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Abstract

Deep learning has revolutionized artificial intelligence
and enabled breakthroughs across various domains. How-
ever, as deep learning models continue to grow in scale
and complexity, optimizing their hyperparameters for effi-
cient resource utilization becomes a critical challenge. Tra-
ditional optimization techniques often assume smooth and
continuous loss functions, limiting their effectiveness in this
context. In this work, we propose a novel data-driven
approach to hyperparameter optimization using a convex
quadrature surrogate. By leveraging a set of sampled hy-
perparameters and their corresponding performance, our
method fits a multivariate quadratic surrogate model to
identify the optimal hyperparameters. We demonstrate the
practicality and effectiveness of our approach by improv-
ing the efficiency and performance of various hyperparam-
eter strategies on both closed and open set benchmarks
across diverse vision and tabular datasets. Additionally, we
showcase its applicability in automatic target recognition
tasks. This research contributes to the broader objective of
resource-efficient deep learning for computer vision, foster-
ing advancements in model efficiency, computational mem-
ory constraints, and latency considerations. Code available
here.

1. Introduction
Deep learning has been pivotal in the recent resurgence

of artificial intelligence, driving advancements in diverse
applications such as human identification, self-driving ve-
hicles, surveillance, and fire control systems. Despite these
remarkable achievements, selecting the most suitable deep
learning model for a specific task remains a challenging en-
deavor. Machine learning models comprise two types of
parameters: hyperparameters and model parameters. Hy-
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perparameters are user-defined parameters set before train-
ing, while model parameters are learned during the training
process. In automated machine learning, the crucial task is
to automatically determine these hyperparameters without
manual intervention, aiming to enhance the performance of
machine learning algorithms and improve the reproducibil-
ity and fairness of scientific studies.

In this work, we specifically focus on hyperparame-
ter optimization. The performance of a machine learning
model depends not only on the algorithm’s architecture but
also on the values assigned to its hyperparameters. Differ-
ent hyperparameter configurations can lead to vastly differ-
ent outcomes on the same dataset. Therefore, model selec-
tion is not solely an algorithmic decision but heavily influ-
enced by the choice of hyperparameters. These parameters,
which are free parameters associated with a particular ma-
chine learning model, optimize its learning capability. They
need to be carefully set before training, distinct from the
elementary parameters learned from the available data.

Various approaches have been proposed for automating
the search for optimal hyperparameters, spanning from sim-
ple methods like grid search [9] and random search [4] to
more sophisticated techniques such as Bayesian optimiza-
tion [5, 3], gradient-based learning [2, 19], and surrogate
model approaches [27].

Surrogate-based optimization methods [10, 26] are par-
ticularly valuable when the objective functions are compu-
tationally expensive to evaluate. The Surrogate Benchmarks
for Hyperparameter Optimization [10] propose a strategy
using inexpensive surrogates of real hyperparameter opti-
mization benchmarks. These surrogates exhibit the same
hyperparameter spaces and feature similar response sur-
faces. The approach involves training regression models
on data representing the performance of a machine learning
algorithm across a broad range of hyperparameter configu-
rations. Instead of running the actual algorithm, hyperpa-
rameter optimization methods can be evaluated using the
model’s performance predictions, enabling more efficient

https://github.com/jeffkinnison/pyrameter/blob/master/pyrameter/methods/ncqs.py


evaluations.
Our key contribution lies in a hyperparameter optimiza-

tion strategy based on local nonlinear convex quadratic sur-
rogates (NCQS). The fundamental idea behind NCQS is that
at a local minimum, the Hessian matrix is positive semidef-
inite, allowing us to locally approximate the objective func-
tion with a convex quadratic function. Our focus primarily
lies in the continuous domain, while also accommodating
binary and categorical search domains using random strate-
gies. Unlike other approaches, NCQS aims to approximate
only regions of interest rather than the entire hyperparame-
ter surface to approximate a global optimum. This approach
results in a more efficient search methodology than the base
strategies alone and does not rely on strong assumptions
about the behavior of the underlying objective function. Ad-
ditionally, we provide an implementation of NCQS within
a search framework, enabling easy integration into general
search problems.

