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Abstract

Sparse polynomials that vanish on algebraic sets are preferred in many computations
over the complex numbers since they are easy to evaluate and often arise from underly-
ing structure. For example, a monomial vanishes on an algebraic set if and only if the
algebraic set is contained in the union of the coordinate hyperplanes. Eisenbud and
Sturmfels initiated a detailed study of binomial ideals 25 years ago and showed that
they had many special properties including that each component is rational. Given a
general point on a component and its tangent space, this paper exploits rationality to
develop a local approach that decides if the component is defined by binomials or not.
When a component is not defined by binomials, one often is interested in computing
sparse polynomials that vanish on the component. Thus, this paper also develops an
approach for computing sparse polynomials using a witness set for the component. Our
approach relies on using numerical homotopy methods to sample points on the alge-
braic set along with incorporating multiplicity information using Macaulay dual spaces.
If the algebraic set is defined by polynomials with rational coefficients, exactness re-
covery such as lattice based methods can be used to find exact representations of the
sparse polynomials. Several examples are presented demonstrating the new methods.

1 Introduction

The number of terms in a polynomial is one measure of its complexity in which a polynomial
is said to be sparse if it has relatively few terms. Sparse polynomials can be used to identify
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underlying structure. In terms of sparsity, monomials (polynomials with one term) have
classically been exploited. For example, the corresponding solution set of a collection of
monomials is contained in the union of the coordinate hyperplanes and flat degenerations
to monomial ideals such as through Gröbner bases demonstrate the usefulness of monomial
ideals in computational algebraic geometry. In 1996, Eisenbud and Sturmfels [12] initiated
the study of ideals generated by binomials (polynomials with at most two terms) and showed
that they have many remarkable properties. For example, every component of a binomial
ideal is rational and sparsity-preserving operations can be performed on them. See the
books [7, 13] for more information about toric varieties and binomial ideals.

Since monomials and binomials are extremely useful in computational algebraic geometry,
several methods have been proposed to search for them. Monomials can be determined using
Gröbner basis methods, e.g., see [21]. Gröbner-free approaches for deciding if a given ideal
is generated by binomials using linear algebra computations are presented in [6, 23]. For
some polynomial systems arising from chemical reaction networks and biological models, this
approach can be more efficient than Gröbner basis methods [17, 22, 23]. An approach for
detecting binomiality after an ambient automorphism was proposed in [19]. A theoretical
approach based on tropical geometry, matrix theory, and computational number theory is
presented in [18] for deciding if an ideal contains a binomial.

Our approach for testing for binomiality of a component is a local numerical computation
where the input is a general point on the component along with its tangent space. Then, one
simply compares the computed tangent space with what one must have if the component
was defined by binomials as summarized in Algorithm 1.

To extend beyond binomials, this article considers computing all polynomials of degree at
most d with at most t terms that vanish on an algebraic set represented by a witness set. Wit-
ness sets allow sample points and multiplicity information to be computed. From this data,
we propose two methods to compute sparse polynomials: checking all minors of a matrix
constructed from the degree d Veronese embedding of the points or using an `1-relaxation. If
the algebraic set is defined over Q, then exactness recovery techniques, such as lattice based
methods [1], can be used to obtain exact representations of the sparse polynomials.

The rest of the article proceeds as follows. Section 2 summarizes necessary background in-
formation on witness sets, sampling, multiplicity, exactness recovery, and `1-relaxation. The
method for testing binomiality is described in Section 3 and computing sparse polynomials
is described in Section 4. Several examples are presented in Section 5.

2 Background

The following provides necessary background on topics from numerical algebraic geometry
and sparsity. For more details regarding numerical algebraic geometry, see [3, 24].
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2.1 Witness sets and sampling

For a system of polynomials

f(x) =

 f1(x1, . . . , xN)
...

fn(x1, . . . , xN)

 ,
the corresponding algebraic set (or variety) is

V(f) = {x ∈ CN | f(x) = 0} ⊂ CN .

Each algebraic set can be decomposed uniquely (up to reordering) into a union of irreducible
components creating the irreducible decomposition, say

V(f) =
k⋃
i=1

Ai

where each Ai is irreducible. Let dimAi be the dimension of Ai, which is equal to the
minimum of the dimension of the tangent space at each point of Ai.

A witness set for an irreducible algebraic set X ⊂ CN is {g,L,W} which provides a
geometric representation of X where:

� witness system g is a polynomial system in whichX is an irreducible component of V(g);

� witness slice L is a linear space with codimL = dimX that intersects X transversely;

� witness point set W = X ∩ L with #W = degX.

One key aspect of witness sets is the ability to localize computations to the component de-
scribed by the witness set. That is, for the witness system g, V(g) can have other irreducible
components besides X, but the witness point set W localizes all further computations to X
without needing to require X = V(g) nor having to compute the other components of V(g).
An example of this is by deforming the linear space L to compute other points on X, i.e., sam-
ple points from X. If L′ ⊂ CN is a general linear space with codimL′ = codimL = dimX,
then one can consider the homotopy deforming L to L′ along X, namely

X ∩ (t · L+ (1− t) · L′). (1)

At t = 1, one starts with W = X ∩ L which deforms to W ′ = X ∩ L′ at t = 0. By selecting
various linear spaces, one is able to sample as many generic points on X as needed.

Example 1. To illustrate, consider X = V(x2 + y2 − 1) ⊂ C2. Clearly, dimX = 1 and
degX = 2. An example of a witness set for X, as illustrated in Figure 1, is {g,L,W} where:

� g = x2 + y2 − 1,
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� L = V(x+ 2y − 1) with codimL = dimX = 1,

� W = X ∩ L = {(1, 0), (−3/5, 4/5)} with #W = degX = 2.

For the witness set in Ex. 1, the coefficients of the linear space L were chosen to be
small integers for illustration purposes. In practice, the coefficients are chosen to be random
complex numbers to ensure, with probability one, that L is transverse to X. Moreover, we
also selected X in Ex. 1 to be a hypersurface in the plane for illustration purposes. When X
is a hypersurface, the witness slice L is a line that can be deformed to provide information
about the Newton polynomial of X [4, 15]. Thus, the focus of the present work is on
components X for which the codimension is larger than one so that the ideal of polynomials
vanishing on X, denoted I(X), is not principal.

2.2 Multiplicity

If g is a witness system for X, then X could have multiplicity greater than 1 as a component
of V(g). There are two aspects associated to this that one needs to consider. First, standard
predictor-corrector path tracking methods for (1) can be employed when the multiplicity is
one. However, one often wants to capture the multiplicity structure imposed by a given poly-
nomial system in order to compute sparse polynomials satisfying that multiplicity structure.
These aspects are addressed using deflation and Macaulay dual spaces, respectively.

