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ABSTRACT
A Newton homotopy is a homotopy that involves changing
only the constant terms. They arise naturally, for example,
when performing monodromy loops, moving end effectors of
robots, and simply when trying to compute a solution to a
square system of equations. Previous certified path tracking
techniques have focused on using an a priori certified track-
ing scheme which means that the stepsize is constructed
so that the result automatically satisfies some conditions.
These schemes use pessimistic stepsizes that can be much
smaller than those used by heuristic tracking methods. This
article designs an a posteriori certification scheme that uses
the result of a heuristic tracking scheme as input to produce
a certificate that the path was indeed tracked correctly, e.g.,
no path jumpings occurred. By using an a posteriori ap-
proach, each step can be certified independently and thus
certification of the path can be performed in parallel. Ex-
amples are presented demonstrating the efficiency of this
a posteriori certification approach.
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1. INTRODUCTION
Numerical solving methods for polynomial systems based

on homotopy continuation, collectively called numerical al-
gebraic geometry, are currently being used to solve systems
arising in a wide-variety of areas in science and engineer-
ing. The fundamental computation for these methods is
path tracking which numerically approximates a sequence
of points on a one-real-dimensional smooth curve, i.e., a
path. A path jumping occurs when the numerically com-
puted points approximate a point on a different path. In or-
der to computationally prove theorems using such methods,
path jumpings need to certifiably be avoided. For example,
in [21], monodromy groups for Schubert problems are com-
puted via path tracking and the occurrence of even one path
jumping could lead to computing the wrong group.

Path tracking related to polynomial systems has been im-
plemented in various software packages, e.g., Bertini [3],
HOM4PS-2.0 [19], PHCpack [27], and POLSYS_GLP [26]. They
rely upon using robust, but not certifiable, numerical meth-
ods that try to prevent path jumpings, for example, using
adaptive precision methods [1, 2, 5]. A path tracker im-
plemented in NAG4M2 [20] certifiably prevents path jumpings
using an a priori tracking scheme, which selects the length
of the next step so that the resulting point numerically ap-
proximates a point on the same path. Robust heuristic path
tracking methods are generally much faster than using a
certified tracking scheme [7].

Our fundamental idea is to use the data collected using a
robust heuristic path tracking scheme as input for an a pos-
teriori certification scheme to prove that no path jumpings
occurred. Therefore, one is using heuristic computations to
generate information about the problem and also maintain-
ing the certainty provided by a certification scheme. One
main result is Theorem 4.2 which details our a posteriori
scheme. Since proving that a path jumping did not occur
during a given step along the path is independent of the
other steps, such an a posteriori certification scheme is nat-
urally parallelizable. Moreover, due to this independence,
one can use exact rational arithmetic where the heights of
the points are represented based on the local conditioning,
i.e., enough to remain in the quadratic convergence basin
of Newton’s method, rather than on all the previous com-
putations needed to obtain the points. These reduce the
computational cost associated with using a certified scheme.

There are additional benefits with using an a posteriori
scheme. For example, when computing a monodromy group,
e.g., for Schubert problems [21], one generates elements of



the monodromy group by performing a monodromy loop. If
the element associated with a monodromy loop was already
contained in the group generated by the previously obtained
elements, the element has added no new information about
the monodromy group. That is, one can use heuristic path
tracking schemes to quickly perform a monodromy loop and
determine if the resulting element is already contained in the
group generated by the previously computed elements or is
a new generator of the monodromy group. If the element
adds no new information, one simply moves on to another
loop. If it is a new generator, then a posteriori certification
is performed to prove that no path jumpings occurred dur-
ing the heuristic path tracking thereby certifiably yielding a
new generator of the monodromy group. That is, one saves
computational costs by only certifying the monodromy loops
which produced new generators of the monodromy group.

In this article, we focus on certifying paths defined by so-
called Newton homotopies, which are homotopies of the form

H(x, t) = f(x) + t · v (1)

where f : Cn → Cn is a polynomial system and v ∈ Cn

is a given vector. In addition to performing monodromy
loops, such homotopies can be used to attempt to compute
a solution of f(x) = 0 by taking v = −f(x∗) for a given
x∗ ∈ Cn and tracking the path starting at t = 1 with x = x∗

defined by H(x, t) ≡ 0. In fact, if f = 0 has the Bézout
number of distinct isolated solutions and x∗ ∈ Cn is generic,
then such an approach will yield a solution of f = 0.