2. Nonlinear Convex Quadrature Surrogate
Optimization

To address the challenges of resource-efficient deep
learning for computer vision, we propose a novel optimiza-
tion method called Nonlinear Convex Quadrature Surrogate
Optimization (NCQS). Traditional surrogate approximations
[6, 8] try to approximate the objective function over large
regions and thus are unable to effectively capture oscil-
lations using relatively few samples. To mitigate this is-
sue, we build a local convex multivariate approximation of
the objective function using a quadratic that builds on the
Morse lemma [20, Lemma 2.2] ensuring such a local con-
vex approximation exists near the optimum. The approach
is warmed up using any sampling method such as random
sampling.

First, consider parameterizing the family of convex mul-
tivariate quadratic functions f(x) where x = (x1, . . . , xn)
using a matrix M ∈ Rn×n, a vector y ∈ Rn, and a scalar
b ∈ R such that

f(x) =
1

2
(x− y)TMTM(x− y) + b.

Clearly, the Hessian matrix of f(x) is MTM which is
always positive-semidefinite showing that f(x) is convex
with global minimum b which is attained at y, i.e., f(x) ≥ b
for all x ∈ Rn and f(y) = b.

With this family parameterized by M , y, and b, the
next step is to find optimal values (M∗, y∗, b∗) so that
the corresponding quadratic best fits the objective func-
tion at the given data points. Namely, given sample points
x∗
1, . . . , x

∗
N ∈ Rn with corresponding function values

o∗1, . . . , o
∗
N ∈ R and weights d∗1, . . . , d

∗
N ∈ R≥0, one can

compute the weighted least squares fit of the data by solv-

ing the unconstrained optimization problem

(M∗, y∗, b∗) = argmin
M,y,b

N∑
i=1

d∗i · (f(x∗
i )− o∗i )

2. (1)

This problem is easily solved using local methods. The cor-
responding value y∗ is then suggested as the next set of hy-
perparameters to consider for solving the hyperparameter
optimization problem.

Algorithm 1 provides a high-level description of the
nonlinear convex quadrature surrogate optimization (NCQS)
method. Initially, the algorithm collects data points by sam-
pling hyperparameters using the base strategy of interest,
ensuring exploration across the search space. A surrogate
approximation function is then constructed in the neighbor-
hood of the optimal sample point x∗

o. The weights d∗i are
used to localize the approximation, with one possible ap-
proach being to consider only the points within a ball cen-
tered at the current optimal sample point, with a radius D.
In this approach, d∗i = 1 if x∗

i ∈ B(x,
oD), and d∗i = 0

otherwise. The choice of D can be adjusted by decaying its
size over iterations to provide more accurate local approx-
imations. To avoid excessively small regions, Algorithm 1
also incorporates a minimum distance threshold m, which
was set to 0.1 in our experiments. An alternative approach
is to select the weights based on a continuous function that
is inversely proportional to the distance to x∗

o.
Once the weights are determined, the algorithm proceeds

to solve the weighted least squares problem (1), yielding
the optimal hyperparameters y∗ which are then added to the
list of data points along with the corresponding objective
function value. The process iterates by collecting additional
random sample points, which helps avoid being trapped in
the region of the initial local minimum, and computing the
minimum of each surrogate. The termination criterion of
Algorithm 1 is based on either reaching a time bound or
exceeding a trial bound.

The following two examples illustrate the ability of
NCQS to locate the minimum of an objective function (pro-
vided in closed form) with Section 3 focusing on experi-
ments involving optimizing hyperparameters.

2.1. One dimensional example

To illustrate the NCQS method, consider optimizing the
following function from [14] on the domain [0.5, 2.5]:

g(x) =
sin(10πx)

2x
+ (x− 1)4 (2)

which is plotted in Figure 1(a). The main idea behind
NCQS is to treat the oscillatory behavior as noise and com-
pute a best fit convex quadratic surrogate. This is demon-
strated in Figure 1(b) where the surrogate function models
the general trend of the data without oscillations. Using



Algorithm 1 Nonlinear Convex Quadrature Optimiza-
tion
Input: T Time budget for optimization, NT Maximum
number of trials for optimization, W Number of samples for
surrogate approximation, D Distance threshold for control-
ling surrogate localization, m Minimum distance threshold
for surrogate localization control
Output: Optimal hyperparameter set that maximizes the
objective function.

1: while Elapsed Time ≤ T or Completed Trials ≤ NT

do
2: if Completed Trials ≤W then
3: Sample hyperparameters using base strategy and

compute corresponding function evaluations.
4: else
5: Update the nonlinear local surrogate approxima-

tion f(x).
6: Find the optimal hyperparameter set from the sur-

rogate by solving (1).
7: Evaluate the model at the surrogate’s optimal hy-

perparameter set.

