Gauge-fixing on the Lattice via Orbifolding
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When fixing a covariant gauge, most popularly the Landau gauge, on the lattice one encounters
the Neuberger 0/0 problem which prevents one from formulating a Becchi-Rouet—Stora—Tyutin
symmetry on the lattice. Following the interpretation of this problem in terms of Witten-type
topological field theory and using the recently developed Morse theory for orbifolds, we propose a
modification of the lattice Landau gauge via orbifolding of the gauge-fixing group manifold and show
that this modification circumvents the orbit-dependence issue and hence can be a viable candidate for
evading the Neuberger problem. Using algebraic geometry, we also show that though the previously
proposed modification of the lattice Landau gauge via stereographic projection relies on delicate
departure from the standard Morse theory due to the non-compactness of the underlying manifold,
the corresponding gauge-fixing partition function turns out to be orbit independent for all the orbits

except in a region of measure zero.

I. INTRODUCTION

Lattice field theories have proved to be a very successful
way of exploring the nonperturbative regime of quantum
field theories. They also provide valuable insight and in-
put to the nonperturbative approaches in the continuum
such as the Dyson-Schwinger equations (DSEs), functional
renormalization group studies (FRGs), etc. [1]. Since each
gauge configuration comes with infinitely many equivalent
physical copies, the set of which is called a gauge-orbit, to
remove such redundant degrees of freedom from the gen-
erating functional, one must fix a gauge in the continuum
approaches. Hence, to have a direct comparison between
the continuum approaches with the corresponding results
from the lattice field theories, one also needs to fix a gauge
on the lattice, even though in general gauge-fixing is not re-
quired on the lattice due to the manifest gauge invariance
of the lattice field theories. For this reason, gauge-fixed
simulations have recently attracted a considerable amount
of interest.

In the perturbative limit, the standard approach of fixing
a gauge is the Faddeev-Popov (FP) procedure [2]. In this
procedure, a gauge-fixing device called the gauge-fixing par-
tition function, Zgp, is formulated out of the gauge-fixing
condition. For an ideal gauge-fixing condition, Zgp = 1.
The unity is then inserted in the measure of the generating
functional, so that the redundant degrees of freedom are
removed after appropriate integration. This procedure was
generalized in [3] and is called Becchi-Rouet—Stora—Tyutin
(BRST) formulation. Gribov showed that in non-Abelian
gauge theories a generalized Landau gauge-fixing condi-
tion, if treated non-perturbatively, would have multiple
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solutions, called Gribov or Gribov—Singer copies [1, 4, 5].
Hence, the effects of Gribov copies should be properly taken
into account within the Faddeev-Popov procedure. In fact,
on the lattice, for any Standard Model groups, the cor-
responding ZgF turns out to be zero [6, 7] due to a per-
fect cancelation among Gribov copies. Thus, when inserted
into the generating functional, the expectation value of a
gauge-fixed observable turns out to be of the indeterminate
form 0/0, called the Neuberger 0/0 problem. The problem
yields that a BRST formulation on the lattice can not be
constructed and it is argued this may also hamper com-
parisons of the results from the lattice with the continuum
approaches [8-10].

In theory, to fix a gauge, one must solve the gauge-fixing
condition, a task that could turn out to be extremely diffi-
cult in the nonperturbative regime due to the nonlinearity
of the equations. Hence, gauge-fixing is currently formu-
lated as a functional minimization problem in the lattice
field theory simulations because, generally speaking, nu-
merical minimization is a less difficult task than finding
solutions of a system of nonlinear equations.

Let us consider an action that is invariant under the gauge
transformation U; , — gJ.TUJ-#ngrﬂ, where U;,, € SU(N¢)
are the gauge-fields, g; € SU(N¢) are the gauge transfor-
mations, j is the lattice-site index, and p is the directional
index. Then, the standard choice (using the Wilson formu-
lation of gauge field theories on the lattice) of the lattice
Landau gauge-fixing functional, which we call the naive lat-
tice Landau gauge functional, to be minimized with respect
to gj, is

1
Fy(9) =) (1 — 3 Re TrngUj,ugHﬂ) ; (1)
Joe ¢
for SU(N,) groups. Points which are roots of the first
derivatives fj(g) := BFBLQJ@ = 0 for each lattice site j

yield the lattice divergence of the lattice gauge fields and



in the naive continuum limit recovers the Landau gauge
0y A, = 0. The matrix Mpp is the Hessian matrix of Fi7(g)
with respect to the gauge transformations. Zgp is then the
sum of the signs of the determinants of Mpp computed at
the Gribov copies.