The a posteriori certified approach developed below de-
pends on α-theory (see [9, Ch. 8] for a general overview),
which provides sufficient conditions that Newton’s method
will quadratically converge immediately starting at a given
point. The certified tracking methods of [6, 7, 8, 10, 11, 23]
depend on using α-theory to compute the size of the next
step to prevent path jumpings whereas we will use it to cer-
tifiably determine if a path jumping occurred. The software
alphaCertified [16] implements the necessary α-theoretic
routines needed with [15] demonstrating its use to a poste-
riori prove results regarding endpoints of paths. The key
distinction is that here we prove results about the whole
path, not just the endpoint.

Since α-theory plays a fundamental role in our certifica-
tion scheme, we provide the necessary background informa-
tion in § 2. We summarize path tracking in § 3 and present
our continuity test (Theorem 4.2) in § 4. The a posteri-
ori certification scheme is described in § 5 which includes a
lower bound on stepsize (Theorem 5.1). We briefly summa-
rize the implementation of our certification scheme in the
new software package Cadenza [13] in § 6 with § 7 providing
examples demonstrating its practicality.

2. NEWTON’S METHOD
Let g : Cn → Cn be a polynomial system and suppose

that x∗ ∈ V(g) = {x ∈ Cn | g(x) = 0}. If the Jacobian
matrix Dg(x∗) is invertible, then x∗ is called a nonsingu-
lar solution of g = 0 and it is well-known that Newton’s
method quadratically converges to x∗ starting at any point
in a sufficiently small neighborhood of x∗. In this section,
we summarize using α-theory to yield sufficient conditions
on a point x ∈ Cn such that Newton’s method will quadrati-
cally converge to some point in V(g). More details regarding
α-theory are provided in [9, Ch. 8].

Consider the Newton iteration Ng : Cn → Cn defined by

Ng(x) =

{
x−Dg(x)−1g(x) if Dg(x) is invertible;
x otherwise.

Given x0 ∈ Cn, Newton’s method defines the sequence

xk = Ng(xk−1) for k ≥ 1.

A point x0 ∈ Cn is an approximate solution of g = 0 if there
exists ξ ∈ V(g) such that

‖xk − ξ‖ ≤
(

1

2

)2k−1

‖x0 − ξ‖.

The point ξ is called the associated solution of x0 and the
sequence {xk}k≥0 quadratically converges immediately to ξ.
The key to α-theory is to balance the size of the Newton step
with the higher-order derivatives. In particular, if Dg(x) is
invertible, define

α(g, x) = β(g, x) · γ(g, x),
β(g, x) = ‖x−Ng(x)‖ = ‖Dg(x)−1g(x)‖,

γ(g, x) = sup
k≥2

∥∥∥∥Dg(x)−1Dkg(x)

k!

∥∥∥∥
1

k−1

.

In γ, Dkg(x) is the kth derivative of g [18, Ch. 5] with Propo-
sition 3 of [24, § I-3] providing an approach for computing
an upper bound on γ(g, x).

When Dg(x) is not invertible, we can naturally define
β(g, x) = 0 and γ(g, x) = ∞. The indeterminate form
α(g, x) = 0 ·∞ is defined based on g(x). That is, if g(x) = 0,
then α(g, x) = 0, otherwise, α(g, x) =∞.

The following results from [9, Ch. 8] describe local infor-
mation that can be obtained from α-theory.

Theorem 2.1. Let g : Cn → Cn be a polynomial system
and x, y ∈ Cn with x 6= y.

1. If ‖x − y‖ · γ(g, x) < 1 −
√

2/2 and Dg(x)−1 exists,
then Dg(y)−1 also exists.

2. If g(x) = g(y) = 0, then 4 · γ(g, x) · ‖x− y‖ ≥ 5−
√

17.

The following summarizes key results from [9, Ch. 8].

Theorem 2.2. Let g : Cn → Cn be a polynomial system
and x, y ∈ Cn.

1. If x is an approximate solution of g = 0 with associated
solution ξ, then ‖x− ξ‖ ≤ 2β(g, x).

2. If 4 · α(g, x) < 13 − 3
√

17, then x is an approximate
solution of g = 0.

3. If u < 1−
√

2/2, c = 2(α(g, x)+u)/(1−4u+2u2)2 < 1,
and α(g, x) + cu ≤ u, then Ng is a contraction map on

B = B(u/γ(g, x), x) = {y | ‖x− y‖ · γ(g, x) < u}

with contraction constant c. In particular, there is a
unique point ξ in B∩V(g) and Newton’s method start-
ing at each y ∈ B converges to ξ.