8: D ← max

(
D

1 + 0.01 · Completed Trials
,m

)
.

9: Collect additional sampled hyperparameters and
compute their corresponding function evaluations.

10: end if
11: end while
12: return Best hyperparameter set.

more randomly sampled data points, the surrogate becomes
increasingly local so that the minimum of the surrogate con-
verges to the global minimum as shown in Figure 1(c).

2.2. Two dimensional example

A standard planar example is the Griewank func-
tion [25]. To avoid having the global minimum attained
at the origin, we consider the following modified function
over the domain [−20, 20]2:

g(x, y) =
(x − 5)2 + (y + 3)2

40
− cos(x − 5) · cos

(
y + 3
√
2

)
+ 1 (3)

which is plotted in Figure 2(a) with a global surrogate ap-
proximation built from 200 random sample points that mod-
els the general trend ignoring the oscillatory behavior in
Figure 2(b). Increasingly more local approximations are
shown in the plots in Figure 3 with the surrogate minimum
converging to the global minimum.

3. Experiments
3.1. Benchmarks

In this study, we conducted evaluations of NCQS on both
closed and open set recognition tasks to assess its effective-

ness and performance in improving the performance and ef-
ficiency of popular hyperparameter optimization methods.

For the closed set experiments, we focused on clas-
sification tasks on tabular data using popular models
such as SVM, Random Forest, and Logistic Regression.
These benchmarks were accessed through HPOBench[11],
a comprehensive platform for evaluating and comparing
hyperparameter optimization algorithms. We compared
NCQS’s ability to augment the performance of various base
methodologies, including random, TPE, Bayes, and SMAC.
SMAC [18] is a well-known Bayesian method that utilizes
a racing mechanism to efficiently decide which configura-
tions perform better.

Furthermore, we employed NCQS to tune 30 hyperpa-
rameters for Tiny-YOLO[12], a widely used object detec-
tion model, and applied it in the context of automatic target
recognition (ATR). ATR represents a complex optimization
challenge due to the significant number of hyperparameters
involved. By comparing the results against random sam-
pling alone, we showcased NCQS’s capability to efficiently
navigate high-dimensional hyperparameter spaces and im-
prove the overall optimization performance.

In addition to closed set recognition, we extended our
exploration of NCQS to tackle the challenges posed by open
set recognition tasks within the computer vision domain.
Open set recognition involves scenarios where models en-
counter unknown classes during testing [22]. These situa-
tions can be particularly sensitive to hyperparameters, lead-
ing to complex and noisy loss landscapes with steep gradi-
ents.

To assess the efficacy of different hyperparameter opti-
mization methods in the context of open set recognition, we
conducted experiments comparing the performance and ef-
ficiency boost of NCQS against tree-structured parzen esti-
mators (TPE) and random search. For open set recognition,
we employed the Extreme Value Machine (EVM) [21], a
scalable nonlinear classifier capable of handling incomplete
knowledge during testing and rejecting inputs beyond the
training set support.

The experimental results shed light on NCQS’s capabili-
ties and robustness in tuning hyperparameters for the EVM
model, taking into account the unique challenges and com-
plexities of open set recognition tasks in computer vision.
By showcasing NCQS’s effectiveness in real-world com-
puter vision scenarios, we highlight its potential to facili-
tate more efficient and effective hyperparameter tuning for
vision-based applications. The five hyperparameters and
domains involved in training the EVM are outlined in the
supplemental.

3.2. Optimization Framework

The baseline search framework utilized the massively
Scalable Hardware-Aware Distributed Hyperparameter Op-
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Figure 1: (a) Plot of Gramacy and Lee function (2) on the domain [0.5, 2.5]. (b) Surrogate approximation (green curve)
avoids modeling oscillatory behavior but provides general trend of data. (c) Local surrogate approximation (green curve)
whose minimum is converging to the global minimum.
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Figure 2: a) Plot of modified Griewank function (3)
on [−20, 20]2. (b) Surrogate approximation (green surface)
using 200 randomly sampled points that avoids modeling
oscillatory behavior but provides general trend of data.

timization (SHADHO) [17]. In addition to serving as a hy-
perparameter optimization tool, SHADHO has the added
utility of considering hardware specifications when con-
ducting a search. This framework calculates the relative
complexity of each search space and monitors performance
on the learning task over all trials. These metrics are then
used as heuristics to assign hyperparameters to distributed
workers based on their hardware. We extended SHADHO’s
framework by integrating NCQS which is publicly available
for general search problems.