Suppose that X ⊂ CN is an irreducible algebraic set with witness set {g,L,W}. Consid-
ering (1), let ` and `′ be linear systems such that L = V(`) and L′ = V(`′). Then, one can
translate the geometric deformation (1) to the algebraic homotopy

H(x, t) =

[
g(x)

t · `(x) + (1− t) · `′(x)

]
= 0. (2)

The multiplicity of X with respect to g is the multiplicity of w ∈ W with respect to {g, `}.
Hence, if X has multiplicity one with respect to g, then dim null Jg(w) = dimX where Jg(w)

Figure 1: Illustration of witness set for X with witness point set W = X ∩ L = {w1, w2}.
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is the Jacobian matrix of g evaluated at w, showing that the solution path defined by (2)
starting at w is nonsingular for 0 ≤ t ≤ 1.

When the multiplicity is greater than one, deflation is a process of removing multiplicity
to return to the multiplicity one case, e.g., see [9, 16, 20]. The following describes using
isosingular deflation [16] in order to construct a witness system g′ from g such that X has
multiplicity 1 with respect to g′. Define g0 = g and consider the deflation operator D with

(gi+1, w) = D(gi, w)

where gi+1 consists of gi and all (r + 1) × (r + 1) minors of Jgi(x) where r = rank Jgi(w).
The sequence si = dim null Jgi(w) is a nonincreasing sequence of nonnegative integers that
limits to dimX, i.e., there exists i∗ such that si = dimX for all i ≥ i∗. Hence, one can take
g′ = gi∗ to be used for path tracking along X.

Next, we aim to encode the multiplicity structure of w with respect to f = {g, `} using
a Macaulay dual space, e.g., see [9]. For α ∈ ZN≥0, consider the differential

∂α =
1

α!

∂|α|

∂xα

where α! = α1! · · ·αN ! and |α| = α1 + · · · + αN . Evaluating at w yields the linear func-
tional ∂α[w] defined by

∂α[w](p) = (∂αp)(w).

Consider the infinite dimensional complex vector space

Dw = span
({
∂α[w]

∣∣ α ∈ ZN≥0
})

. (3)

The Macaulay dual space of f at w is the vector space

Dw[f ] =
{
∂ ∈ Dw

∣∣ ∂((x− w)βfj) = 0 for all β ∈ ZN≥0 and all j
}
.

Since w is an isolated solution of f = 0, Dw[f ] is a finite dimensional vector space whose
dimension is equal to the multiplicity of w with respect to f .

Example 2. Consider the polynomial system

g(x, y, z) =

[
2xy + 2xz − 2yz − 1
x2 + y2 + z2 − 1

]
(4)

for which X = V(g) is an irreducible curve of degree 2 which has multiplicity 2 with respect
to g. For simplicity of presentation, consider the line L = V(`) where ` = x + y + z − 1
and the point w = (2, 1 +

√
5, 1 −

√
5)/4 ∈ X ∩ L. Since rank Jg(w) = 1, one iteration of

isosingular deflation yields

g′ =


g

4(x+ y)(y − x+ z)
4(x+ z)(y − x+ z)
4(y − z)(y − x+ z)
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with dim null Jg′(w) = 1 = dimX. Additionally, for f = {g, `}, w has multiplicity 2 with
respect to f with Macaulay dual space

Dw[f ] = span
{
∂(0,0,0)[w], 2

√
5∂(1,0,0)[w]− (1 +

√
5)∂(0,1,0)[w] + (1−

√
5)∂(0,0,1)[w]

}
.

2.3 Exactness recovery

For algebraic sets which are defined over the rational numbers, one often aims to recover exact
rational numbers from numerical data. The exactness recovery considered in [1] is: given a
numerical approximation w̃ of a generic point w ∈ X ⊂ CN , compute exact polynomials p of
degree at most d which vanish on X using lattice based methods. Thus, one aims to compute
integer vectors c such that c · νd(w̃) ≈ 0 where νd(z) is the degree d Veronese embedding
of z, namely

νd(z) = (1, z1, . . . , zN , z
2
1 , z1z2, . . . , z

2
N , . . . , z

d
N). (5)

Example 3. Consider the numerical approximation

w̃ = (0.5510119638,−0.2463075497, 0.7973195135)

of a point w ∈ X ∩ V(x +
√

2y + z − 1) where X ⊂ C3 as in Ex. 2. Using PSLQ in Maple

for d = 1 yields c = [0,−1, 1, 1] corresponding with y+ z− x which does indeed vanish on X
and is contained in

√
〈g〉 where g is as in (4). To search for other linear polynomials, we

can repeat the PSLQ computation without the x-coordinate (since it is dependent on y and z)
yielding [2798, 5601,−1779] suggesting that there are no other vanishing linears with integer
coefficients. Repeating with a 50-digit numerical approximation yields

[−47223690816349078, 4761102144861194, 60698860867498949].

2.4 Sparsest nonzero null vector

In Section 2.3, lattice based methods are used to search for integer null vectors. To compute
sparse polynomials, one is looking to compute sparse null vectors as described in Section 4.

For a vector x ∈ RN , define

‖x‖0 = #{i | xi 6= 0}.

For a matrix A ∈ Rm×k, the sparsest nonzero null vector solves

min{‖x‖0 | Ax = 0, x 6= 0}.

Since one can arbitrarily rescale null vectors, one can pick a general coordinate patch to fix
a scaling. That is, for a general vector v ∈ RN , one can consider

min{‖x‖0 | Ax = 0, v · x = 1}. (6)
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Following a common technique in compressed sensing, e.g., see [5, 10, 11], one replaces
the nonconvex optimization problem (6) with the convex optimization problem

min{‖x‖1 | Ax = 0, v · x = 1} (7)

where ‖x‖1 = |x1|+· · ·+|xN |. The optimization problem (7) is an `1-relaxation of (6). In fact,
under suitable conditions on the matrix A, e.g., see [5, 10, 11], the solution to (7) solves (6).
Since one aims to find many sparse polynomials in Section 4, we employ `1-relaxation without
needing guaranteed theoretical results on the recovery of the sparsest vector.

3 Binomiality testing

For an irreducible algebraic set X ⊂ CN , it is natural to ask whether the ideal of polynomials
vanishing on X, namely I(X) ⊂ C[x1, . . . , xN ], is generated by binomials or not. The new
spin on this question is to answer this binomiality question using only a given generic point
w ∈ X and the tangent space Tw(X) ⊂ CN of X at w so that d := dimX = dimTw(X).

First, consider relabeling the coordinates with w = (w1, . . . , wn, 0, . . . , 0) ∈ (C∗)n × CN−n

where C∗ = C \ {0} such that the first d variables are linearly independent in Tw(X). With
this relabeling, one immediately has a monomiality test.

Remark 4. After this relabeling, 〈xn+1, . . . , xN〉 ⊂ I(X). Thus, ideal I(X) is generated by
monomials if and only if d = n which would yield I(X) = 〈xn+1, . . . , xN〉.

One more simplification is to ignore the last N −n coordinates which are identically zero
on X via projection. For the projection map π : CN → Cn defined by π(x) = (x1, . . . , xn),
it is easy to verify that I(X) = I(π(X)) + 〈xn+1, . . . , xN〉 so that binomiality of I(X) is
equivalent to binomiality of I(π(X)). Therefore, by trivially projecting from CN to Cn and
easily updating X, w, and Tw(X) accordingly, we can assume without loss of generality that
X ⊂ Cn is not contained in any coordinate hyperplane, w ∈ (C∗)n, and Tw(X) ⊂ Cn where
the first d coordinates are linearly independent in Tw(X).