4. If α(g, x) < 0.03 with ‖x − y‖ · γ(g, x) < 0.05, then
x and y are approximate solutions of g = 0 with the
same associated solution.



Example 2.3. For g(x) = x6 − 1, it is easy to verify

β(g, x) =
|x6 − 1|

6|x|5 , γ(g, x) =
5

2|x| , α(g, x) =
5|x6 − 1|

12|x|6

for any x 6= 0. In particular, α(g, 1.01) < 0.0242 so that 1.01
is an approximate solution of g = 0 and, for any y ∈ C with

|y − 1.01| < 0.05

γ(g, 1.01)
= 0.0202,

y and 1.01 have the same associated solution, namely ξ = 1.

3. PATH TRACKING
The key to using homotopy continuation to numerically

solve systems of polynomial equations is to numerically track
a solution path. The following provides a basic summary of
path tracking for a Newton homotopy (1) with [4, Ch. 2]
providing a general overview.

Let f : Cn → Cn be a polynomial system, v ∈ Cn be a
vector, and H(x, t) be the Newton homotopy defined by (1).
Let x∗ ∈ Cn such that H(x∗, 1) = 0, i.e., f(x∗) = −v.
Suppose that there exists a path x(t), continuous on t ∈ [0, 1]
with x(1) = x∗, such that H(x(t), t) ≡ 0 and the Jacobian
matrix Df(x(t)) is invertible for 0 ≤ t ≤ 1. One numerically
tracks the path x(t) by computing 1 = t1 > t2 > · · · > t` = 0
and xi ∈ Cn such that xi is an approximate solution of
H(x, ti) = 0 with associated solution x(ti). A path jumping
occurs if there is a j such that the associated solution of xj
is not x(tj).

The path x(t) satisfies the Davidenko differential equation

ẋ = −Jf(x)−1 · v. (2)

Path tracking can be performed via a predictor-corrector
scheme using (2) to predict a new point along the path and
the equation H(x, t) = 0 to correct closer to the path. If
the prediction is poor, the correction step may produce an
approximate solution that does not correspond to a point
on the path x(t) resulting in a path jumping. The following
sections derive an a posteriori test for certifying that a path
jumping did not occur, i.e., the path was properly tracked.

4. A RULE FOR PATH CONTINUITY
Certifying that a path was tracked correctly can be bro-

ken down into certifying each step. This section certifies
one step while the following section presents an algorithm
for a posteriori certification of path tracking. This certifica-
tion test for a single step exploits the fact that, for Newton
homotopies (1), one has γ(H(·, t), x) = γ(f, x).

The following presents our universal constants.

Lemma 4.1. Let g : Cn → Cn be a polynomial system and
x ∈ Cn such that Dg(x)−1 exists and x is an approximate
solution of g = 0 with associated solution ξ. Define

α0 = 0.04 and u0 = 0.079. (3)

If α(g, x) ≤ α0 and

B = B(u0/γ(g, x), x) = {y | ‖x− y‖ · γ(g, x) < u0}

then Ng is a contraction mapping on B. In particular,
{ξ} = B∩V(g) and Newton’s method starting at each y ∈ B
converges to ξ.

Proof. This follows from Theorem 2.2(3) since

c0 = 2(α0 + u0)/(1− 4u0 + 2u2
0)2 < 1 and α0 + c0u0 < u0.

Using these constants, the following certifies continuity.

Theorem 4.2. Let f : Cn → Cn be a polynomial system,
v ∈ Cn, H(x, t) = f(x)+t ·v, and t1, t2 ∈ C and x1, x2 ∈ Cn

such that Df(xi)
−1 exists and xi is an approximate solution

of H(·, ti) = 0 with associated solution ξi. If j ∈ {1, 2} with

α(H(·, tj), xj)+ |t1− t2| ·γ(f, xj) · ‖Df(xj)
−1 ·v‖ ≤ α0, (4)

there is a continuous z : [t1, t2]→ Cn such that Df(z(t))−1

exists and H(z(t), t) ≡ 0 on [t1, t2] with z(tj) = ξj. Addi-
tionally, suppose that k 6= j. Then, z(tk) = ξk if

‖x1 − x2‖ · γ(f, xj) < u0 (5)

and z(tk) 6= ξk if

‖x1 − x2‖ > 2 (β(H(·, tk), x1) + β(H(·, tk), x2)) . (6)

Proof. Consider the ball

B = B(u0/γ(f, xj), xj) = {x | ‖x− xj‖ · γ(f, xj) < u0}.