3.3. Datasets

We evaluated NCQS on both closed set and open set
recognition tasks using a diverse range of datasets to en-
sure comprehensive testing and validation of our method’s
effectiveness.

Closed Set Recognition For the closed set experiments,
we utilized a collection of classification tasks on tabular
data, which were accessed through HPOBench [11]. To
assess the performance of NCQS across different problem
domains, we conducted these experiments on four separate
dataset tasks obtained from the OpenML library [13].

Automatic Target Recognition (ATR) To demonstrate
the capabilities of NCQS on more challenging scenarios
involving a higher number of hyperparameters, we used
the ATR Algorithm Development Image Database from
the Defense Systems Information Analysis Center (DSIAC)
[7]. This dataset contains visible and mid-wave infrared
(MWIR) imagery collected by the US Army Night Vision
and Electronic Sensors Directorate (NVESD). The images
consist of frames from video sequences capturing different
ground-based vehicle targets traveling around a 100-meter
diameter circular path at distances ranging from 1000 to
5000 meters. For our experiments, we used the data from
the closest set of recordings (1000–2000 meters).

Open Set Recognition in Computer Vision To validate
and compare the performance of NCQS against existing hy-
perparameter optimization methods for open set recognition
tasks in computer vision, we utilized datasets of varying
complexity. We carefully selected these datasets to reflect
real-world scenarios where models must deal with unknown
classes during testing. Specific details about the datasets
can be found in the supplemental material.

The number of trials for each experiment was determined
based on the time required to train a single model for the
given dataset. In cases where datasets contained numer-
ous images per class, training the Extreme Value Machine
(EVM) model required longer compute time, leading us to
adjust the number of search trials accordingly.

Here are the datasets used for open set recognition tasks:
MNIST: In this dataset, we designated handwritten dig-

its 0 to 5 as known classes and digits 6 to 9 as unknown
classes. Each image was represented as a flattened vector
of the image pixels (784 features).

Labeled Faces in the Wild (LFW): For LFW, we assigned
classes with 30 or more face image samples as known
classes (34 classes) and assigned the remaining 5715 classes
as the unknown set. We used an ArcFace-based feature ex-
tractor [1] trained on the MS-Celeb-1M dataset [15] to ob-
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Figure 3: Three surrogate approximations (green surface) of the modified Griewank function using increasingly more local
surrogates with the surrogate minimum converging to the global minimum as the number of random samples increase (red).

tain a 512-dimensional feature vector for each image.
ImageNet: For ImageNet, we used an open set bench-

mark subset provided by Abhinav Shrivastava [24] from
the DARPA SAIL-ON research program [23]. To over-
come memory and training time constraints, we randomly
selected 40 out of the 413 known classes provided and re-
tained the same unknown class partition. We used a 512-
dimensional deep feature space representation of the images
derived from the penultimate layer of ResNet-34 [16] and
applied principal component analysis to reduce the feature
size to 250 components.

3.4. Method Specifications

The HPOBench set of models were run for 500 itera-
tions, repeated across 5 separate seeds, and the results were
averaged. Each iteration refers to a single cycle of the op-
timization process where the hyperparameter search algo-
rithm evaluates a set of hyperparameters and their corre-
sponding model performance on the given task or dataset.
In the case of the automatic target recognition (ATR) bench-
mark, due to its complex and computationally intensive na-
ture, we conducted a single run for 100 iterations. We made
this decision based on the considerable time and resources
required for each iteration in this particular task. We com-
pared the performance of random sampling of the hyper-
parameters against NCQS fit to random samples to assess
the impact of our proposed approach in boosting the perfor-
mance and efficiency of random sampling alone.