The minima of Fy(g) are by definition solutions of the
gauge-fixing conditions, but the minima only form a sub-
set of the set of all Gribov copies, since the latter includes
saddles and maxima in addition to the minima. The set of
minima of Fy(g) is called the first Gribov region. There
is no cancelation among these Gribov copies, so the Neu-
berger 0/0 problem does not appear if one restricts the
gauge-fixing to the space of minima instead of all solutions
of the gauge-fixing condition. This restricted gauge-fixing is
called the minimal Landau gauge [11] and can be written in
terms of a renormalizable action with auxiliary fields (see,
e.g., [12] for a review). However, the number of minima
may turn out to be different for different gauge-orbits and
increases exponentially with increasing lattice size, as was
shown for the compact U(1) case in Refs. [13-18]. Thus,
the corresponding Zgp, which counts the number of min-
ima for each gauge-orbit in the minimal Landau gauge, is
orbit-dependent, and inserting Z¢gr in the generating func-
tional becomes a difficult task.

To resolve the gauge-dependence issue, one may further
restrict the gauge-fixing to the space of global minima,
called the fundamental modular region (FMR). In this
gauge, known as the absolute Landau gauge, again the Neu-
berger 0/0 problem is avoided as in the minimal Landau
gauge case. However, the corresponding Zsr may be orbit-
independent since the number of global minima is thought
to be constant for any gauge-orbit (it is also anticipated
that the set of configurations with degenerate global min-
imais a set of measure zero which forms the boundary of the
FMR). Thus, the FMR is expected to not have any Gribov
copies within it [19, 20]. This claim was verified to be true
for the compact U(1) case for the one- and two-dimensional
lattice in Refs. [13, 14]. The problem with the absolute
Landau gauge is that one must find the global minimum of
Fy(g) for sampled orbits, which corresponds to finding the
global minimum of spin glass model Hamiltonians, a task
in most cases known to be an NP hard problem.

In the past few years, a few further suggestions to evade
the Neuberger problem and restore BRST formulations on
the lattice have been put forward in Refs. [21-25], which
are reviewed in Ref. [26]. In the current paper, we con-
centrate on the stereographic lattice Landau gauge which
was proposed in Refs. [8, 9, 13]. In Section II, we first
review this proposed modification of lattice Landau gauge-
fixing via stereographic projection of the gauge-fixing man-
ifold. We also give a plausible topological argument on why
the proposal might fail. In particular, the orbit indepen-
dence of the corresponding Zgp is crucial to ensure that
the stereographic lattice Landau gauge is a viable candi-
date to evade the Neuberger 0/0 problem. We also show
why topologically the stereographic projection might turn
out to be orbit dependent. In Refs. [13, 15, 27], the prob-
lem of finding all Gribov copies on the lattice was trans-
formed into a problem in algebraic geometry. However, for
the stereographic lattice Landau gauge, it was not possible
to solve the corresponding equations using the then avail-

able algebraic geometry methods. In Appendix A, with
the improved algorithms, we give explicit calculations of
the number of Gribov copies using an algebraic geometry
based method which guarantees to find all isolated solu-
tions for the simplest non-trivial case of the stereographic
lattice Landau gauge, i.e., 3 x 3 lattice with periodic bound-
ary conditions. With these stronger results, we show that
Zar for the stereographic lattice Landau gauge is orbit in-
dependent over the orbit space except for a region of zero
measure.

In Section III, we propose a novel modification via orb-
ifolding of the gauge-fixing manifold that is topologically
valid unlike the stereographic case, and show that Zgp is
orbit-independent for this gauge-fixing. Though the idea of
an orbifold lattice Landau gauge was conceived in 2009 in
Ref. [13], the necessary mathematical framework, namely,
Morse theory for orbifolds, was published later in that
year [28]. We briefly review the definition of an orbifold
and Morse theory for orbifolds. Then, we apply these con-
cepts to propose a modified lattice Landau gauge based on
orbifolding of the gauge-fixing group manifold. We show
how the modification evades the Neuberger 0/0 problem for
compact U(1) while maintaining orbit-independence. We
then conclude the paper in Section IV.

II. STEREOGRAPHIC LATTICE LANDAU
GAUGE

The following is a review of the stereographic lattice Lan-
dau gauge. We start by noting that a major breakthrough
to resolve the Neuberger 0/0 problem came from Schaden,
who in Ref. [29] interpreted the Neuberger 0/0 problem in
terms of Morse theory. It can be shown that the corre-
sponding Zgr for Landau gauge on the lattice calculates
the Euler characteristic x of the group manifold G at each
site of the lattice, i.e., for a lattice with N lattice-sites,

Zgr = Zsign(det Mpp(g)) = (x(G)V, (2)

where the sum runs over all the Gribov copies. This result is
based on the Poincafe—Hopf theorem, which states that the
Euler characteristic x(M) of a compact, orientable, smooth
manifold M is equal to the sum of indices of the zeros of a
smooth vector field on M. In the case that the vector field
is the gradient of a non-degenerate height function, a dif-
ferentiable function from the manifold M to R with isolated
critical points, the index at a critical point is £1 depending
on the sign of the Hessian determinant at the critical point
! From Eq. (2), we identify Fy;(g) as a height function of the
gauge-fixing manifold, Gribov copies as the critical points,

L Tt should be emphasised that in Refs. [13, 14, 30], it was shown
that the naive lattice Landau gauge is not a Morse function at a
few special orbits, such as the trivial orbit, due to the existence
of isolated and continuous singular critical points. However, for
a generic random orbit, it is indeed a Morse function and it is
this property that saves the topological interpretation of the gauge-
fixing procedure [29)].



and Mpp as the corresponding Hessian matrix. This in-
terpretation establishes the fact that the gauge-fixing on
the lattice can be viewed as a Witten-type topological field
theory [31].