Since u0 < 1 −
√

2/2 and Df(xj)
−1 exists, Theorem 2.1(1)

provides that Df(x)−1 exists for all x ∈ B.
Additionally, for any t ∈ [t1, t2], we have

β(H(·, t), xj) = ‖Df(xj)
−1(f(xj) + t · v)‖

≤ ‖Df(xj)
−1(f(xj) + tj · v)‖

+ |t− tj | · ‖Df(xj)
−1 · v‖

= β(H(·, tj), xj)
+ |t− tj | · ‖Df(xj)

−1 · v‖.

Since γ is independent of t and |t− tj | ≤ |t1− t2|, this yields

α(H(·, t), xj) ≤ α(H(·, tj), xj)
+ |t− tj | · γ(f, xj) · ‖Df(xj)

−1 · v‖
≤ α0.

Therefore, xj is an approximate solution of H(·, t) = 0 for
all t ∈ [t1, t2] with, say, associated solution z(t). Clearly,
z(tj) = ξj and, by Lemma 4.1, {z(t)} = B ∩ V(H(·, t)).

The continuity of z(t) follows from the Inverse Function
Theorem. That is, we know a continuous solution path
λ(t) of H(·, t) = 0 with λ(tj) = z(tj) = ξj exists locally
around tj . Since Df is invertible on B, we know that λ(t)
exists for all t ∈ [t1, t2], and is equal to z(t), provided that
λ(t) ∈ B. Therefore, the only issue that could arise is if there
exists t∗ ∈ [t1, t2] such that λ(t∗) ∈ ∂B. However, if this was
the case, 8·u0 < 5−

√
17 together with Theorem 2.1(2) yields

B ∩ V(H(·, t∗)) = ∅, which is a contradiction.
If (5) holds, then Lemma 4.1 provides z(tk) = ξk.
If (6) holds, then

‖x1 − x2‖ ≤ ‖xj − z(tk)‖+ ‖z(tk)− ξk‖+ ‖ξk − xk‖
≤ 2(β(H(·, tk), x1) + β(H(·, tk), x2))

+ ‖z(tk)− ξk‖
< ‖x1 − x2‖+ ‖z(tk)− ξk‖.

Hence, ‖z(tk)− ξk‖ > 0 providing z(tk) 6= ξk.

This theorem provides an approach for certifiably deter-
mining whether a path jumping did or did not for a given
step. Since this certification can be performed indepen-
dently of the other steps, the certification procedure de-
scribed in the following section is naturally parallelizable.



5. A CERTIFICATION PROCEDURE
Suppose that H(x, t) is a Newton homotopy (1), t1 < t2,

z : [t1, t2]→ Cn is a nonsingular solution path, and xi ∈ Cn

is an approximate solution of H(x, ti) = 0 with associated
solution z(ti). If (4) and (5) in Theorem 4.2 hold, then we
have a certificate regarding the existence of the continuous
nonsingular solution path z(t).

We start by first assuming that (4) holds. Following the
notation of Theorem 4.2, we know that xj is an approxi-
mate solution of H(·, tk) = 0 with α(H(·, tk), xj) ≤ α0 and
associated solution z(tk). Thus, if (5) holds, it follows from
Lemma 4.1 that both x1 and x2 have the same associated
solution with respect to H(·, tk). However, if (5) does not
hold, one can use Algorithm 3 of [15] to certifiably determine
they have the same associated solution, namely z(tk), and
thus prove that a path jumping did not occur in [t1, t2].

If (4) does not hold, the following describes two tech-
niques for certifying continuity. The first is to replace xj
with N `

H(·,tj)(xj) for some ` ≥ 1 which is also an approxi-

mate solution of H(·, tj) = 0 with associated solution z(tj).
Since z(tj) is a nonsingular solution of H(x, tj) = 0,

{γ(f,N `
H(·,tj)(xj))}`≥0 and {‖Df(N `

H(·,tj)(xj)))
−1 · v‖}`≥0

are bounded with

{β(H(·, tj), N `
H(·,tj)(xj))}`≥0

quadratically converging to zero. Therefore, by replacing xj
with N `

H(·,tj)(xj), the first term in (4) can be made arbi-

trarily small while the second term remains bounded. In
particular, one can select ` ≥ 1 so that

α(H(·, tj), N `
H(·,tj)(xj)) ≤ α0/6.

