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Abstract. The problem of solving systems of polynomial equations is
ubiquitous throughout science and engineering. The mathematical sub-
ject of numerical algebraic geometry consists of a collection of approaches
for numerically solving polynomial systems with one foundational tech-
nique being homotopy continuation. This short manuscript summarizes
using homotopy continuation on two different problems. In the first prob-
lem, homotopy continuation is used to approximate a critical parameter
value where two solutions of a parameterized differential equation merge
together. In the second problem, homotopy continuation is used to com-
pute critical points of a sum of squares best fit function for given data.
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1 Introduction

Computing and analyzing the solution set of a system of nonlinear polynomial
equations is a classical problem forming the foundation of the mathematical
subject of algebraic geometry. Since systems of polynomial equations are ubiqui-
tous throughout science and engineering, there are many applications of solving
polynomial systems such as biology [13,32], chemistry [1,10,12,20,30], dynamical
systems [11,17,22,27], physics [16,18,23], kinematics [7,14,15,26,28,33,34], and
control [9,24,29] to list a few. For solving univariate polynomials equations of
degree at most 4, there exists formulas for expressing the solutions in radicals in
terms of the coefficients, such as the quadratic formula

ax2 + bx+ c = 0 =⇒ x =
−b±

√
b2 − 4ac

2a
. (1)

The impossibility of having similar explicit formulas for arbitrary univarite poly-
nomials of degree at least 5, let alone for multivariate systems, has necessitated
the development of numerical approaches for approximating solutions. For ex-
ample, Newton’s method is widely used to numerically approximate a solution
since it is locally quadratically convergent near nonsingular solutions. That is, if
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one has a reasonably good guess of a nonsingular solution, then one can obtain
highly accurate approximations in relatively few Newton iterations. In essence,
the problem of solving is transformed into finding reasonably good guesses.

The mathematical subject of numerical algebraic geometry, e.g., see [6,31],
consists of a collection of approaches for numerically computing and analyzing
solution sets to systems of polynomial equations. One of the foundational tech-
niques in numerical algebraic geometry is homotopy continuation which turns
the problem of solving into path tracking. Path tracking traditionally consists
of applying a predictor-corrector scheme. The predictor is often based on nu-
merically approximating a solution to an initial value problem which yields a
reasonably good guess to utilize a corrector, e.g., Newton’s method, to remove
local error and obtain accurate approximations.

The rest of this paper applies homotopy continuation to polynomial systems
arising in various applications. In Section 2, homotopy continuation is used to
identify a parameter value where two distinct solutions merge together for a pa-
rameterized polynomial system arsing from discretizing an ordinary differential
equation. In Section 3, critical points of an objective function obtained via a sum
of squares best fit of given data are computed using homotopy continuation.

2 Merging solutions

Homotopies are typically constructed to “end” at the system of interest so that
efficient algorithms called endgames, e.g., see [6, Chap. 3] for an overview, can
be used to accurately approximate the endpoints. An an illustration of using ho-
motopy continuation, consider the following parameterized two-point boundary
value problem for λ > 0 from [2, Sec. 3.2]:

y′′(t) = −λ(1 + y(t)2) for 0 < t < 1,
y(0) = 0,
y(1) = 0.

(2)

It is known [2,19] that there exists λ∗ > 0 such that (2) has two solutions for
λ ∈ (0, λ∗), unique solution for λ = λ∗, and no solutions for λ ∈ (λ∗,∞). Figure 1
plots the two solutions for λ = 3 and λ = 4.

One approach for computing λ∗ is to construct a homotopy that forces the two
solutions, say yλ,1(t) and yλ,2(t), corresponding to the same value of λ to merge
together. Hence, by treating λ as a variable, the two solutions will merge together
precisely when λ is equal to λ∗. In particular, for λ0 = 4, let yλ0,1 and yλ0,2 be
the two solutions depicted in Fig. 1(b) so that, at s = 1, (yλ0,1, yλ0,2, λ) is the
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(a) (b)

Fig. 1. Plot of the two solutions to (2) for (a) λ = 3 and (b) λ = 4.

start point of the following homotopy:

H(yλ,1, yλ,2, λ; s) =



y′′λ,1(t) + λ(1 + yλ,1(t)2) for 0 < t < 1

yλ,1(0)
yλ,1(1)

y′′λ,2(t) + λ(1 + yλ,2(t)2) for 0 < t < 1

yλ,2(0)
yλ,2(1)

‖yλ,1 − yλ,2‖22 − s · ‖yλ0,1 − yλ0,2‖22


= 0.