The key aspect of our approach is to exploit the rationality of irreducible algebraic sets
defined by binomials [12]. In particular, I(X) ⊂ C[x1, . . . , xn] is a binomial ideal if and only
if there exists vectors a1, . . . , an ∈ Zd such that

X = {(w1ta1 , . . . , wntan) | t ∈ (C∗)d}.

Since this yields a total of d · n unknown integers, we consider a reparameterization based
on the linear independence of the first d variables. Thus, this results in d · (n− d) unknown
rational numbers, namely bd+1, . . . , bn ∈ Qd, such that

X = {(w1s1, . . . , wdsd, wd+1sbd+1 , . . . , wnsbn) | s ∈ (C∗)d}. (8)

In particular, treating ai and bj as column vectors and letting Id be the d×d identity matrix,
one simply has that the row reduced echelon form of[

a1 · · · an
]
∈ Zd×n is

[
Id bd+1 · · · bn

]
∈ Qd×n.
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Example 5. For X = V(x3 − y2) ⊂ C2 with w = (1, 1), the classical parameterization is

X = {(t2, t3) | t ∈ C∗}

corresponding with a1 = 2 and a2 = 3. Thus, one has b2 = 3/2 with

X = {(s, s3/2) | s ∈ C∗}.

Since w corresponds with s = (1, . . . , 1) ∈ (C∗)d in the parameterization in (8), the
tangent space of the parameterization at w is spanned by the rank d matrix

1
. . .

1
bd+1,1wd+1

w1

· · · bd+1,dwd+1

wd
...

. . .
...

bn,1wn
w1

· · · bn,dwn
wd


∈ Cn×d. (9)

From Tw(X), one can also express it in its reduced row echelon form, say

1
. . .

1
ud+1,1 · · · ud+1,d

...
. . .

...
un,1 · · · un,d


∈ Cn×d. (10)

Since reduced row echelon form is classically known to be unique, one has that I(X) is
generated by binomials if and only if, for every i = d+ 1, . . . , n and j = 1, . . . , d,

ui,j ·
wj
wi
∈ Q (11)

corresponding with bi,j.
Algorithm 1 summarizes the approach which is justified by the preceding statements and

demonstrated in the following.

Example 6. To illustrate the steps in Algorithm 1 both numerically and symbolically simul-
taneously, the following considers X = V(x3−y2) from Ex. 5 and Y = V(x3−y2−y3) where
d = 1 and n = 2 for both. Let i =

√
−1.

For X, consider the following general point (rounded to four decimal places)

w = (w1, w2) ≈ (0.2636 + 1.7272i,−1.2233 + 1.9589i).
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Input : For an irreducible variety X ⊂ CN , a general point w ∈ CN and the
tangent space Tw(X) of X at w.

Output: Array of numbers as in (11) and a boolean which is True if I(X) is
generated by binomials, otherwise False.

Set d := dimTw(X) and let n be the number of nonzero coordinates in w.
Reorder the coordinates so that the first n are nonzero and the first d ≤ n are
linearly independent in Tw(X).

Compute the reduced row echelon form for Tw(X) dropping the last N − n rows
which are identically zero. This yields ui,j for i = d+ 1, . . . , n and j = 1, . . . , d as in
(10).
for i = d+ 1, . . . , n do

for j = 1, . . . , d do
Set bi,j := ui,j · wj/wi

end

end
if every bi,j ∈ Q then

return True
else

return False
end

Algorithm 1: Binomiality Test

The reduced row echelon form of Tw(X) is 1
3w2

1

2w2

 ≈ [ 1
1.5040 + 1.2919i

]
.

Hence, since w3
1 = w2

2 on X, (11) with (i, j) = (2, 1) yields(
3w2

1

2w2

)
· w1

w2

=
3w3

1

2w2
2

=
3

2
.

Therefore, I(X) is generated by binomials with b2,1 = 3/2 as in Ex. 5.
Now, for Y , consider the following general point (rounded to four decimal places)

w = (w1, w2) ≈ (−1.1620 + 0.1969i,−1.6037 + 0.1764i).

The reduced row echelon form of Tw(Y ) is 1
3w2

1

2w2 + 3w2
2

 ≈ [ 1
0.9022− 0.0361i

]
.
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Hence, since w3
1 = w2

2 + w3
2 on Y , (11) with (i, j) = (2, 1) yields(

3w2
1

2w2 + 3w2
2

)
· w1

w2

=
3w3

1

2w2
2 + 3w3

2

=
3w2

2 + 3w3
2

2w2
2 + 3w3

2

≈ 0.6564− 0.0647i.

Numerically, one sees that this is clearly not equal to a rational number since it is nonreal.
Symbolically, one sees that this expression is not constant and therefore cannot be identically
equal to some rational number on Y . This confirms that I(Y ) is not generated by binomials.

When I(X) is indeed generated by binomials, the last step in our method is to compute
a witness system g for X consisting of n − d binomials. For i = 1, . . . , n − d, let cd+i ∈ Z
be the least common multiple of the denominators of the entries in bd+i ∈ Qd. If In−d is the
(n− d)× (n− d) identity matrix and B =

[
bd+1 · · · bn

]
∈ Qd×(n−d), the columns of

M =

[
−B
In−d

]
·

 cd+1

. . .

cn

 ∈ Zn×(n−d)

are integer vectors that form a basis of the null space of
[
Id bd+1 · · · bn

]
. Each column

of M corresponds to a binomial whose two monomials arise from the positive and negative
entries, respectively. In particular, for the ith column of M , consider

mi,1(x) =
n∏
j=1

x
max{0,Mi,j}
j and mi,2(x) =

n∏
j=1

x
max{0,−Mi,j}
j .

Hence, given the support of a binomial in I(X), all that remains is to compute the coefficients
which is accomplished by evaluating the monomials at w and computing a vector qi ∈ C2\{0}
in the null space of [

mi,1(w) mi,2(w)
]
.

For i = 1, . . . , n− d, this yields a binomial

gi(x) = qi,1mi,1(x) + qi,2mi,2(x)

which vanishes on X. If one expects X to be defined over Q, then one can use Section 2.3
to compute qi ∈ Z2 \ {0} yielding binomials with integer coefficients vanishing on X.

Example 7. Continuing with Ex. 6, one has c2 = 2 so that

M =

[
−3/2

1

]
·
[

2
]

=

[
−3
2

]
.

Hence, m1,1(x, y) = y2 and m1,2(x, y) = x3. Since m1,1(w) = m1,2(w) ≈ −2.3407 − 4.7927i,

the null vector q1 =
[

1 −1
]T

yields the binomial g1(x, y) = y2 − x3 that vanishes on X.
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The relabeling and simplifying assumptions ensure that the system g(x) consisting of
n − d binomials vanishes on X such that the Jacobian matrix of g evaluated at w is full
rank. Therefore, X is an irreducible component of V(g), i.e., g is a witness system of X.
The following demonstrates this on different orderings of the variables for the twisted cubic.