The other technique to satisfy (4) is to reduce the second
term by splitting the interval [t1, t2] to decrease |t1 − t2|.
Then, testing continuity on the interval [t1, t2] is replaced by
testing continuity across each subinterval, each of which can
be performed independently. Our approach is to split [t1, t2]
into two subintervals at the midpoint t3/2 = (t1 + t2)/2
where the corresponding point x3/2 = (x1 + x2)/2 is also
taken to be the midpoint. Since x3/2 may not be an ap-
proximate solution, Newton’s method is used to attempt to
move the midpoint closer to the path. If this fails, one could
use heuristic path tracking methods to obtain a numerical
approximation along the path.

The following provides a lower bound on the length of the
interval to guarantee that (4) must hold.

Theorem 5.1. Let f : Cn → Cn be a polynomial system,
v ∈ Cn, H(x, t) = f(x)+t ·v, and t1, t2 ∈ C and x1, x2 ∈ Cn

such that Df(xi)
−1 exists and xi is an approximate solution

of H(·, ti) = 0 with associated solution ξi. Suppose that
j ∈ {1, 2} such that there is a continuous z : [t1, t2]→ Cn

where Df(z(t))−1 exists and H(z(t), t) ≡ 0 on [t1, t2] with
z(tj) = ξj. Let K = dlog2(33 · |t1 − t2| · M)e where

M = max
t∈[t1,t2]

γ(f, z(t)) · ‖Df(z(t))−1 · v‖ <∞

and ∆s = (t1 − t2)/2K . If sm = t2 +m ·∆s and ym ∈ Cn

such that α(H(·, sm), ym) ≤ α0/6 with associated solution
z(sm) for m = 0, . . . , 2K , then

α(H(·, sm), ym)+ |∆s| ·γ(f, ym) · ‖Df(ym)−1 ·v‖ ≤ α0. (7)

Proof. Since ‖ym−z(tm)‖·γ(f, ym) ≤ 2α(f, ym) ≤ α0/3,
Lemma 2 and Prop. 3 of [9, Ch. 8] yield

γ(f, ym) · ‖Df(ym)−1 · v‖ ≤ 1.1 · M.

Therefore, the left side of (7) is bounded above by

α0/6 + 1.1 · |t2 − t1| · M/2K ≤ α0/6 + 1.1/33 ≤ α0.

6. SOFTWARE
The a posteriori certification approach presented above

has been implemented in the software Cadenza [13]. Since
Cadenza relies upon alphaCertified [16] for computing β
and bounding α and γ, the coefficients of the Newton homo-
topy H(x, t) must lie in Q[

√
−1]. Moreover, the computa-

tions can be performed using either exact rational arithmetic
or arbitrary precision floating point arithmetic.

As with alphaCertified, the internal computations in-
volving rational arithmetic are certifiable. Floating point
arithmetic can be used to control the bit length growth of
rational numbers, but the errors involving the internal com-
putations are not fully controlled. Thus, we prefer to use
floating point arithmetic to perform enough subdivisions of
the path and related Newton iterations first and then simply
verify the results using rational arithmetic. In this way, we
avoid expression swell due to long computations using exact
rational arithmetic. Since the intervals can be certified inde-
pendently, a posteriori tracking does not use the output of
one rational arithmetic computation as the input to another
computation. Moreover, the robustness of Newton’s method
near solutions, e.g., see Items 3 and 4 of Theorem 2.2, allows
one to potentially use rational numbers of smaller height, a
fact which is exploited in [14, Sec. 5].

7. EXAMPLES
The following demonstrate the a posteriori certification

approach. In § 7.1, we compare the number of intervals
needed for a posteriori certification with the number of steps
used by the certified tracking approach of [8]. Since this ex-
ample is univariate, we also consider larger examples arising
from kinematics in § 7.2 and § 7.3, and from discretizations
of a system of PDEs in § 7.4. For these larger examples, we
used Bertini [3] to heuristically track the paths producing
the input for the certification procedure. All of the computa-
tional times reported below are for computations performed
using serial processing.

7.1 Certified tracking comparison
For m > −1, consider f(x) = x2 − 1−m and v = m with

H(x, t) = f(x) + vt = x2 − 1−m+mt

being the Newton homotopy derived from [8, § 9.1]. In this
univariate example, we use exact values, namely

α(H(·, t), x) = |x2 − 1−m+mt|/|2x|2,
β(H(·, t), x) = |x2 − 1−m+mt|/|2x|,
γ(f, x) = 1/|2x|

for all t ∈ [0, 1] and x 6= 0.
In our first test, we compare the number of intervals needed

by our a posteriori certification procedure with the number



of steps used by the certified tracking procedure of [8] us-
ing the values of m listed in [8, Table 3]. The path under
consideration is

z(t) =
√

1 +m−mt (8)

where the number of initial points, with uniform stepsize,
along the path depend on the value of m. For m < 40, we
used ∆t = 1/4 meaning that 5 points along the path were
used. For m < 1000 and m < 10,000 we took ∆ = 1/6 and
∆ = 1/8. For larger values of m, we took ∆ = 1/10.