Tree-structured parzen estimators (TPE) had additional
configuration settings known as ”meta-hyperparameters”
which control how the optimization algorithm operates. In
TPE, the algorithm maintains two separate probability den-
sity functions (PDFs) for the hyperparameters: one for the
hyperparameters leading to good performance (top-k) and
another for those leading to poor performance. The ”top-
k” refers to the top-performing configurations. The TPE
algorithm then generates new candidate samples from the
PDF representing the hyperparameters with good perfor-
mance, enabling it to focus on promising regions of the

hyperparameter space. For the experiments using the TPE
algorithm, we set aside 20% of the top-performing hyper-
parameter configurations (referred to as the ”top-k mix-
ture model”) to influence TPE’s decision-making process.
Additionally, we started the TPE algorithm by randomly
sampling 20 hyperparameter configurations to explore the
search space initially. Afterward, we generated 10 new can-
didate hyperparameter samples based on the information
collected so far from the top-performing configurations.
These settings were carefully chosen to strike a balance be-
tween exploring the hyperparameter space effectively and
exploiting promising configurations that show good perfor-
mance while taking computational resources into account.
NCQS also has meta-hyperparameters listed in Algo-

rithm 1. For the open set recognition experiments we use
50 samples for the surrogate approximation (W = 50) mo-
tivated by the need to explore a larger portion of the hyper-
parameter space, given the challenges posed by unknown
classes in the open set recognition tasks. These samples are
obtained using the sampling methodology that is compared
against to assess how effectively NCQS boosts the perfor-
mance and efficiency of the base strategy. For the closed set
experiments, we used 20 samples to ensure a comprehen-
sive search while maintaining computational efficiency. In
certain experiments involving datasets with reduced num-
bers of trials, such as MNIST and ImageNet, approximat-
ing the surrogate model became more complex. To address
this, we set the initial distance threshold to D = 0.5 to ef-
fectively localize the region of interest over the objective
function. We further employed the distance decay intro-
duced in Algorithm 1 to adaptively adjust the region of in-
terest localization. In contrast, for all other experiments, we
set D = 1 and allowed the distance decay to control the
surrogate model’s localization.

3.5. Evaluation Measures

The performance of the hyperparameter optimization
methods is assessed using different evaluation measures de-
pending on the type of experiments conducted.



For the closed set machine learning benchmarks, the op-
timizer’s performance is evaluated based on the validation
performance, which is the objective value seen by the opti-
mizer during the search process. This objective value was
minimized using 1-accuracy, and a summary of the results
across all benchmark experiments is reported.

To illustrate the performance of each method in the
closed set experiments, we use the concept of simple regret.
The simple regret at iteration t is computed as:

Rt = f(xbest-so-far)−
t

min
i=1

f(xi), (4)

where Rt is the regret at iteration t, f(xbest-so-far) is the
minimum value found so far in the optimization process,
and minti=1 f(xi) is the global minimum for that dataset,
obtained by taking the minimum value across all bench-
marks and methods for that dataset. This measure pro-
vides insights into how close the algorithm is to finding the
best hyperparameter configuration as the optimization pro-
gresses.

In the automatic target recognition (ATR) experiment,
we illustrate the performance with the raw observed valida-
tion performance scores over 100 iterations. The objective
in this benchmark is the validation box loss, which assesses
the accuracy of the predicted bounding box in comparison
to the ground-truth bounding box.

For the open set experiments, the Extreme Value Ma-
chine (EVM) is trained to minimize the loss on a valida-
tion set containing samples from both known and unknown
classes within the specified number of search trials. This
loss is defined as the negative f -measure with weighted av-
eraging. The best set of hyperparameters found through the
search is evaluated on a separate test set, and the resulting
loss and accuracy of the EVM on this test set are reported.
To ensure clarity, the performance loss is reported as the
positive F1 score for both validation and testing.

All data used for experimentation, including data splits
and scripts for training, validation, and testing, are included
in the supplemental material, providing transparency and
reproducibility for the evaluation process.

4. Results
Figures 4–6 plot the average regret for each of the meth-

ods across five separate runs for each dataset experiment.
The dataset IDs on the plots correspond to the OpenML
dataset ID. For the SVM benchmark, NCQS not only im-
proved the best observed loss for almost all the experiments
(Table 2), but also converged quicker to a better optimum
on all four of the datasets. By converging faster to better
optima, NCQS reduces the number of iterations needed to
achieve good performance, leading to more efficient hy-
perparameter optimization. This efficiency is crucial in
practical applications where computational resources and

Figure 4: Comparison of all methods on 4 different tasks for the
SVM Benchmark from the HPOBench suite. The mean and stan-
dard error of the regret at each iteration are displayed across 5
repetitions.