Example 8. Consider the twisted cubic curve X = V(x2 − y, xy − z, xz − y2) ⊂ C3. The
traditional ordering of the variables, namely (x, y, z), gives the traditional parameterization
with exponents

[
1 2 3

]
so that

M =

 −2 −3
1 0
0 1

 yielding g(x, y, z) =

[
y − x2
z − x3

]
.

Ordering the variables as (y, x, z) gives exponents
[

1 1/2 3/2
]

so that

M =

 −1 −3
2 0
0 2

 yielding g(y, x, z) =

[
x2 − y
z2 − y3

]
.

With this ordering, V(g) consists of two cubic curves, one of which is X.
Ordering the variables as (z, x, y) gives exponents

[
1 1/3 2/3

]
so that

M =

 −1 −2
3 0
0 3

 yielding g(z, x, y) =

[
x3 − z
y3 − z2

]
.

With this ordering, V(g) consists of three cubic curves, one of which is X.

4 Computing sparse polynomials

In Section 3, once one found the support monomials of a binomial, the coefficients could be
computed essentially by interpolating at one general point. For the arbitrary case when not
defined by binomials, the following extends this idea by first locating support monomials
and then interpolating using general points. To provide a finite bound on the search space,
the following aims to compute polynomials of degree at most d which have at most t terms.
The method can be extended to utilize multiplicity information in the form of Macaulay
dual bases as described in Section 2.2. For simplicity of presentation, we assume that the
algebraic set X ⊂ CN under consideration is irreducible, but the method trivially extends
to the reducible case by considering each irreducible component.

4.1 Multiplicity one

Suppose that X is described by a witness set {g,L,W} where X has multiplicity one with
respect to g. Then, the key observation is that knowing t general points on X is enough to
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compute vanishing polynomials with at most t terms. This is well known in the case of t = 1,
i.e., monomials, by simply looking to see which coordinates of one general point vanish.

In the following, a polynomial p(x) = p(x1, . . . , xN) of degree at most d consisting of
at most t monomials is written as p(x) =

∑t
i=1 cix

αi with coefficients ci ∈ C and exponent

vectors αi ∈ ZN≥0 such that
∑N

j=1 αi,j ≤ d. The vector νd(z) is defined in (5).

Theorem 9. Suppose that q1, . . . , qt ∈ X and

A =

 νd(q1)
...

νd(qt)

 . (12)

Assume that p(x) =
∑t

i=1 cix
αi is a nonzero polynomial with at most t terms and deg p ≤ d

which vanishes on X. Then, the determinant of the t × t submatrix of A whose columns
correspond to the monomials xα1 , . . . , xαt vanishes.

Proof. Let Aα1,...,αt be the t × t submatrix of A whose columns correspond to xα1 , . . . , xαt

and c = [c1, . . . , ct]
T . Since p vanishes on X, it follows that c is a nonzero null vector of

Aα1,...,αt . Hence, Aα1,...,αt is rank deficient yielding detAα1,...,αt = 0.

The following provides a method for finding vanishing polynomials with precisely t terms
of degree at most d.

Theorem 10. Suppose that q1, . . . , qt ∈ X are general and A as in (12). Let Aα1,...,αt be
the t × t submatrix of A whose columns correspond to xα1 , . . . , xαt. If rankAα1,...,αt = t − 1
and c ∈ (C∗)t is a null vector of Aα1,...,αt, then p(x) =

∑t
i=1 cix

αi has precisely t terms with
deg p ≤ d and vanishes on X.

Proof. Let w ∈ X and B =

[
A

νd(w)

]
. Assume that Bα1,...,αt is the (t + 1) × t submatrix

of B whose columns correspond to xα1 , . . . , xαt . Since rankAα1,...,αt = t−1 and q1, . . . , qt are
general, it immediately follows that rankBα1,...,αt = t−1 so that nullAα1,...,αt = nullBα1,...,αt .
Hence, Bα1,...,αt · c = 0 yields p(w) = 0 showing that p vanishes on X.

Example 11. As in Ex. 8, let X ⊂ C3 be the twisted cubic curve with witness system

g(x, y, z) =

 y − x2
xy − z
xz − y2

 .
Clearly, X has multiplicity one with respect to g. Consider searching for all polynomials of
degree at most d = 2 with at most t = 2 terms that vanish on X. One could utilize sampling
(see Section 2.1) to compute 2 general points on X. For illustrative purposes, consider

q1 = (
5
√

2,
5
√

4,
5
√

8) and q2 = (− 3
√

3,
3
√

9,− 3
√

27).
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Input : For an irreducible variety X ⊂ CN , t general points qi ∈ X for i = 1, . . . t
and d the upper bound on the degree. Additionally, if desired, multiplicity
information associated with each point.

Output: List of polynomials of degree at most d vanishing on X having exactly
t terms.

Initialize list of polynomials P := {}.
Construct matrix A from points qi without multiplicity information using (12) or
with multiplicity information using (14).
for every collection of t columns of A corresponding with α1, . . . , αt do

if det(Aα1,...,αt) = 0 then
if rank(Aα1,...,αt) = t− 1 and there is a null vector c ∈ (C∗)t of Aα1,...,αt then

Add
∑t

i=1 cix
αi to P .

end

end

end
return P

Algorithm 2: Compute sparse polynomials

Since each coordinate is nonzero, we know that there are no monomials that vanish on X.
Hence, to search for all binomials of degree at most 2, we consider the 2× 10 matrix

1 x y z x2 xy xz y2 yz z2

A =
1 5

√
2 5

√
4 5

√
8 5

√
4 5

√
8 5

√
16 5

√
16 5

√
32 5

√
64

1 − 3
√
3 3
√
9 − 3

√
27 3

√
9 − 3

√
27 3

√
81 3

√
81 − 3

√
243 3

√
729

Searching over the 2 × 2 minors yields 3 that vanish, corresponding to columns {y, x2},
{z, xy}, and {xz, y2}. Each corresponding 2 × 2 submatrix has rank 1 with null vector
c = [1,−1]T . This shows that the 3 polynomials in g are the 3 binomials of degree at most 2
that vanish on X.

As alluded to in the proof of Theorem 10, adding rows to A arising from other points
on X does not change the rank of any submatrix obtained by taking all rows and at most t
columns since the first t rows of A arise from t general points of X. However, adding rows
to A does increase the rank of the overall matrix until it reaches the value of the Hilbert
function of X in degree d, e.g., see [8, 14]. After stabilization of the rank, the null space of
the corresponding matrix is indeed the vector space of all polynomials of degree at most d
that vanish on X.