Table 1 summarizes the results with Figure 1 comparing
the two methods for m = 30000 with the local conditioning.

Number of a priori Number of a posteriori
m steps using [8] certified intervals
10 184 51
20 217 67
30 237 78
40 250 82
50 260 88
60 269 92
70 276 96
80 282 99
90 288 103
100 292 105
1000 395 162
2000 426 180
3000 446 191
4000 457 197
5000 468 204
10000 499 220
20000 530 238
30000 547 250

Table 1: Comparison for selected values of m

Figure 1: Log plot of local conditioning with respect
to time for m = 30000 and location of steps via [8] in
red with certified intervals marked in green.

In our second test, we consider both the performance
of our a posteriori procedure as the endpoint at t = 0
approaches a singularity as well as the ability to identify
a discontinuity. In particular, we take m = −1 + 10−k

for k = 1, . . . , 10 with uniform stepsize ∆t = 1/64. For
[0, 13/64) and (7/8, 1] we took points along z(t) defined
by (8) and, for [13/64, 7/8], we took points along −z(t).
In each of our tests, Cadenza correctly located the discon-
tinuities with Table 2 listing the number of intervals used
by [8] and the a posteriori certification approach. This ta-
ble shows the impact of the singularity was minimal for the
selected values of k for the a posteriori method. Figure 2
compares these two methods for k = 10 near t = 0.

Number of a priori Number of a posteriori
k steps using [8] certified intervals
1 176 64
2 287 68
3 390 70
4 492 71
5 593 71
6 695 71
7 798 71
8 901 71
9 1003 71
10 1108 71

Table 2: Summary for m = −1 + 10−k

Figure 2: Log plot of local conditioning with respect
to time for k = 10 near t = 0 and location of steps
via [8] in red with certified intervals marked in green.

7.2 Moving a 6R linkage
Consider a polynomial from two linear and ten quadratic

polynomials in 12 variables arising from the inverse kine-
matics of a general six-revolute, serial-link robot described
in [31]. A Newton homotopy arises after fixing the parame-
ters of a specific robot and considering the endpoint of this
robot moving along a line segment. In particular, we use our
a posteriori certification approach to prove that the specified
robot can reach each point of a line segment using a smooth
and continuous motion.

The twelve variables correspond to the coordinates of four
vectors z2, . . . , z5 ∈ R3 that will be vectors along the joint
axes. The fixed parameters, whose values are listed in Ta-
ble 3, are the vectors z1, z6 ∈ R3 for the fixed joint axes, the



link lengths a1, . . . , a5 ∈ R>0, and the link offset distances
d2, . . . , d5 ∈ R>0. The vectors p ∈ R3, corresponding to
the position of the endpoint, and c = (c1, . . . , c5) ∈ [−1, 1]5,
corresponding to the cosines of the twist angles, will change
with Table 3 showing the two ends of the segments, namely
p0 and p1, and c0 and c1, respectively. With these selec-
tions, the resulting Newton homotopy can be formulated to
have rational coefficients.

z1 = (0, 0, 1) z6 = (−27,−65, 72)/100
(a1, . . . , a5) = (2, 10, 4, 5, 7) (d2, . . . , d5) = (6, 5, 3, 4)/10
c0 = (−51,−78, 10, 57,−23)/100 c1 = (−33,−98, 64, 97,−13)/100
p0 = (−3, 5, 4) p1 = (2, 3, 1)

Table 3: Parameters for 6R robot

Using dot product and cross product notation, the poly-
nomial system consists of the following polynomials:

zi · zi − 1 = 0, i = 2, . . . , 5
zi · zi+1 − ci = 0 i = 1, . . . , 5

a1z1 × z2 +

5∑
i=2

(ajzj × zj+1 + djzj)− p = 0

with Newton homotopy arising by taking p = (1−t)p0+tp1

and c = (1−t)c0+tc1. In particular, this is a Newton homo-
topy for which each zi is restricted to the unit sphere in R3.

We start, at t = 1, with the solution (rounded to 4 digits):

z2 = (0.9439,−0.0082,−0.3300)
z3 = (−0.8677,−0.0850, 0.4897)
z4 = (−0.5247, 0.6911, 0.4971)
z5 = (−0.5926, 0.7584, 0.2716)

and used Bertini to track the homotopy path. Using the
default settings, it tracks the path taking 16 steps in roughly
one-hundredth of a second. Using Cadenza, it took 2.2 sec-
onds to certify the continuity of this path using 51 intervals.

