [7] or
PSLQ [8] is described in [9] for computing vanishing
polynomials with integer coefficients.

Example II.3. Continuing with Ex. II.1, consider the fol-
lowing sample point on V2 approximated to 15 digits:

(x, y, z) =

(0.516108199672976,−0.347807164618899,−0.695614329237798).

The following computes a linear with integer coefficients,
namely z − 2y, that vanishes on V2 using Maple:

PSLQ([1,x,y,z])
[0, 0, -2, 1]

Since z is linearly dependent on y, the following computes
an independent quadratic, namely x + 2y − xy, that also
vanishes on V2 using Maple:

PSLQ([1,x,y,xˆ2,x*y,yˆ2])
[0, 1, 2, 0, -1, 0]

We note that another approach is to utilize interpolation
(e.g., see [10]) at many sample points [11].

A. Cubic-centered 12-bar mechanism

The following applies numerical algebraic geometry to
compute low degree polynomials for the cubic-centered 12-
bar mechanism proposed in [12] and shown in Figure 2.

Figure 2. Cubic-centered 12-bar mechanism

To remove trivial rotations, a ground link is fixed via
P0 = (0, 0, 0), P7 = (−1, 1,−1), and P8 = (−1,−1,−1).
The remaining 6 vertices can move in space as long as they
maintain their relative distance: length 2 along edges of the
cube and length

√
3 to the center. Thus, there are 6 · 3 = 18

variables with the following 17 quadratic constraints:

‖Pi − Pj‖22 − 4 = 0,

(i, j) ∈

{
(1, 2), (1, 3), (1, 5), (2, 4), (2, 6),

(3, 4), (3, 7), (4, 8), (5, 6), (5, 7), (6, 8)

}
,

‖Pi‖22 − 3 = 0, i = 1, . . . , 6.

A full description of the irreducible components computed
using Bertini is available at [13, Table 1]. This shows
that there are many degenerate (dimension > 1) components
that presumably are preventing symbolic computational soft-
ware such as Macaulay2 [14] from computing a primary
decomposition. However, by using sample points, we can
focus on only the components of interest which, in this
case, are the two irreducible curves (i.e., one dimensional)



of degree 6. Using the following sample point approximated
to 15 digits:

P1 = (1.3451601328564 + 0.787548261843099i,

0.145383132109399− 0.0948566874942974i,

1.5094567350342− 0.692691574348801i),

P2 = (1.81382227767393− 4.88606735917172i,

−4.82454731880769− 3.1478244462172i,

−3.63836959648162 + 1.73824291295452i),

P3 = (−1.26042307948286 + 4.77397655306057i,

4.15712999740673 + 3.16122762841396i,

4.41755307688959− 1.61274892464661i),

P4 = (0.302526107876438− 1.19098191498458i,

−2.14727885133525 + 0.215833989829908i,

0.844752743458814 + 0.975147925154673i),

P5 = (0.446600801808932 + 0.11209080611115i,

1.66741732140096− 0.0134031821967617i,

0.220816519592029− 0.125493988307912i),

P6 = (−0.647686240732835 + 0.403433653141482i

1.00189571922585− 0.12097730233561i

−1.35420947849302− 0.282456350805872i)

where i =
√
−1, exactness recovery [9] yields the follow-

ing 10 vanishing linear polynomials where Pj = (xj , yj , zj):

z2 + z3 + z5 − 1, x6 + y6 − z1 + 2z2 + 2z3 − z4 + 2z5,

z1 − z2 − z3 + z4 − z5 + z6, y1 + y2 + y3 + y4 + y5 + y6,

x4 + y2 + y3 + y4 + y5 + z4, x1 + x4 + x6 − y2 − y3 − y5,

x4 + x6 − y1 + 2y2 + 2y3 + 2y5 − z1, x1 − x2 − x3 + x4 − x5 + x6,

x3 − x4 + x5 − x6 + y1 + y2 + z1 − z2, x3 + y2 + y5 + z3.

Using the collection of these 10 linear and the original 17
quadratics, Macaulay2 now trivially (< 0.1 seconds)
verifies that this collection defines a curve of degree 12.
This curve is irreducible over C since, for w =

√
−3, the

polynomial g = g1 · g2 where

g1 = 2(y4 + y6) + (1 + w)(z4 + z6) + 4

g2 = 2(y4 + y6) + (1− w)(z4 + z6) + 4

has integer coefficients which vanishes on this curve of
degree 12. Hence, it decomposes as two complex conjugate
curves of degree 6. Moreover, the cubic-centered 12-bar
mechanism shown in Figure 2, which has coordinates

P1 = (1, 1, 1), P2 = (1,−1, 1),
P3 = (1, 1,−1), P4 = (1,−1,−1),
P5 = (−1, 1, 1), P6 = (−1,−1, 1),

lies at the intersection of these two complex conjugate
curves showing that it corresponds with an isolated real
solution. Hence, the mechanism shown in Figure 2 is rigid
over R confirming the results of [15, § 9.4] based on using
numerical computations to aid in exact symbolic verification.