One can utilize a modification of the (real) `1-relaxation in (7) to compute sparse null
vectors by reducing from complex linear algebra to real linear algebra by taking real and
imaginary parts as needed. If the rank of the matrix is less than the corresponding value of
the Hilbert function and this process computes a corresponding polynomial with more terms
than general points utilized, there is no longer a guarantee that this polynomial vanishes
identically on X. Hence, one needs to test this resulting polynomial at one additional

13



general point to determine if it does indeed vanish identically on X. If, say, a binomial is
found, one can then search to find other sparse polynomials by repeating with the matrix
obtained by removing one of the columns corresponding to a monomial in the binomial.

Example 12. Reconsider the setup from Ex. 11 and let Ak be the k × 10 matrix with rows
ν2(xi) for i = 1, . . . , k where xi ∈ X are general points. Since we are searching for binomials
and the Hilbert function of X in degree 2 is 7, i.e., a 3 dimensional linear space of quadratics
vanish on X, we consider k = 2, . . . , 7. As the solution obtained by (7) can be sensitive to
the choice of the random patch, we performed 100 random trials for each value of k. Table 1
summarizes the results of this experiment using linprog in Matlab with “success” indicating
that one of the three binomials was found. This table shows that the success rate increased
as k increased, i.e., as more points were utilized.

Table 1: Frequency of `1-relaxation successfully computing a binomial using k points out of
100 random trials for the twisted cubic.

k 2 3 4 5 6 7
successes 3 4 7 31 44 57

4.2 Multiplicity greater than one

When X has multiplicity greater than one with respect to a witness system g, one can utilize
deflation (see Section 2.2) to produce a witness system which can be used for sampling (see
Section 2.1). The following describes how to modify the setup from Section 4.1 to recover
sparse polynomials vanishing on X with the multiplicity structure imposed by g via [14].
The key piece is to extend the definition of the Veronese embedding νd from (5) to one that
depends upon both a point and a linear functional.

Let z ∈ CN and ∂ ∈ Dz be a corresponding linear functional (as defined in (3)). Then,
define the degree d Veronese embedding of z with respect to ∂ as (by abuse of notation)

νd(z, ∂) = ∂(νd(x)). (13)

Thus, one applies ∂ (which includes evaluating at z) to the vector of monomials obtained
from the Veronese embedding of degree d of the vector of variables x = (x1, . . . , xN). This
is a generalization of the Veronese embedding since

νd(z, ∂(0,...,0)[z]) = νd(z).

With this setup, all items from Section 4.1 naturally extend to the case when the multi-
plicity is greater than one. In particular, the following are natural extensions of Theorems 9
and 10 whose proofs follow in the same manner and are thus omitted.

14



Theorem 13. Suppose that q1, . . . , qt ∈ X, ∂1, . . . , ∂t such that ∂i ∈ Dqi [fqi ] with polynomial
system fqi = {g, `qi} where `qi consists of dimX linear polynomials with `qi(qi) = 0, and

A =

 νd(q1, ∂1)
...

νd(qt, ∂t)

 . (14)

Assume that p(x) =
∑t

i=1 cix
αi is a nonzero polynomial with at most t terms and deg p ≤ d

which vanishes on X and on the multiplicity structure imposed by g. Then, the determinant
of the t×t submatrix of A whose columns correspond to the monomials xα1 , . . . , xαt vanishes.

Theorem 14. Suppose that q1, . . . , qt ∈ X are general, ∂1, . . . , ∂t such that ∂i ∈ Dqi [fqi ]
is general where fqi = {g, `qi} and `qi consists of dimX general linear polynomials with
`qi(qi) = 0, and A as in (14). Let Aα1,...,αt be the t × t submatrix of A whose columns
correspond to xα1 , . . . , xαt. If rankAα1,...,αt = t− 1 and c ∈ (C∗)t is a null vector of Aα1,...,αt,
then p(x) =

∑t
i=1 cix

αi has precisely t terms with deg p ≤ d and vanishes on X as well as
the multiplicity structure imposed by g.

Example 15. To illustrate, consider X = V(g) ⊂ C2 where X has multiplicity 2 with
respect to g(x, y) = (x − y)2. Every point q ∈ X is of the form q = (a, a) where a ∈ C.
The corresponding linear function `q has the form `q = b(x − a) + c(y − a). Thus, for the
polynomial system fq = {g, `q},

Dq[fq] = span{∂(0,0)[q], c∂(1,0)[q]− b∂(0,1)[q]}.

Hence, a general point q ∈ X with general element ∂ ∈ Dq[fq] can be written as

q = (a, a) and ∂ = d∂(0,0)[q] + e(c∂(1,0)[q]− b∂(0,1)[q])

where a, b, c, d, e ∈ C are general with

ν2(q, ∂) = (d, ad+ ce, ad− be, a2d+ 2ace, a2d− abe+ ace, a2d− 2abe).

It is easy to verify that the only linear relation amongst the entries of ν2(q, ∂) that vanishes
for all a, b, c, d, e ∈ C corresponds with x2 − 2xy + y2 = (x− y)2 as expected.

5 Examples

In the following examples, Bertini [2] is used to generate sample points and Matlab is
used to determine binomiality or search for sparse polynomials either exhaustively searching
minors or utilizing the `1-relaxation in (7). Section 5.1-5.3 concern finding sparse polynomials
while Section 5.4 considers binomiality testing for two systems arising from chemical reaction
networks.

15



5.1 Random parameterization of twisted cubic

The classical twisted cubic parameterized by t 7→ (t, t2, t3) was considered in Examples 8,
11, and 12. As a demonstration that our numerical methods work with varieties defined by
polynomials with arbitrary complex coefficients, consider the twisted cubic parameterized
by t 7→ (at, bt2, ct3) where i =

√
−1 and

a =
√

2− i
√

3, b = 1 + i, and c = 0.1653− 0.9302i.

Hence, we consider the irreducible algebraic set X = V(g) ⊂ C3 where

g(x, y, z) =

 bx2 − a2y
cxy − abz
b2xz − acy2

 .
With the goal of finding all polynomials of degree at most d = 2 with at most t = 2 terms,
applying Algorithm 2 which searches over all 2×2 submatrices yields the three binomials in g.

Similar to Ex. 12, we then utilized linprog in Matlab to solve (7) using 100 random
trials for each k = 2, . . . , 7 points. Table 2 summarizes the results of this experiment with
“success” indicating that one of the three binomials was found. As with Table 1, the success
rate increased as k increased.

Table 2: Frequency of `1-relaxation successfully computing a binomial using k points out of
100 random trials for the random twisted cubic

k 2 3 4 5 6 7
successes 0 9 30 52 59 71

5.2 Multiple component

The advantage of our approach based on sample points is that it is easy to switch between
using the multiplicity structure and ignoring the multiplicity structure thereby computing
sparse polynomials in the corresponding radical ideal. To demonstrate, consider the polyno-
mial system

g(x, y, z) =

[
2xy − 2y2 + z2 + 2x− y − 1
x2 − y2 + z2 + 2x− y − 1

]
.