7.3 A monodromy loop
We next consider performing a monodromy loop for a

polynomial system consisting of 17 quadratics in 18 variables
describing a 12-bar spherical linkage. The monodromy loops
here will be setup to be used in coordination with decompos-
ing an algebraic set into irreducible components [25]. Mon-
odromy loops can also be used to compute Galois groups [21].
By using an a posteriori approach, as discussed in § 1, only
the monodromy loops yielding new information need to be
certified following the use of a fast heuristic approach.

The 12-bar linkage is obtained by locking the scissors of a
collapsible cube having 12 scissor linkages presented in [30].
Such a linkage is presented in [29, Fig. 3] and we follow the
setup presented there. In particular, we take the length of
the side of the cube to be 2 and we fix the center of the cube
at the origin. To remove the trivial rotation of the cube, we
also fix two adjacent vertices at P7 = (−1, 1,−1) and P8 =
(−1,−1,−1). The coordinates of the remaining six vertices
P1, . . . ,P6 form the 18 variables with the 17 polynomial
constraints arising from maintaining relative distances:

‖Pi −Pj‖2 − 4 = 0,

(i, j) ∈
{

(1, 2), (3, 4), (5, 6), (1, 5), (2, 6), (3, 7),
(4, 8), (1, 3), (2, 4), (5, 7), (6, 8)

}
‖Pi‖2 − 3 = 0, i = 1, . . . , 6.

Since this polynomial system f is underdetermined, each
irreducible component (in C18) is positive-dimensional with

the nondegenerate components being one-dimensional. The
irreducible decomposition is presented in [12] which, in par-
ticular, shows that the solution set consists of 8 irreducible
curves, six of degree 4 and two of degree 6. Let C be one
of these degree 6 curves. (We note that since the degree 6
curves are complex conjugates of each other, the following
computation holds for either of them.)

We will perform a monodromy loop on the 6 points of a
witness point set for C as follows. For a constant c ∈ C, we
consider the linear polynomial Lc =

∑6
j=1 Ri ·Pi− c where

R1 = (1, 4, 1), R2 = (−2, 1,−5), R3 = (5, 4,−1)
R4 = (5, 5, 2), R5 = (−2, 1,−2), R6 = (3, 3,−1).

We start with the witness point set C ∩ V(L1) consisting of
6 points. Then, we perform a loop by moving the constant
term c from 1 to 5 − 12

√
−1 to −11 − 2

√
−1 to 1 where

each of the three is moved in a straight line. The result of
this loop is three points return to themselves while the other
three points form a 3-cycle. Using Bertini, the total time to
track all of these 18 paths is under a second. The resulting
data from Bertini was used as the input for Cadenza. The
certification of these paths used between 23 and 123 intervals
with times per path ranging from one second to nine seconds.
The total certification time, using serial processing, for all
18 paths was 78 seconds.

7.4 Discretizing a system of PDEs
The last example is a collection of polynomial systems

arising from the discretization of the Lotka-Volterra popu-
lation model with diffusion [22, 28]:

−∆u = u(1− v),
−∆v = v(u− 1).

The functions u and v are defined on the square [0, 1]2 with
∆ being the Laplacian. ForN ≥ 2, we discretized the system
similar to that performed in [17, § 9.4] and [4, § 17.1.2] via
a central difference scheme at points (xi, yj) = ( i

N+1
, j
N+1

)

for 0 ≤ i, j ≤ N + 1 with variables ui,j ≈ u(xi, yj) and
vi,j ≈ v(xi, yj). The Newton homotopy is constructed based
on changing the boundary conditions. In particular, the
homotopy consists of 2N2 quadratic equations and 8N linear
equations which define the changing boundary conditions.
For 1 ≤ i, j ≤ N , the quadratic equations are:

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j +
ui,j(1− vi,j)

(N + 1)2
= 0

vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j +
vi,j(ui,j − 1)

(N + 1)2
= 0

and linear equations are:

ui,0 −
(
t+ (1− t) · i

N + 1

)
= 0

vi,0 −
(
t+ (1− t) · N + 1− i

N + 1

)
= 0

ui,N+1 −
(
t+ (1− t) · bu

(
i

N + 1

))
= 0

vi,N+1 −
(
t+ (1− t) · bv

(
i

N + 1

))
= 0

u0,j − t = 0
v0,j − 1 = 0

uN+1,j − 1 = 0
vN+1,j − t = 0



where bu(x) = 120
101

(x−x3/6+x5/120) and bv(x) = bu(1− x).
All of the starting boundary points, at t = 1, are 1 for
which there is a unique positive real solution, namely u ≡ 1
and v ≡ 1, and this is the starting solution for the Newton
homotopy. The ending boundary conditions are rational ap-
proximations of the boundary conditions in [4, § 17.1.2].