III. NUMERICAL ELIMINATION AND 2× 2 MATRIX
MULTIPLICATION

A witness system f for an irreducible variety V is an
essential element of a witness set for V . The witness system
permits additional computations on V , such as sampling
summarized in Section II, due to the fact that V is an
irreducible component of V(f). For problems in elimination
theory (e.g., see [2, Ch. 3]), the main goal is to compute
vanishing polynomials so a witness system is not readily
available. To overcome this, numerical elimination theory
utilizes pseudowitness sets [16] to geometrically represent
projections of varieties.

Suppose that V ⊂ CN is an irreducible variety with
known witness system f . Let π : CN → Cm be the projec-
tion onto the first m coordinates, i.e., π(x) = (x1, . . . , xm).
Thus, U = π(V ) ⊂ Cm, where the closure is taken in
the usual Euclidean topology on Cm, is also an irreducible
variety. The underlying idea of numerical elimination the-
ory is to replace computations on U with computations
on V since a witness system for V is known. To that
end, a pseudowitness set for U is {f, π,L, V ∩ L} where
L = M × K with codimL = dimV is constructed as
follows. Let M ⊂ Cm be a general linear space with
codimM = dimU so that U ∩M is a witness point set
for U with degU = #(U ∩ M). Let K ⊂ CN−m be a
general linear space with codimK = dimV − dimU ≥ 0.
Hence,M slices the “image variables” x1, . . . , xm while K
slices the “fiber variables” xm+1, . . . , xN . In particular,
π(V ∩L) = U∩M and #(V ∩L) = degU ·deggf (V, π) with
deggf (V, π) = deg(π−1(π(v)) ∩ V ) for a generic v ∈ V .

Example III.1. Let V = V(f) ⊂ C3 be the twisted cubic
curve where

f(x, y, z) =

[
y − x2

z − xy

]
.

Let π(x, y, z) = (x, y) be the projection onto the first two
variables and U = π(V ). The real part of U and V are
pictorially shown in Figure 3. Since dimV = dimU = 1,
we take M = V(4x − 2y − 1) ⊂ C2 and K = C with
L =M×K ⊂ C3. Hence, V ∩ L consists of two points,
approximately

(0.2929, 0.0858, 0.0251) and (1.7071, 2.9142, 4.9749).

Thus, degU = #π(V ∩ L) = 2 and deggf (V, π) = 1.

Obviously, one approach to sample points on U is to first
sample points on V and then project via π. Additionally,
one can also easily adapt the sampling procedure described
in Section II to sample points on U along a given linear
space by deforming M to the given linear space.



Figure 3. Illustrating the projection of the twisted cubic curve onto first
two coordinates

A. Border rank of 2× 2 matrix multiplication

Consider multiplying two 2× 2 matrices

X =

[
x1 x2

x3 x4

]
and Y =

[
y1 y2

y3 y4

]
,

namely

X · Y =

[
x1 · y1 + x2 · y3 x1 · y2 + x2 · y4
x3 · y1 + x4 · y3 x3 · y2 + x4 · y4

]
.

As written, X ·Y requires 8 multiplications to be performed:

x1 ·y1, x2 ·y3, x1 ·y2, x2 ·y4, x3 ·y1, x4 ·y3, x3 ·y2, x4 ·y4.

In 1969, Strassen [17] provided an alternative method to
compute X · Y which requires only 7 multiplications:

X · Y =

[
I + IV − V + V II III + V

II + IV I − II + III + V I

]
where

I = (x1 + x4) · (y1 + y4),

II = (x3 + x4) · y1,
III = x1 · (y2 − y4),
IV = x4 · (y3 − y1),
V = (x1 + x2) · y4,
V I = (x3 − x1) · (y1 + y2),

V II = (x2 − x4) · (y3 + y4).

It was shown in [18] that seven multiplications was neces-
sary. The rank of 2× 2 matrix multiplication, which is the
minimum number of scalar multiplications needed to com-
pute the product, is 7 (e.g., see [19] for more information).

Rather than exactly compute the multiplication of two
matrices, one could alternatively aim to approximate the
result up to arbitrary accuracy. For example, the problem
of multiplying the following matrices was studied in [20]:

P =

[
p1 p2

0 p4

]
and Q =

[
q1 q2

q3 q4

]
. (3)

Classically,

P ·Q =

[
p1 · q1 + p2 · q3 p1 · q2 + p2 · q4

p4 · q3 p4 · q4

]

requires 6 multiplications, which is necessary to exactly
compute this product. However, for any ε 6= 0, it is shown
in [20] that 5 multiplications are sufficient to compute
P ·Q+O(ε), namely[

ε−1(I − II − III + IV ) ε−1(V − III)
IV I − V

]
where

I = (p1 + p4) · (q4 + εq1),

II = p4 · (q3 + q4),

III = p1 · q4,
IV = (p4 + εp2) · (q3 − εq1),
V = (p1 + εp2) · (q4 + εq2).