For compact U(1), for which the group manifold is S*, the
link variables and gauge transformations in terms of angles
G505 € (—m, 7] mod 2 are Uj,, = e'%i» and g; = €%,
respectively. Thus, the naive gauge fixing functional in
Eq. (1) is reduced to

Fy(0) = Z (1 = cos(¢ju + O — 65))

and the corresponding gauge-fixing conditions are:
d
f3(0) = — Z (Sinﬁ’# —sin ¢39*I17M) =0, (4)
p=1

where qﬁf’ﬂ = ¢5,u + 044 — 03- A given random set of @5,
is called a random orbit. Moreover, when all ¢; , are zero,
it is called the trivial orbit. We choose periodic bound-
ary conditions (PBC) which are given by 04 n; = 6; and
i+Np.u = ®j.u, Where N is the total number of lattice sites
in the p-direction. With PBC, there is a global degree of
freedom leading to a one-parameter family of solutions with
0; — 0; + U,Vj where ¥ is an arbitrary constant angle. We
remove this degree of freedom by fixing one of the variables
to be zero, i.e., Oy, . n) = 0. Then, {¢;,.} take random
values independent of the action, i.e., the strong coupling
limit 8 = 0, which is sufficient to answer the questions we
are interested in this paper.

We can view Eq. (3) as a height function from St x - .- x S*
to R. Since x(S') = 0, Zgr = 0. In fact, for any compact,
connected Lie group G that is not 0-dimensional, it is well

known that x(G) is zero?.

To evade the Neuberger 0/0 problem, Schaden proposed
to construct a BRST formulation for the coset space
SU(2)/U(1) of a SU(2) theory. For this coset space, x
is non-zero. The proposal was generalized to fix gauge
of an SU(N,) gauge theory to the maximal Abelian sub-
group (U(1))e~! in Refs. [32, 33]. In short, the Neuberger
0/0 problem for an SU(N,.) lattice gauge theory lies in
(U(1))Ne=1 and can be avoided if the problem for com-
pact U(1) is avoided.

Following this interpretation, a promising proposal to evade
the Neuberger 0/0 problem via a modification of the gauge-
fixing group manifold (i.e., the manifold of the combina-
tion gJTUj#gHﬂ) of compact U(1) developed using stere-
ographic projection at each lattice site was presented in
Refs. [8, 9, 13]. The stereographic gauge fixing functional

2 To see this, note that if ¢t — g(t) is a one-parameter group in G
and L) denotes left-multiplication by g(t), then the derivative of
Lyt at t = 0 produces a vector field on G which never vanishes.
Then x(G) = 0 follows from the Poincaré—Hopf theorem.

was proposed as:

F3(60) = =23 In(cos(4,,/2)). (5)

Jom
and the corresponding gauge-fixing conditions are:

d

HOEESY (tan( ¢ /2) — tan( g’,w/z)) =0 (6)

p=1

for all lattice sites j.

Here, the Euler characteristic of the modified manifold is
non-zero, so the Neuberger 0/0 problem is avoided. Ap-
plying the same approach to the maximal Abelian sub-
group (U(1))Ne~1 as mentioned above, the generalization
as stereographic projection for SU(N,) lattice gauge the-
ories is also possible when the odd-dimensional spheres
S2k+1 | =1,...,N. — 1, are stereographically projected
to the real projective space RP(2k). In those references,
using topological arguments the number of Gribov copies
was shown to be exponentially suppressed for the stereo-
graphic lattice Landau gauge compared to the naive gauge
and the corresponding Zgp for the stereographic lattice
Landau gauge was shown to be orbit-independent for com-
pact U(1) in one dimension. Since it can be shown that
the FP operator for the stereographic lattice Landau gauge
is generically positive (semi-)definite, Zgp counts the total
number of local and global minima. The stereographic lat-
tice Landau gauge is thought to be a promising alternative
to the naive lattice Landau gauge, except that the orbit-
independence of Zgpr was yet to be confirmed for lattices
in more than one dimension.