Figure 5: Comparison of all methods on 4 different tasks for
the Random Forest Benchmark from the HPOBench suite. The
mean and standard error of the regret at each iteration are displayed
across 5 repetitions.

time are limited, allowing practitioners to make the most of
their available resources while achieving competitive per-
formance. A similar trend can be seen in the Random For-
est benchmarks results. In the Logistic Regression bench-
mark, NCQS demonstrates improved performance in some
of the experiments; however, it does not consistently boost
the convergence of the methods (Figure 6).

Figure 7 displays a raw plot of the objective validation
box loss observed over 100 iterations, comparing a ran-



Table 1: Average percent improvement for the best observed loss and standard error over five trials of NCQS over the base methodology
for each dataset and method in the SVM benchmark. Bolded values indicate where NCQS outperforms the base methodology.

Dataset
Method

bayes random smac tpe

146818 60.95 ± 0.95 61.90 ± 1.51 59.05 ± 2.43 -56.00 ± 4.00
146821 87.57 ± 3.27 83.43 ± 1.07 95.68 ± 1.62 89.19 ± 3.08
168912 65.89 ± 1.26 60.65 ± 1.45 62.12 ± 1.46 66.21 ± 1.04
3 97.71 ± 0.24 90.32 ± 1.02 98.02 ± 0.19 72.50 ± 6.12

Table 2: Average percent improvement for the best observed loss and standard error over five trials of NCQS over the base methodology
for each dataset and method in the Random Forest benchmark. Bolded values indicate where NCQS outperforms the base methodology.

Dataset
Method

bayes random smac tpe

10101 30.24 ± 7.18 11.18 ± 9.46 13.57 ± 2.08 -9.17 ± 11.59
167119 38.51 ± 6.57 33.64 ± 0.22 1.61 ± 0.69 -6.21 ± 5.19
168912 54.06 ± 12.37 30.62 ± 3.03 7.20 ± 1.50 -15.29 ± 5.76
9981 48.33 ± 7.17 -10.00 ± 12.75 -10.00 ± 18.71 0.00 ± 30.33

Figure 6: Comparison of all methods on 4 different tasks for the
Logistic Regression Benchmark from the HPOBench suite. The
mean and standard error of the regret at each iteration are displayed
across 5 repetitions.

dom search with NCQS fit to random samples. Both meth-
ods converge to an optimal solution within 40 iterations;
however, NCQS outperforms random search with a valida-
tion box loss of 0.001267, while random search results in a
higher loss score of 0.056445.

In Table 4, we present the validation F1 score, testing
F1 score, and accuracy for the open set experiments. The
results for NCQS are generally comparable to both random
search and TPE. In the MNIST experiment, NCQS identi-
fies better hyperparameters for both validation and testing
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Figure 7: Validation box loss per trial for random sampling
(left) and NCQS (right). Red line represents a smoothed line
of the data with a rolling average over five points. Although
both methods found an optimum in 40 iterations (red star),
NCQS found a lower optimal value within the first 40 itera-
tions.

measures (Table 4). Moreover, in the LFW experiment,
NCQS achieves the highest validation score and performs
on par with random search and TPE for testing. NCQS also
attains an accuracy equivalent to TPE, which exceeds the
performance of random search.

In the ImageNet experiment, NCQS successfully sur-
passes both TPE and random search and falls slightly below
TPE for test score and accuracy.

5. Conclusion & Limitations

In conclusion, this paper introduces NCQS as a novel
approach for hyperparameter optimization in computer vi-
sion. The key innovation lies in the use of nonlinear con-



Table 3: Average percent improvement for the best observed loss and standard error over five trials of NCQS over the base methodology for
each dataset and method in the Logistic Regression benchmark. Bolded values indicate where NCQS outperforms the base methodology.

Dataset
Method

bayes random smac tpe

12 -2.42 ± 24.83 -4.29 ± 21.26 -35.00 ± 33.17 0.00 ± 24.63
146606 8.26 ± 1.94 -2.19 ± 0.58 2.74 ± 0.47 1.12 ± 1.30

3 44.48 ± 4.55 33.42 ± 17.20 3.12 ± 6.85 44.93 ± 25.53
9977 2.21 ± 4.72 0.25 ± 5.41 12.15 ± 2.38 -5.34 ± 5.93

Table 4: Comparison of NCQS against random sampling and
TPE for the EVM experiments on MNIST, LFW, and ImageNet
datasets. Metrics include VAL F1, TEST F1, and ACC. The values
in bold indicate where NCQS outperforms the base methodology.
Across all experiments, NCQS performs comparably or better to
both TPE and random search.