The border rank of a problem is the minimum number of
scalar multiplications needed to approximate the result to
arbitrary accuracy. In particular, the rank of multiplying P
and Q in (3) is 6 while the border rank is 5. The difference
between this rank and border rank suggested that one should
investigate the border rank for 2 × 2 matrix multiplication.
This remained an open problem until [21] provided an
argument that both the rank and border rank for 2 × 2
matrix multiplication is 7. Due to a gap in this argument that
was subsequently filled in the unpublished manuscript [22],
an alternative approach guided by numerical insights was
developed in [23] as follows.

To formulate in terms of polynomial systems, 2×2 matrix
multiplication is written as a tensor in C4⊗C4⊗C4 ∼= C64.
For example, the classical definition yields

M2 := (x1 ⊗ y1 + x2 ⊗ y3)⊗ z1 + (x1 ⊗ y2 + x2 ⊗ y4)⊗ z2 +

(x3 ⊗ y1 + x4 ⊗ y3)⊗ z3 + (x3 ⊗ y2 + x4 ⊗ y4)⊗ z4

while Strassen’s approach is equivalent to rewriting

M2 = (x1 + x4)⊗ (y1 + y4)⊗ (z1 + z4) +

(x3 + x4)⊗ y1 ⊗ (z3 − z4) +
x1 ⊗ (y2 − y4)⊗ (z2 + z4) +

x4 ⊗ (y3 − y1)⊗ (z1 + z3) +

(x1 + x2)⊗ y4 ⊗ (z2 − z1) +
(x3 − x1)⊗ (y1 + y2)⊗ z4 +

(x2 − x4)⊗ (y3 + y4)⊗ z1.

A scalar multiplication corresponds with a term of the form

`1(x)⊗ `2(y)⊗ `3(z)

where each `i is a linear form. Hence, the classical definition
expresses M2 using 8 terms while Strassen’s approach uses 7
terms. Since the rank of 2×2 multiplication is 7, there does
not exist linear forms `ij such that

M2 =

6∑
j=1

`1j(x)⊗ `2j(y)⊗ `3j(z).



The variety of all tensors in C4⊗C4⊗C4 of border rank
at most 6 is

σ6 =


6∑

j=1

`1j(x)⊗ `2j(y)⊗ `3j(z)

∣∣∣∣∣∣ `ij is linear form

.
Due to Strassen’s approach, the border rank of M2 is 7 if
and only if M2 /∈ σ6. Clearly, computing polynomials that
vanish on σ6 is a problem in elimination theory. With no
previously known nonconstant polynomials vanishing on σ6,
numerical elimination theory was applied to σ6 in [23]
yielding a pseudowitness set for σ6 showing codimσ6 = 4
and deg σ6 = 15,456. A homotopy membership test based
on using pseudowitness sets [24] showed that M2 /∈ σ6.

Numerical insight was then used to determine in which
degree to search for polynomials vanishing on σ6 with the
aim of finding a polynomial vanishing on σ6 that does
not vanish at M2. The difficulty of this is due to the
number of variables. For example, the space of homogeneous
polynomials of degree 18 in 64 variables has dimension(

63 + 18

18

)
= 456,703,981,505,085,600

which is too large to utilize the approaches [9], [11] sug-
gested in Section II. Hence, one reduces the problem via
necessary conditions by vanishing on a witness point set
restricted to the witness slice [11], [23]. Since codimσ6 = 4,
this reduces down to computing affine polynomials in 4
variables. Thus, to show that no nonzero polynomials of
degree 18 vanish on σ6, one only needs to consider a space
of very manageable dimension(

4 + 18

18

)
= 7315.

In particular, restricting to the witness point set shows that
the minimal degree of vanishing polynomials on σ6 is 19
with at most 64 independent polynomials in degree 19.

This numerical insight guided where to apply represen-
tation theory to describe 64 polynomials of degree 19 that
vanish on σ6, the first known nonzero collection of vanishing
polynomials for σ6. An explicit polynomial g of degree 20
generated from these 64 vanishing polynomials was used
in [23] to separate M2 from σ6 since σ6 ⊂ V(g) and
g(M2) 6= 0. Therefore, this process created an explicit sym-
bolic proof that the border rank of 2×2 matrix multiplication
is 7 which was aided by pseudowitness sets and numerical
elimination theory.
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