Therefore, when s = 0, this homotopy “ends” with λ = λ∗ and yλ,1 = yλ,2.
Since this homotopy is formulated in terms of differential equations, we can
approximate via polynomial equations, for example, by discretizing using equally
spaced grid points and applying a second order central difference scheme. Hence,
one can treat yλ,1 and yλ,2 as vectors so that the last equation in the homotopy
simply corresponds with the square of the standard Euclidean norm of vectors.
Utilizing Bertini [5], Table 1, which matches [8, Table 1], compares the grid
spacing ∆t with the computed value of λ∗ showing that λ∗ ≈ 4.755.

3 Critical points from sum of squares best fit

A classical problem is to compute the best fit line of the form y = mx + b to a
collection of data points (xi, yi) for i = 1, . . . , N where N is sufficiently large.
Thus, one is aiming to compute m and b which minimizes

F (m, b) =

N∑
i=1

(mxi + b− yi)2.



4 J.D Hauenstein

∆t λ∗

1/10 4.734384294
1/20 4.749878424
1/40 4.753696808
1/80 4.754647901
1/160 4.754885455
1/320 4.754944829
1/640 4.754959672
1/1280 4.754963383
1/2560 4.754964310

Table 1. Comparison of grid spacing ∆t and corresponding value of λ∗.

Since the gradient vector ∇F with respect to m and b is a full rank linear system,
there is a unique line of best fit for generic data corresponding with the unique
solution of ∇F = 0. The following considers more general problems of best fit.

Suppose that f(x; p) is a polynomial in x ∈ Rn and p ∈ Rk. Then, given a col-
lection of data (xi, yi) ∈ Rn×R and weights wi ∈ R>0 for i = 1, . . . , N where N
is sufficiently large, consider the weighted sum of squares best fit function

F (p) =

N∑
i=1

wi · (f(xi; p)− yi)2.

The set of critical points of F (p) satisfy ∇F (p) = 0 which is a system of k poly-
nomials in k variables. Hence, there is a generic number of isolated nonsingular
solutions to ∇F (p) = 0 which we denote as SOSdegree(f).

Example 1. For f(x; p) = p1x + p2 associated with constructing the best fit
line, SOSdegree(f) = 1. In fact, by viewing this polynomial as a linear span
of the monomials x and 1, this can be generalized to any linear span of dis-
tinct multivariate monomials. For example, suppose that xα1 , . . . , xαk is a list of
multivariate monomials with αi 6= αj for i 6= j and

f(x; p) =

k∑
j=1

pjx
αj ,

then SOSdegree(f) = 1.

One can compute SOSdegree(f), for example, by counting the number of
solutions to the polynomial system ∇F = 0 obtained using homotopy continua-
tion for generic data. Then, one can utilize a parameter homotopy [25] to deform
from the generic data to the given data tracking SOSdegree(f) number of paths.
This approach has already been used, for example, in approximate kinematics
synthesis of mechanisms [3,4], and machine learning [21]. We conclude with an
illustration of this approach on some data points in the plane.
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Example 2. Consider the 50 data points shown in Fig. 2 and

f(x; p) = p1(x1 − p2)2 + p3(x2 − p4)2.

First, consider computing the critical parameters p of the sum of squares best
fit with equal weights, i.e., wi = 1, such that yi = 0.652 = 0.4225 on the stars
and yi = 1.152 = 1.3225 on the dots from Fig. 2(a). To accomplish this, we first
compute SOSdegree(f) = 33 using homotopy continuation in Bertini [5] and
then perform a parameter homotopy which deforms from the generically selected
data to this given data yielding 33 critical points of the sum of squares best fit.
Of these, 11 are real and, by analyzing the Hessian matrix, there are 3 that are
local minima. The one which is the global minimum is shown in Fig. 2(a).

For the second problem, on the same set of 50 data points, consider computing
the critical parameters p of the sum of squares best fit with equal weights,
i.e., wi = 1, and equal output, i.e., yi = 1. Performing a parameter homotopy to
this special case results in 25 critical points which is less than the generic count.
Of these, 9 are real and, by analyzing the Hessian matrix, there is a unique local
minimum which is the global minimum that is shown in Fig. 2(b).

(a) (b)

Fig. 2. Computing sum of squares best fit for the same 50 data points using (a) two
ellipses and (b) one ellipse.
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