It is interesting to point out that in supersymmetric Yang—
Mills theories on the lattice, non-compact parameteriza-
tions of the gauge fields similar to the stereographic pro-
jection have been used [34], independently of the develop-
ment of the stereographic lattice Landau gauge (see, e.g.,
[35, 36] for earlier accounts on non-compact gauge-fields
on the lattice). The non-compact parameterization in the
supersymmetric lattice field theories, unlike the compact
(group based) parameterization, surprisingly avoids the
well-known sign problem in these lattice theories [37, 38].
Recently, a more direct connection between the sign prob-
lem in lattice supersymmetric theories and the Neuberger
0/0 problem has been established [39] by noticing that the
complete action of, for example, the N' = 2 supersymmet-
ric Yang-Mills theories in two dimensions can be shown to
be a gauge-fixing action via Faddeev-Popov procedure to
fix a topological gauge symmetry in this case.

A. Orbit-dependence of the Stereographic Lattice
Landau Gauge

The following provides an explanation of toopologically
subtleties of the stereographic gauge (see [40, 41] for further
background). Let M be a closed manifold (i.e., compact
and without boundary). A smooth function f : M — R
has a critical point at = if df, is nonsingular; a critical
point x is degenerate if the Hessian H f(x) of f at z is sin-
gular and non-degenerate otherwise. A Morse function is



a smooth function whose critical points are isolated and
non-degenerate. Given such a Morse function of f, the
gradient Vf is a tangent vector field to M that vanishes
at exactly the critical points x € M for f. As f is Morse,
it has isolated critical points, which must then be finite as
M is closed. The requirement that a critical point x of f
be nondegenerate implies that the index ind,(Vf) of the
vector field Vf at x is +1, depending only on the sign of
the determinant of the Hessian H f(x) of f at x. Therefore,
letting C' denote the set of critical points in M, we have

Z sign(detH f(x Z ind,(Vf) (7)

zeC zeC
= x(M),

where the last equality follows from the Poincaré—Hopf the-
orem. Hence, in the case where M = [[; St is the product

of circles parameterized by the {gzﬁg H} at each lattice site,
the partition function Zgp in fact depends only on M, and
computes x (M) for any collection of {¢; ,} or any choice of
Morse function F.

In the case that M is not closed but rather an open manifold
without boundary, the sum in Eq. (7) depends on f, and not
simply on M. This can be seen, for instance, by choosing
a Morse function on the circle S* with at least two critical
points (whose indices must sum to 0) and then by defining
M to be an open subset of S'. Then, M can be chosen to
be an interval in S' which contains a single critical point z,
in which case the sum is 1 depending on inds(z). Also,
one can choose M to be an open interval in S* containing
no critical points, in which case the sum is 0. Note that in
each of these cases, the manifold M is diffeomorphic to an
open interval. In short, when M is not closed, the sum of
the indices depends on the height function.

Using the stereographic gauge fixing functional Eq. (5), it
can be shown that the Hessian is generically positive [15],
so that Zgp is strictly positive and counts the number of
critical points. For a 1-dimensional lattice, there are only
N critical points [13, 42], so the corresponding Zgr = N,
which is independent of orbits, and thus Zgr does not de-
pend on the choice of {¢;,}. In higher dimensions, how-
ever, the above phenomenon may occur, and Zg g may vary
with the choice of {¢;,} since the stereographic gauge is
outside the applicability of Morse theory.

Appendix A demonstrates that, for the stereographic lat-
tice Landau gauge for a 2-dimensional lattice, the number
of Gribov copies and hence Zgp indeed are orbit indepen-
dent, quantities except in a region of orbit space with mea-
sure zero, via explicit calculations. Specifically, we use an
algebraic geometry based method which guarantees to find
all isolated solutions of a given nonlinear system of equa-
tions with polynomial-like nonlinearity to show that though
the number of Gribov copies for the 3 x 3 lattice for the com-
pact U(1) case is constant, 11664, for most of the random
orbits {¢;,,. }, there are regions in the orbit space for which
the numbers of Gribov copies differ from this number.

III. ORBIFOLDING

The following uses orbifolding to develop a modification of
lattice Landau gauge which is topologically rigorous unlike
the steregraphic gauge. We start by reviewing some of the
basic concepts about orbifolds. We give the definition of a
orbifold and then describe Morse theory for orbifolds. We
then apply Morse theory for orbifolds to propose a modified
lattice Landau gauge via orbifolding the gauge-group man-
ifold that evades the Neuberger 0/0 problem while being
orbit-independent.

Let M be a manifold and G a finite group of diffeomor-
phisms of M. Then the quotient G\M is an example of
a global quotient orbifold or simply orbifold. Note that in
general, orbifolds are required to be only locally of the form
G\M, but we restrict our attention here to global quotient
orbifolds; e.g., see [43]. A point in G\M corresponds to the
G-orbit Gx = {gr : g € G} of x € M.