The algebraic set X = V(g) is a curve of degree 2 that has multiplicity 2 with respect to g.
In order to sample points on X, we utilize g′ constructed using isosingular deflation (see
Section 2.2) where

g′ =

 g
2(x− y)(2x− 2y + 1)

4z(x− y)

 .
Thus, consider searching for all polynomials of degree at most d = 2 with at most t = 3
terms for X with respect to g (multiplicity 2) and g′ (multiplicity 1).
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Since no coordinates are zero at a general point on X, no monomial vanishes. Utilizing
the multiplicity structure with respect to g, searching over the 2× 2 and 3× 3 submatrices
as described by Theorem 14 found a single trinomial, namely x2 − 2xy + y2, which is easily
observed to be the difference of the polynomials in g.

In the multiplicity one case, we first considered linear polynomials. This produced the
binomial x−y. Since x is dependent on y, we then searched for trinomials of degree at most 2
in variables y and z. This search produced the trinomial z2 + y − 1. Table 3 summarizes
the results.

Table 3: Summary of sparse polynomials computed.
t Without multiplicity With multiplicity
2 x− y –

3 z2 + y − 1 x2 − 2xy + y2

We now turn to utilizing the `1-relaxation (7) to attempt to find sparse polynomials using
the degree 2 Veronese embedding with k points for k = 2, . . . , 9. A summary of the results
of this experiment using 100 random trials for each k with linprog in Matlab utilizing
multiplicity structure with respect to g is provided in Table 4. This table summarizes
the number of terms of the corresponding polynomial when the computation successfully
computed an optimizer and the frequency of the polynomial vanishing on X. For example,
using k = 3 points, out of the 100 trials, a trinomial that vanished on X, namely, x2−2xy+y2,
was computed 11 times. A 7-term polynomial was computed 4 times, but since the number
of terms, namely 7, is more than the number of points, namely 3, one needs to check to see
if this polynomial vanishes on X by testing at an additional general point. In this case, 2
out of the 4 vanished on X. The vanishing 7-term polynomial computed is

x2 + 2xy − 3y2 + 2z2 + 4x− 2y − 2

which is the sum of the 6-term polynomials in g.
Finally, we repeat the same experiment without multiplicity with the results summarized

in Table 5. Some examples of the binomials found in this experiment are

x2 − y2, x2 − yz, xz − yz

with the trinomial x2− 2xy+ y2. Some quadrinomials and 5-term polynomials had the form

α(x− y) + xy − y2 and β(z2 + y − 1)− xy + y2

for some α, β ∈ C.

5.3 Cubic-centered 12-bar

Consider the cubic-centered 12-bar spherical linkage shown in Figure 2 and first presented
in [25]. This linkage consists of rotational joints at the center of a cube and its vertices. Links
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Table 4: Summary of 100 random trials using k = 2, . . . , 9 points with multiplicity struc-
ture. Reported as frequency of polynomials that vanish on X out of the number of times a
polynomial was found for each k and number of terms.

# of terms total
k 3 6 7 successes

2 1/1 0 0 1/100
3 11/11 0 2/4 13/100
4 25/25 0 9/13 34/100
5 35/35 14/14 48/50 97/100
6 43/43 8/8 47/47 98/100
7 42/42 4/4 53/53 99/100
8 28/28 15/15 57/57 100/100
9 46/46 3/3 46/46 95/100

Table 5: Summary of 100 random trials using k = 2, . . . , 9 points without multiplicity
structure. Reported as frequency of polynomials that vanish on X out of the number of
times a polynomial was found for each k and number of terms.

# of terms total
k 2 3 4 5 successes

2 3/3 7/8 1/11 0 11/100
3 10/10 6/6 10/10 2/9 28/100
4 14/14 17/17 24/24 4/4 58/100
5 29/29 19/19 34/34 5/5 87/100
6 21/21 25/25 37/37 16/16 99/100
7 21/21 24/24 34/34 19/19 98/100
8 29/29 20/20 35/35 14/14 98/100
9 29/29 24/24 33/33 12/12 98/100

connect along the edges of the cube and from each vertex to the center. To remove trivial
motion in space, the center point, p0, is fixed at the origin and two adjacent vertices are
fixed, say p7 = (−1, 1,−1) and p8 = (−1,−1,−1). This results in 18 variables arising from
the three coordinates in each p1, . . . , p6, say pi = (xi, yi, zi), with 17 polynomial constraints,
say g = 0 with:

‖pi − pj‖2 − 4 = 0, (i, j) ∈
{

(1, 2), (1, 3), (1, 5), (2, 4), (2, 6),
(3, 4), (3, 7), (4, 8), (5, 6), (5, 7), (6, 8)

}
,

‖pk‖2 − 3 = 0, k = 1, . . . , 6.

There are two types of curves in V(g). First, there are two degree 6 curves which are
complex conjugates of each other with the linkage shown in Figure 2 being a point of in-
tersection of these curves. In the interest of locating sparse polynomials, we consider one,
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Figure 2: Cubic-centered 12-bar linkage

say X, of the second type being a degree 4 complex curve that contains a real curve. A real
point on X is shown in Figure 3. We note that the multiplicity of X with respect to g is one.

Figure 3: Cubic-centered 12-bar linkage on degree 4 curve

Since each coordinate of a general point on X is nonzero, no monomial vanishes on X.
Hence, searching for linear binomials yields the following 12:

x1 − x4, y1 − y4, z1 − 1,
x2 + 1, y2 + 1, z2 + 1,
x3 − x5, y3 − y5, z3 − z5,
x6 + 1 y6 − 1, z6 + 1.

Due to these 12 linear binomials, we only need to consider higher degree polynomials in, say,
1, x4, x5, y4, y5, z4, z5. The search for degree 2 binomials using Theorem 10 located one:

z4z5 − x4x5.
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By removing the column corresponding to z4z5 and searching for trinomials using Theo-
rem 10, we found the following 9:

2x4x5 + y4y5 − 1, 2x5 + z4 + x5y4, x5 + 2z4 − y5z4,
3x5 + 2x5y4 + y5z4, 2x4 + z5 − x4y5, 3z4 − x5y4 − 2y5z4,
3x4 − 2x4y5 − y4z5, x4 + 2z5 + y4z5, 3z5 + x4y5 + 2y4z5.

The search for quadrinomials found 61, some of which are:

x5 − y5 + z5 − 1, x4z5 + x5 + z4 + 1,

x25 + y5z5 + x5 − 1, x4z5 − x5y4 − x5 − 1,

x4z5 − x4y4 + y5z4 + z24 , x5z4 + x4 − x5 + y5.

5.4 Two chemical reaction networks

Finally, consider testing binomiality of the steady-state points for two chemical reaction
networks. The first system consists of 9 polynomials in 9 variables from [22, Ex. 3.15]
considered in [6, Ex. 4.3] and the other systems consists of 29 polynomials in 29 variables
from [6, Ex. 4.4]. Each system depends upon parameters and we test generic binomiality by
randomly fixing the parameters. In both cases, we only focus on testing the binomiality of
the unique irreducible component X not contained in any coordinate hyperplane. We first
construct a real point on X by selecting a random real point and applying the dynamical
system associated with the chemical reaction network to yield a real steady-state. Then,
starting at this point, we track along the component over the complex numbers to yield a
general point with coordinates in C∗ on X.