Dataset Metric
NCQS Random TPE

(Mean) (Mean) (Mean)

MNIST
VAL F1 0.919 0.903 0.904
TEST F1 0.913 0.902 0.902

ACC 0.914 0.902 0.902

LFW
VAL F1 0.968 0.967 0.967
TEST F1 0.959 0.959 0.959

ACC 0.962 0.962 0.962

ImageNet
VAL F1 0.532 0.525 0.526
TEST F1 0.868 0.868 0.882

ACC 0.875 0.874 0.904

Table 5: Minimum objective validation box loss values and
percent improvement for random base sampling and NCQS.
NCQS demonstrates a significant improvement in the loss.

random NCQS improvement

0.05645 0.00127 97.75%

vex quadratic surrogate functions, constructed based on the
Morse lemma, which allows for a local convex approxima-
tion that captures the general trend of the data without intro-
ducing oscillations to effectively tune hyperparameters with
improved efficiency, enabling better utilization of resources
and achieving higher performance in various computer vi-
sion and tabular tasks.

While NCQS demonstrates strong performance across
various examples, it does have certain limitations that
should be considered:

Dependency on Neighborhood of Global Minimum:
As shown in Figure 1, NCQS requires sample points in
the vicinity of the global minimum to converge effectively.
Without a sufficient number of such samples, its behavior

resembles that of random search. The selection methodol-
ogy for sampling hyperparameters may impact this behav-
ior. Developing more intelligent sampling strategies, such
as weighted sampling based on performance scores, could
lead to better approximations and improved results.

Single Minimum Surrogate Model: NCQS relies on a
convex quadratic approximation, leading to surrogate mod-
els with only one minimum. This could limit its perfor-
mance on loss functions with multiple optimal points, as it
may converge to a local minimum instead of a global one.

Meta Hyperparameter Tuning for NCQS: The method
introduces additional hyperparameters within its own
framework, which may require fine-tuning for different
models and datasets. Properly configuring these hyperpa-
rameters is essential to ensure optimal performance.

Convergence to Global Minimum: While NCQS aims
to approximate the objective function effectively, its
quadratic approximation cannot guarantee convergence to
a global minimum. Ensuring convergence often requires a
sufficient number of warm-up samples to navigate the hy-
perparameter space effectively.

Selection of Local Region for Model Building: The
current methodology for selecting the local region to con-
struct the surrogate model may lead to failure if hyper-
parameters change significantly on different length scales.
Addressing this issue and developing more robust region
selection techniques could improve NCQS’ performance.

Trade-off with Increasing Dimensions: As the num-
ber of dimensions grows, there may be a trade-off between
the number of local points used for quadratic approxima-
tion and the number of points needed to estimate the model
parameters. This balance becomes critical as the dimen-
sionality of the hyperparameter space increases.

Addressing these limitations and exploring ways to en-
hance the methodology would contribute to the continued
improvement and applicability of NCQS across various op-
timization problems. As with any optimization approach,
understanding the potential challenges and constraints is
essential for leveraging the method effectively in different
scenarios.
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Rémi Lafage, Joseph Morlier, and Joaquim R.R.A. Martins.
A python surrogate modeling framework with derivatives.
Advances in Engineering Software, 135:102662, 2019. 2

[7] Defense Systems Information Analysis Cen-
ter. Atr algorithm development image
database. https://dsiac.org/databases/
atr-algorithm-development-image-database/.
4

[8] Souvik Chakraborty and Rajib Chowdhury. Multivariate
function approximations using the d-morph algorithm. Ap-
plied Mathematical Modelling, 39(23):7155–7180, 2015. 2

[9] Kai-Bo Duan and S. Sathiya Keerthi. Which is the best mul-
ticlass svm method? an empirical study. In Proceedings
of the 6th International Conference on Multiple Classifier
Systems, MCS’05, page 278–285, Berlin, Heidelberg, 2005.
Springer-Verlag. 1

[10] Katharina Eggensperger, F. Hutter, H. Hoos, and Kevin
Leyton-Brown. Surrogate benchmarks for hyperparameter
optimization: Semantic scholar, Jan 1970. 1

[11] Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik,
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