There are several Euler characteristics for orbifolds, and
each can be computed using a Morse function with modi-
fications to the method of Eq. (7). The reader is warned
that the term “orbifold Euler characteristic” can refer to
different Euler characteristics in the literature. The most
primitive Euler-characteristic, in the sense that other Euler
characteristics can be defined in terms of it, is the so-called
Euler—Satake characteristic xps(M, G), which is given by

xes(M, G) = x(M)/|G], (8)

where |G| denotes the order, or number of elements, of G.
It was defined for general orbifolds in [44]; see also [45, 46].
Note that in general, xpg is a rational number. One may
also consider the usual Euler characteristic (of the under-
lying topological space) x(G\M), which is related to the
Euler—Satake characteristic via

|G| 2 X

geG

= > x(M)/|Z(g)l (9)

(g)EG*

Z XES(M97 Z(g))’

(9)€G.

X(G\M) =

where Z(g) = {h € G: gh = hg}, M9 = {x ¢ M : gz =z}
is the set of points in M fixed by g, (¢9) = {hgh™! : h € G}
is the conjugacy class of g in G, and G, the set of con-
jugacy classes in G. Note that xgs(MY, Z(g)) coincides
for each element of a conjugacy class, so that the last two
sums are well-defined. In particular, x(G\M) is the sum of
the Euler—Satake characteristics of the orbifolds Z(g)\MY,
which for g # 1 are called twisted sectors. The nontwisted
sector corresponding to g = 1 coincides with G\M. The
collection U(gyeq, Z(g)\MY is called the inertia orbifold, de-
noted A(G\M), (see e.g. [43]) so that succinctly, the usual
Euler characteristic x(G\M) is the Euler—Satake character-
istic of the inertia orbifold.

The stringy orbifold Euler characteristic xst-(M, G), intro-
duced in [47, 48] for global quotients and [49] for general



orbifolds, see also [50], is defined analogously as

1
Xst?"(Ma G) = @ Z X(M<g’h>)7 (10)
(g,h)EG?2

where G?,,,, denotes the set of (g,h) € G* = G x G such
that gh = hg and MM = {z € M : gz = he = 2}
denotes the set of points fixed by both g and h. This Eu-
ler characteristic is related to the others as follows. For
a pair of commuting elements (g,h) € G2, let [g,h] =
{(kgk=',khk=1) : k € G} (the orbit of (g,h) under the
action of G on G2, by simultaneous conjugation), let
G? s = {lg, 1] : (9,h) € GZ,,,} (the set of orbits), and
let Z(g,h) = Z(g) N Z(h) denote the subgroup of G con-
sisting of elements that commute with both g and h. Then

computations similar to those in Eq. (9) demonstrate that

Xstr(MvG): Z X(Z(g)\Mg) (11)
(9)€G

>

lg,h]€G2

com*

xes(MYM Z(g,h)).

In other words, xst-(M,G) is the usual Euler char-
acteristic of the inertia orbifold, and as well coin-
cides with the Euler—Satake characteristic of the orbifold
u[g,h]eggom*Z(g,h)\M<9’h>. Observe that this latter dis-
joint union is in fact the inertia orbifold of the inertia
orbifold, which we refer to as the double-inertia orbifold
A2(G\M). The orbifold corresponding to [g,h] = [1,1] is
the nontwisted double-sector, while the other orbifolds are
referred to as twisted double-sectors. The reader is warned
that double-sectors do not coincide with 2-multi-sectors de-
fined in [43] unless G is abelian®.

A Morse function on a global quotient orbifold G\M is de-
fined to be a Morse function f : M — R that is G-invariant,
ie. f(gz) =« for each g € G and x € M. The latter condi-
tion implies that f yields a continuous function f : G\M —
R on the topological space G\M given by f(Gz) = f(z).
Morse theory has recently been developed for orbifolds in
the general context of Deligne-Mumford stacks [28] which,
in particular, demonstrates that orbifolds always admit
Morse functions, and establishes Morse inequalities for an
orbifold and the corresponding inertia orbifold.

To compute the FEuler characteristic ygg using a Morse
function?, one can apply the Poincaré-Hopf theorem for
orbifolds as demonstrated in Ref. [44].

3 The reader may have noticed that the three Euler characteristics
XES> X, and xstr form the Oth, 1st, and 2nd elements of a sequence
of Euler characteristics for orbifolds, so that others can be defined.
This was observed in [51], and this sequence was defined and studied
for global quotients in [52]. More generally, an Euler characteristic
corresponding to each finitely generated discrete group (with the
above sequence corresponding to the groups Z™ for m = 0,1,2,...)
was assigned to a global quotient an orbifold in [53, 54], and these
Euler characteristics were defined for arbitrary orbifolds in [55].
Satake worked with V-manifolds, orbifolds where each group ele-
ment is assumed to fix a subset of codimension at least 2. However,
this result can be extended to general orbifolds by applying it to
the orientable double-cover, which always satisfies this hypothesis,
and can be proved directly for global quotient orbifolds using the
Poincaré—Hopf theorem for manifolds.

For a global quotient orbifold G\M, a point Gz is a critical
point of f if z is a critical point of f, and Gz is said to be
degenerate (respectively non-degenerate) if x is degenerate
(respectively non-degenerate) for f. Note that the require-
ment that f is G-invariant implies that these notions do
not depend on the choice of = from the orbit Gz.