First, randomly selecting parameters

k12 = 41, k21 = 8, k1112 = 22, k1211 = 46, k1213 = 40, k23 = 48, k32 = 33,

k67 = 2, k34 = 43, k89 = 47, k910 = 34, k98 = 38, k56 = 38, k65 = 20,

we consider the system

f1 = −k12x1 + k21x2 − k1112x1x7 + (k1211 + k1213)x9,

f2 = k12x1 − k21x2 − k23x2 + k32x3 + k67x6,

f3 = k23x2 − k32x3 − k34x3 − k89x3x7 + k910x8 + k98x8,

f4 = k34x3 − k56x4x5 + k65x6, f5 = −k56x4x5 + k65x6 + k910x8 + k1213x9,

f6 = k56x4x5 − (k65 + k67)x6, f7 = k67x6 − k1112x1x7 − k89x3x7 + k98x8 + k1211x9,

f8 = k89x3x7 − (k910 + k98)x8, f9 = k1112x1x7 − (k1211 + k1213)x9.

With i =
√
−1, consider the general point (rounded to four decimal places)

w = (w1, . . . , w9)

≈ (−0.0141 + 0.0378i,−0.0723 + 0.1938i,−0.0457 + 0.1224i, 1.0396− 0.2729i,

−0.8712+1.2364i,−0.9816+2.6309i, 1.6959−0.0000i,−0.0505+0.1355i,−0.0061+0.0164i).
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In order to ensure the first d = 2 coordinates are linearly independent, we relabel the
coordinates as

w′ = (w1, w4, w2, w3, w5, w6, w7, w8, w9)

yielding the reduced row echelon form of the tangent space Tw′(X) of X at w′ as

1 0
0 1

5.1250 0
3.2368 0

36.2556 + 9.5168i 1.0760− 0.9068i
69.5921 0

0 0
3.5833 0
0.4338 0


. (15)

In this case, since each bi,j computed in (11) is either 1, −1, or 0, namely[
I2 b3 b4 b5 b6 b7 b8 b9

]
=

[
1 0 1 1 1 1 0 1 1
0 1 0 0 −1 0 0 0 0

]
,

the corresponding irreducible algebraic set is defined by binomials. In fact, with

M =



−1 −1 −1 −1 0 −1 −1
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


seven binomials (in terms of the original ordering of variables) forming a witness system are

8x2 − 41x1, 38x3 − 123x1, 193x4x5 − 7776x1, 76x6 − 5289x1,

799x7 − 1355, 1279x8 − 4583x1, 2093x9 − 908x1.

This agrees with the results described in [6, Ex. 4.3].
Next, randomly selecting the parameters

k1 = 82, k2 = 91, k3 = 13, k4 = 92, k5 = 64, k6 = 10, k7 = 28, k8 = 55,

k9 = 96, k10 = 97, k11 = 16, k12 = 98, k13 = 96, k14 = 49, k15 = 81, k16 = 15,

k17 = 43, k18 = 92, k19 = 80, k20 = 96, k21 = 66, k22 = 4, k23 = 85, k24 = 94,

k25 = 68, k26 = 76, k27 = 75, k28 = 40, k29 = 66, k30 = 18, k31 = 71, k32 = 4,

k33 = 28, k34 = 5, k35 = 10, k36 = 83, k37 = 70, k38 = 32, k39 = 96,

k40 = 4, k41 = 44, k42 = 39, k43 = 77, k44 = 80, k45 = 19, k46 = 49,
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we consider the system

f1 = −k1x1x2 + k2x3 + k6x6, f2 = −k1x1x2 + k2x3 + k3x3, f3 = k1x1x2 − k2x3 − k3x3,

f4 = k11x10 + k12x10 + k38x25 + k42x27 + k3x3 − k37x18x4

−k4x4x5 + k5x6 − k7x4x7 + k8x8 + k9x8 − k10x4x9,

f5 = k14x12+k15x12 + k17x13 + k18x13 + k35x24 + k36x24 + k41x27

+ k42x27 − k13x11x5 − k34x16x5 − k40x26x5 − k4x4x5 + k5x6 + k6x6 − k16x5x9,

f6 = k4x4x5 − k5x6 − k6x6, f7 = k18x13 − k7x4x7 + k8x8, f8 = k7x4x7 − k8x8 − k9x8,

f9 = k11x10 + k15x12 + k17x13 + k9x8 − k10x4x9 − k16x5x9, f10 = −k11x10 − k12x10 + k10x4x9,

f11 = k12x10 + k14x12 − k19x11x14 + k20x15 + k21x15 − k22x11x16 + k23x17 + k24x17 − k13x11x5,

f12 = −k14x12 − k15x12 + k13x11x5, f13 = −k17x13 − k18x13 + k16x5x9,

f14 = −k19x11x14 + k20x15 + k30x21 + k36x24, f15 = k19x11x14 − k20x15 − k21x15,

f16 = k21x15 − k22x11x16 + k23x17 − k28x16x19 + k27x20 + k29x21 + k33x23 + k35x24 − k34x16x5,

f17 = k22x11x16 − k23x17 − k24x17,

f18 = k24x17 − k25x18x19 + k26x20−k31x18x22 + k32x23

+ k38x25 + k39x25 − k43x18x28 + k44x29 + k45x29 − k37x18x4,

f19 = −k46x19 − k28x16x19 − k25x18x19 + k26x20 + k27x20 + k29x21 + k30x21 + k45x29,

f20 = k25x18x19 − k26x20 − k27x20, f21 = k28x16x19 − k29x21 − k30x21,

f22 = −k31x18x22 + k32x23 + k33x23, f23 = k31x18x22 − k32x23 − k33x23,

f24 = −k35x24 − k36x24 + k34x16x5, f25 = −k38x25 − k39x25 + k37x18x4,

f26 = k39x25 + k41x27 − k40x26x5, f27 = −k41x27 − k42x27 + k40x26x5,

f28 = k46x19 − k43x18x28 + k44x29, f29 = k43x18x28 − k44x29 − k45x29.

With i =
√
−1, consider the general point (rounded to four decimal places)

w = (w1, . . . , w29)

≈ (1.5158− 0.5153i, 1.3106− 0.9109i, 1.1962− 1.6212i, 0.5785− 0.3621i,

2.8712− 1.1329i, 1.5551− 2.1076i, 8.3981 + 3.4910i, 1.1354− 0.1894i,

3.4249 + 0.7317i, 1.9114− 0.6951i, 1.0792 + 0.0292i, 2.3126− 0.8410i,

1.1847− 0.1977i,−1.8542 + 2.7217i,−1.0274 + 1.4238i,−6.7909− 9.0614i,

− 0.1579− 0.2229i, 0.4784− 0.3800i,−1.8506− 0.5498i,−0.4928 + 0.1982i,

3.6117 + 9.7631i, 1.0433− 0.3766i, 0.7899− 1.2794i,−1.6002− 0.9851i,

0.0761− 0.2150i, 2.4771− 2.8467i, 0.1873− 0.5291i,−6.0087− 8.5835i,−4.7725− 1.4180i).