For each 2 ≤ N ≤ 8, we used Bertini to track the cor-
responding path, which required at most 15 steps and com-
pleted in under a second. Using those points, we certified
the path tracking using Cadenza. The results are summa-
rized in Table 4 which reports the computational time using
serial processing.

Number of a posteriori
N # variables certified intervals time (sec)
2 24 23 3
3 42 23 11
4 64 23 33
5 90 37 164
6 120 41 464
7 154 51 1014
8 192 56 2311

Table 4: Summary of a posteriori certification for
the discretized Lotka-Volterra systems.

8. CONCLUSION
Heuristic path tracking schemes using high-order predic-

tion approaches with adaptive precision robustly and effi-
ciently track solution paths. For a Newton homotopy, we
use the results of this heuristic path tracking as input for an
a posteriori procedure that certifies the desired solution path
was indeed tracked properly. Since each step can be certified
independently, an a posteriori procedure is naturally paral-
lelizable with a goal of making the time associated with using
a parallelized a posteriori certified scheme roughly the same
as the time it takes to heuristically track the path.

The examples presented in § 7 demonstrate that this a pos-
teriori certification procedure is applicable for moderately
sized systems which, for example, can be used to prove re-
sults about monodromy groups and continuous motion of
an end effector. Based on the efficiency and practicality of
this a posteriori certification procedure, we are working on
generalizing this to other types of homotopies. For Newton
homotopies, (4) guaranteed the existence of a smooth path
along the interval under consideration. For general homo-
topies, one aims to develop a similar statement by estimating
how the relevant data changes as t varies.

One key idea used in a posteriori certification is that both
the startpoint and endpoint for an interval can be used to
prove that path jumping did not occur. This is in contrast
to an a priori certified tracking procedure in which one only
has access to the startpoint and aims to approximate an-
other point along the path. One could utilize (4) from The-
orem 4.2 to develop an a priori certified tracking procedure
for Newton homotopies. A refinement of such an a priori
tracking approach is developed in [14] which also includes
the use of an Euler predictor, i.e., a first-order prediction
method, together with additional complexity results.
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theorem I: Geometric aspects. J. Amer. Math. Soc.,
6(2), 459–501, 1993.

[25] A.J. Sommese, J. Verschelde, and C.W. Wampler.
Using monodromy to decompose solution sets of
polynomial systems into irreducible components. In
NATO Sci. Ser. II Math. Phys. Chem., 36, Kluwer
Acad. Publ., Dordrecht, 2001, pp. 297–315.

[26] H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T.
Watson. Algorithm 857: POLSYS GLP – a parallel
general linear product homotopy code for solving
polynomial systems of equations. ACM Trans. Math.
Software, 42(4), 561–579, 2006.

[27] J. Verschelde. Algorithm 795: PHCpack: A
general-purpose sovler for polynomial systems by
homotopy continuation. ACM Trans. Math. Software,
25(2), 251–276, 1999.

[28] V. Volterra. Variazionie fluttuazioni del numero
d’individui in specie animali convivent. Mem. Acad.
Lincei., 2, 31–113, 1926.

[29] C.W. Wampler, J.D. Hauenstein, and A.J. Sommese.
Mechanism mobility and a local dimension test.
Mech. Mach. Theory, 46(9), 1193–1206, 2011.

[30] C.W. Wampler, B. Larson, and A. Edrman. A new
mobility formula for spatial mechanisms. In Proc.
DETC/Mechanisms & Robotics Conf., Sept. 4–7, Las
Vegas, NV (CDROM), 2007.

[31] C.W. Wampler and A.P. Morgan. Solving the
kinematics of general 6R manipulators using
polynomial continuation. Robotics: Applied
Mathematics and Computational Aspects, K.
Warwick, ed., Clarendon Press, Oxford, 1993,
pp. 57–69.


	Introduction
	Newton's method
	Path tracking
	A rule for path continuity
	A certification procedure
	Software
	Examples
	Certified tracking comparison
	Moving a 6R linkage
	A monodromy loop
	Discretizing a system of PDEs

	Conclusion
	References