Similarly, the gradient Vf (depending on a choice of Rie-
mannian metric) defines a G-equivariant vector field on M,
which induces a vector field denoted V f on the orbifold
G\M. If Gz is a zero of Vf (equivalently, a critical point
of f), then the index of Vf at Gz is defined to be

3! (Vf) = ind. ()
where G, = {g € G : gx = x} is the subgroup of G that
fixes z. That is, the index of a critical point on an orbifold
is the index of a corresponding critical point on the man-
ifold divided by |G5|. Again, the (manifold) index can be
computed as the sign of the determinant of the Hessian.

If C' denotes the set of critical points of f on G\M, then
Satake’s Poincaré—Hopf theorem for orbifolds implies

Z |G} |sign(detHf(m)) = Z ind%, (f)
Gacc 1C2 GreC
= XES(Ma G)

Therefore, the sum of the (orbifold) indices of the critical
points computes the Euler—Satake characteristic. In the
context of global quotients, it is not hard to show that a
Morse function f on G\M defines a Morse function Af on
the inertia orbifold A(G\M) as well as a Morse function
Ay f on the double-inertia orbifold Ay(G\M) by restricting
f to the appropriate fixed-point submanifolds. By Eq. 9)
and (11), we obtain that applying the procedure above to
Af or Ao f yields X(G\M) and xs:- (M, G), respectively.

A. A simple example

To illustrate this procedure, consider the orbifold given by
M = S' and G = Z,, where the nontrivial element a of Z-
acts via e’ — e~%. The resulting orbifold can be identified
with {e? : 0 < 0 < 7}, as each ¢ with 7 < § < 27 is in
the orbit of ¢!™= Tt is therefore homeomorphic to a
closed interval, where the endpoints are the images of the
two points fixed by Zs. Then we have that xgs(M, G) = 0,
as x(S') = 0, and x(G\M) = 1, the Euler characteristic
of a closed interval. To compute xst-(M, G), note that all
elements of G? = {(1,1),(1,a), (a,1), (a,a)} are mutually
commuting, and the common fixed-point set of each is two
points except for the trivial pair (1,1) which fixes all of S*.
Hence, applying Eq. (10) yields xs: (M, G) = 3.

To compute these Euler characteristics using a Morse func-
tion, we choose f(0) = cos(f). The corresponding f has
critical points at the orbits of § = 0 and § = 7. The
Hessians of f at these two critical points are —1 and 1, re-
spectively, and the isotropy groups are both Z,, so that we



compute
xes(M,G) = indZ2(Vf) +ind%2 (V f)
S N SRS S S
|Zs| | Zs] 22 .

To compute x, we note that the inertia orbifold A(G\M) in
this case has three connected components, the nontwisted
sector as well as two points, each equipped with trivial
Zo-actions. The function f restricted to a point trivially
has a non-degenerate critical point of index 1. It follows
that x(G\M) is given by the sum of xgs(M, G), computed
above, as well as one term of the form 1/|Z5| = 1/2 for each
twisted sector. That is,
1 1

XES(M G) +

v = 7l * Tl =

Similarly, as A2 (G\M) consists of G\M as well as six points,
each with isotropy Z,, we have

1
Xsf,r(M7 G) XES(M G) =+ 6 <Z2|> = 3

B. Orbifolding the lattice Landau gauge

To apply the lattice Landau gauge procedure for com-
pact U(1) to orbifolds, we define a Zs-action on the space
variables {(bf .} by letting the nontrivial element a € Zy
act via a : ¢f  — —¢f . The choice of group ac-
tion is motlvated by the fact that the gauge fixing func-
tion Eq. (3) is invariant under this action. However,
though it is the case that yps((S)N"~1,Zs) = 0, neither
X(Zo\(SHN'1) nor X ((S1)N'~1, Zy) vanish. The in-
ertia orbifold A(Zo\(SY)N*~1) consists of the nontwisted
sector as well as 2V —1 points with trivial Zs-action, each
given by the orbit of a point (ngJf{ M) where each ¢>j97 , is 0or
7, so that

2Nd—2

X(Z\(S)V ) =
Similarly, as each of the pairs of group elements (1,a),
(a,1), and (a,a) fix again oN-
Aa(Z2\ (ST
3.9N"-1

I points, the double-inertia
d_l) consists of the nontwisted sector and
points with trivial Zs-action, so that

Xstr((sl)Nd,Zg) = 3 . 2Nd72.