In order to ensure the first d = 7 coordinates are linearly independent, we relabel the
coordinates as

w′ = (w1, w2, w4, w7, w14, w16, w18, w3, w5, w6, w8, w9, w10, w11, w12, w13,

w15, w17, w19, w20, w21, w22, w23, w24, w25, w26, w27, w28, w29).
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yielding the reduced row echelon form of the tangent space Tw′(X) of X at w′ as



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1.0333− 0.7182i 1.1952− 0.4063i 0 0 0 0 0
1.9257− 0.0927i 1.8823 + 0.4438i −4.4464− 0.8251i 0 0 0 0
1.3433− 0.9337i 1.5537− 0.5282i 0 0 0 0 0

0 0 1.5573 + 0.6473i 0.1073− 0.0672i 0 0 0
−1.8782− 1.1213i −1.5004− 1.6012i 7.3689 + 7.1423i 0.3786− 0.0703i 0 0 0
−1.2701 + 0.0268i −1.2320− 0.3259i 8.7424 + 1.8679i 0.1647− 0.1512i 0 0 0
−1.2646− 0.4684i −1.0896− 0.8018i 5.2702 + 3.5006i 0.1108− 0.0426i 0 0 0
−1.5367 + 0.0324i −1.4905− 0.3943i 10.5773 + 2.2599i 0.1993− 0.1830i 0 0 0

0 0 1.6250 + 0.6755i 0.1119− 0.0701i 0 0 0
1.7876− 1.2708i 2.0754− 0.7303i −9.5308 + 3.8781i −0.0442 + 0.1879i 0.5329 + 0.0144i 0 0
0.0971 + 0.3272i 0.0030 + 0.3423i −0.0909− 1.5984i −0.0254− 0.0160i 0 0.0241 + 0.0007i 0
−1.0400 + 1.5392i −1.4289 + 1.1960i 4.0913− 6.3381i −0.0842− 0.1007i −0.2252 + 0.2841i −0.0994− 0.0352i 0
0.0393 + 0.5096i −0.1032 + 0.5022i −0.2031− 2.0655i −0.0354− 0.0073i 0.0001 + 0.0997i −0.0274 + 0.0094i −0.8334− 0.2476i
10.0048− 0.4899i 9.7816 + 2.2980i −40.5786 + 2.8422i −0.1621 + 0.6890i 1.9541 + 0.0528i −0.7118 + 0.2809i 0
0.2497− 0.0528i 0.2554 + 0.0182i 0.0615 + 0.2059i 0.0211− 0.0154i 0.1224− 0.1545i 0.0998 + 0.0576i −0.7355 + 0.8279i
0.2205− 0.2666i 0.2864− 0.1960i 0.2388 + 0.1667i 0.0094− 0.0341i −0.0003− 0.2672i 0.1544− 0.0230i 2.2322 + 0.6632i
−0.7482− 0.9043i −0.4710− 1.0791i 1.2215 + 2.4674i 0 0 0.1544− 0.0609i 0

0 0 0.2616− 0.2078i 0 0 0 0.3164− 0.1980i
−2.0372 + 1.1854i −2.2924 + 0.5788i 10.5785− 3.2192i 0 0 0 6.0730− 1.1269i

0 0 0.6440− 0.5115i 0 0 0 0.7788− 0.4875i
−9.6157 + 3.0309i −10.1101 + 0.2596i 38.7821− 13.1258i −0.0180− 0.7122i −1.9160 + 0.4474i −0.3035− 0.4851i −1.0368 + 17.1187i
−2.6821 + 3.9696i −3.6851 + 3.0845i 10.5512− 16.3455i −0.2172− 0.2597i −0.5807 + 0.7327i −0.2563− 0.0908i 0



.

In this case, the values of bh,j as in (11) for h = 8, . . . , 29 and j = 1, . . . , 7 form the matrix



1 1 0 0 0 0 0
1 1 −1 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 0 0 0
−1 −1 2 1 0 0 0
−1 −1 3 1 0 0 0
−2 −2 4 1 0 0 0
−1 −1 3 1 0 0 0
0 0 1 1 0 0 0
−2 −2 4 1 1 0 0
−2 −2 4 1 0 1 0

−0.0344− 1.5402i −0.0344− 1.5402i 0.7240 + 2.5670i 0.3448 + 0.5134i 0.3448 + 0.5134i −0.3448− 0.5134i 0
−0.0344− 1.5402i −0.0344− 1.5402i 0.7240 + 2.5670i 0.3448 + 0.5134i 0.3448 + 0.5134i −0.3448− 0.5134i 1
−0.0344− 1.5402i −0.0344− 1.5402i 0.7240 + 2.5670i 0.3448 + 0.5134i 0.3448 + 0.5134i 0.6552− 0.5134i 0
0.3618− 0.0695i 0.3618− 0.0695i 0.0637 + 0.1158i 0.2127 + 0.0232i −0.0256 + 0.5846i 0.2640− 1.1460i −0.2384 + 0.5614i
0.3618− 0.0695i 0.3618− 0.0695i 0.0637 + 0.1158i 0.2127 + 0.0232i −0.0256 + 0.5846i 0.2640− 1.1460i 0.7616 + 0.5614i

1 1 −1 0 0 1 0
0 0 1 0 0 0 1
−1 −1 2 0 0 0 1
0 0 1 0 0 0 1

−0.0344− 1.5402i −0.0344− 1.5402i 0.7240 + 2.5670i 0.3448 + 0.5134i 0.3448 + 0.5134i −0.3448− 0.5134i −1
−0.0344− 1.5402i −0.0344− 1.5402i 0.7240 + 2.5670i 0.3448 + 0.5134i 0.3448 + 0.5134i −0.3448− 0.5134i 0



T

.

Clearly, not all of the entries are rational which shows that the corresponding irreducible
algebraic set is not defined by binomials. Note that the results in [6, Ex. 4.4] are for the entire
set of steady-state points while this computation is focused on the irreducible component of
steady-state points not contained in any coordinate hyperplane.
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6 Conclusion

This paper described an approach based on using sample points to compute sparse poly-
nomials that vanish on an algebraic set. A binomiality test utilized a sample point and
corresponding tangent space. For computing sparse polynomials with at most t terms, t
sample points were used. One advantage of using sample points is that multiplicity struc-
ture can be easily utilized via Macaulay dual spaces or ignored thereby computing sparse
polynomials in the corresponding radical ideal. When the ideal is defined over the rational
numbers, exactness recovery techniques can be used to find exact representations.

Since the number of entries of the Veronese embedding is combinatorial in the number
of variables and degree, the bottleneck in our exhaustive submatrix search is the growth in
the number of submatrices that one needs to consider. One approach for overcoming this is
to solve an `1-relaxation (7). Experiments showed that using more points often resulted in
successfully computing sparse polynomials using the `1-relaxation.
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