To apply the procedure, then, given a random choice of
{$s.u}, is to use the Morse function E on Zo\(SH)N'-1
induced by F on (S)N’~! defined in Eq. (3) with no
changes to the gauge-fixing and boundary conditions. Since
Ao(Zo\(S1)N=1) consists only of the nontwisted double-
sector and O-dimensional twisted double-sectors, the re-
striction of Ay F' to each connected component of a twisted
double-sectors trivially has a nondegenerate critical point
with positive index. Hence, if C' denotes the set of critical
points on the nontwisted sector, we have

1
Zer = Y. o sign(detMpp)+3-2V" "2 =3.2V"2,
y 52 (Z2)o]
20€C

Note that the sum vanishes because it computes
xes((SY)N'~1,Zy) = 0. Hence the critical points in the
nontwisted sectors occur in pairs with positive and neg-
ative Hessian determinants. Furthermore, note that the
computation of the sum differs from the manifold case in
that a pair of stationary points {(?fu} and {fzj)iu} of F
are the same stationary point for F', and hence the sign of
det M pp is counted only once. This may be accomplished
algebraically by choosing a single (;53-9’ ., and considering only
critical points such that 0 < ¢j0,H

such that gbe = 0 or m, we choose another variable and
restrict in the same way.

As an example, let N = 3 and d = 1. We consider the
trivial orbit for simplicity, i.e. each ¢; = 0, and fix 05 =0
to remove the global degree of freedom arising from the pe-
riodic boundary condition y43 = 60;; see Section II. Then
we have

< m; for critical points

(1 —cos gzﬁf)

M=

Fy(0) =
—cos(fy — 01) — cos(—03) — cos(fy).

°"’|T

Setting a%iEﬁ(e) = 0 for i = 1,2, we find five solutions
for (01,62): (0,0), (0,7), (m,0), (7, 7), and (27/3, —27/3).
Note that we only consider solutions such that 0 < 6; <
as above, because the solution (—27/3,27/3) is in the same
Zo-orbit as (27/3, —27/3) and hence represents the same
point on the orbifold. The Hessian determinants of these
critical points are +3,—1,—1,—1, and 3/4, respectively,
and the first four critical points are fixed by Zs while the
last is fixed only by the trivial element. It follows that
the indices are given by 1/2,—1/2,-1/2,—1/2, and 1, re-
spectively, and their sum computes xps((S')?, Z2) = 0
To compute x(Z\(S*)?), we consider Fy() as a function
on the larger space A(Z2\(S')?) consisting of Zy\(S')?
as well as four isolated points fixed by Zy corresponding
to the fixed points (0,0), (0,7), (7,0), and (7, 7). Each
point is isolated and hence trivially a critical point with
index 1/|Zs|, so summing these indices along with those
on Zs\(S')? described above yields x(Z2\(S*)?) = 2. For
A3 (Z2\(S)?), we consider instead three copies of each iso-
lated fixed point, one for each nontrivial commuting pair
(1,a), (a,1), and (a,a), yielding twelve critical points with
index 1/|Z2| and hence Xstr((51)2,Z2) =6.

C. An Integral Formulation of Z¢r for Orbifolding

For the sake of completeness, we also provide an expres-
sion of Zgp in the usual integral formulation a la Faddeev-
Popov procedure, which we plan to further refine to suit
the needs of the lattice simulations. To compute the topo-

logical Euler characteristic x(Z2\(S1)V ~1), we have

orb 1
()
= 0 o(f
%Fﬁmwmpmnj?wn“”

where D6 indicates integration over each 6, the f; are the
stationary equations, i.e., f; = %, and H(F) is the hessian




determinant of F'. The integral is computed in the orbifold
sense, see [43, Section 2.1]. If we let X denote the subset of

(SY)N'=1 x Z, consisting of pairs (6, g) such that gf = 6,
then this orbifold integral can be expressed using the usual
integral as

Ni-1

_ 1 | HF)
Zer = E/Xmm) 1 5(f:)

[H(F)[’

(13)

where the prefactor 1/2 arises from the order of Z, and the
definition of orbifold integration.

D. Summary of the Procedure

To summarize, the procedure for computing the topological
and stringy Euler characteristic from the naive gauge-fixing
functional can be divided in three steps. In the first step:

1. Find all the stationary points of Fy(6) as given in
Eq. 3 by solving % =0,i=1,..,N%

2. Call the solution vectors of these equations ¢?. Let’s
say there are M solutions.

3. If for two solutions, say ¢’ and ¢, we have
¢ = —¢?@) | then discard one of them. Hence,
m < M solutions are left in the end.

4. Compute the hessian determinant at each of the m
solutions.

5. For each solution ¢?, the index is &1 if ¢? # —¢? and
+1 if ¢ = —¢?, where the sign is that of the hessian
determinant.

6. Compute the sum of the indices for each solution.
This sum will be always zero in our case.

For the second step (the fixed points):

1. The fixed vectors are simply ¢’ =
0,0,...,0),(0,0,...,0,7), ..., (m,m, ..., m), ie., all
the 2¥'~1 combinations of 0 and 7. These solutions
already appeared in the first step, but are now con-
sidered as isolated points (twisted sectors) associated
to the nontrivial group element.

2. By convention, the ‘hessian determinant’ for each of
these solutions is positive, and each solution is fixed
by construction, so the index of each of these points
is +%.

3. The (topological) Euler characteristic x(G\M) is
given by the sum of all indices found in the first two
steps, x(G\M) =0+ (1) - gN? =1 — gN*=2,

Finally, the third step (for the fixed points associated to
commuting pairs):

1. The fixed vectors are the same as in the second
step, but we now consider three copies of each for
the three nontrivial commuting pairs of group ele-
ments ((a,1), (1,a), and (a,a) where a is the non-
trivial element of Zs).

2. We again have that the index of each such point is —l—%.

3. The stringy Euler characteristic of the orbifold is then
the sum of the indices from first and third step, i.e.,

Zr = Xotr(M, Zo) = 0+ (3) -3 2N -1 =3.2N"-2,

IV. CONCLUSION

Like many other crucial nonperturbative phenomena,
gauge-fixing and the BRST symmetry are yet to be well
understood in the nonperturbative regime of gauge field
theories. In this paper, we first reviewed and investigated
a recently proposed modified Landau gauge on the lattice,
known as stereographic lattice Landau gauge. We gave
plausible arguments to demonstrate why this gauge may
not turn out to be a valid topological field theory due to
the fact that the procedure is outside the applicability of
Morse theory. In Appendix A, we use algebraic geometry
to show for the simplest non-trivial example of 3 x 3 lat-
tice with periodic boundary conditions for compact U(1)
that though the number of Gribov copies for the stereo-
graphic lattice Landau gauge remains constant for almost
all the random gauge-orbits, there are certain regions in the
gauge-orbit space for which the number of Gribov copies
differs from the generic case. Since the corresponding Zgp
counts the number of Gribov copies for the stereographic
lattice Landau gauge, our results yields that the Zgp is
orbit independent over the orbit space except for a region
with measure zero.

We then proposed modified lattice Landau gauge via orb-
ifolding of the gauge-fixing manifold which is mathemat-
ically more rigorous due to the recently developed Morse
theory for orbifolds. We reviewed the definition and de-
scription of Morse theory for an orbifold. We also discussed
three different Euler characteristics of an orbifold. We then
demonstrated how Morse theory for orbifolds can be ap-
plied to modify the naive lattice Landau gauge so that the
corresponding Zgp for the orbifold lattice Landau gauge,
which computes the stringy (or the usual) Euler charac-
teristic of an orbifold, is orbit-independent and also evades
the Neuberger 0/0 problem since the Euler characteristic is
non-zero. The orbifolds we considered are always compact
since the original manifold is compact. Thus, our modified
lattice Landau gauge is fundamentally different than the
stereographic lattice Landau gauge in that the former re-
tains the compactness of the gauge-fixing manifold, and is
close in the spirit of the standard Wilsonian formulation of
lattice gauge theories.

We anticipate that our modified lattice Landau gauge, com-
bined with the coset space gauge-fixing as proposed by
Schaden, may turn out to be the most viable candidate to
evade the Neuberger 0/0 problem which has prohibited re-
alizing the BRST symmetry on the lattice for over 25 years.
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Appendix A: Results from Homotopy Continuation for
the Stereographic Projection

The following shows that Zgp for the stereographic lattice
Landau gauge-fixing functional is orbit independent over
the orbit space except for regions having measure zero. For
this, we first note that the Hessian matrix of Eq. (5) is
generically positive-definite [13, 15]. Hence, Zgr in Eq. (2)
computes the number of stationary points of Eq. (5) for
the given gauge-orbit. Thus, we need to compute the num-
ber of solutions of Eq. (6) for various orbits (i.e., random
values of {¢; .}, at the strong coupling limit 8 = 0) and de-
termine if they remain constant. Finding all the solutions
of such a nonlinear system of equations is a very difficult
task. In Refs.[13, 15, 27] the problem of solving gauge-
fixing conditions on the lattice was translated in terms of
algebraic geometry in order to be able to use the numeri-
cal algebraic geometry methods to find all the solutions of
these equations. With the improved version of the corre-
sponding algorithms, we can now solve the equations for at
least the simplest nontrivial lattices in 2D successfully. To
use this method for our purposes, we begin by transform-
ing our system of trigonometric equations into a system of
polynomial equations by first expanding Eq. (6) using the
trigonometric identity

nx—i—y—i—z _ sinx + coszsiny + cosysin z

= _ —. (A1)
2 coST + cosycos z — siny sin z

ta

Replacing sin 0; and cos 85 with s; and ¢;, resp., yields

s _ sin @5 ,,¢j — €08 5 4S5 + Sj+p
files =3 (2 ‘
sin 5,85 + €08 G5 ,Cj + Ci i
SN @y i,uCi—jp — COS Qj—puSj—p + Sj) (A2)
Sin @5 i, Sj—p + COS Pj—jppuCj—p + ¢

Due to the Pythagorean ide