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When �xing a covariant gauge, most popularly the Landau gauge, on the lattice one encounters
the Neuberger 0/0 problem which prevents one from formulating a Becchi�Rouet�Stora�Tyutin
symmetry on the lattice. Following the interpretation of this problem in terms of Witten-type
topological �eld theory and using the recently developed Morse theory for orbifolds, we propose a
modi�cation of the lattice Landau gauge via orbifolding of the gauge-�xing group manifold and show
that this modi�cation circumvents the orbit-dependence issue and hence can be a viable candidate for
evading the Neuberger problem. Using algebraic geometry, we also show that though the previously
proposed modi�cation of the lattice Landau gauge via stereographic projection relies on delicate
departure from the standard Morse theory due to the non-compactness of the underlying manifold,
the corresponding gauge-�xing partition function turns out to be orbit independent for all the orbits
except in a region of measure zero.

I. INTRODUCTION

Lattice �eld theories have proved to be a very successful
way of exploring the nonperturbative regime of quantum
�eld theories. They also provide valuable insight and in-
put to the nonperturbative approaches in the continuum
such as the Dyson-Schwinger equations (DSEs), functional
renormalization group studies (FRGs), etc. [1]. Since each
gauge con�guration comes with in�nitely many equivalent
physical copies, the set of which is called a gauge-orbit, to
remove such redundant degrees of freedom from the gen-
erating functional, one must �x a gauge in the continuum
approaches. Hence, to have a direct comparison between
the continuum approaches with the corresponding results
from the lattice �eld theories, one also needs to �x a gauge
on the lattice, even though in general gauge-�xing is not re-
quired on the lattice due to the manifest gauge invariance
of the lattice �eld theories. For this reason, gauge-�xed
simulations have recently attracted a considerable amount
of interest.

In the perturbative limit, the standard approach of �xing
a gauge is the Faddeev-Popov (FP) procedure [2]. In this
procedure, a gauge-�xing device called the gauge-�xing par-
tition function, ZGF , is formulated out of the gauge-�xing
condition. For an ideal gauge-�xing condition, ZGF = 1.
The unity is then inserted in the measure of the generating
functional, so that the redundant degrees of freedom are
removed after appropriate integration. This procedure was
generalized in [3] and is called Becchi�Rouet�Stora�Tyutin
(BRST) formulation. Gribov showed that in non-Abelian
gauge theories a generalized Landau gauge-�xing condi-
tion, if treated non-perturbatively, would have multiple
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solutions, called Gribov or Gribov�Singer copies [1, 4, 5].
Hence, the e�ects of Gribov copies should be properly taken
into account within the Faddeev-Popov procedure. In fact,
on the lattice, for any Standard Model groups, the cor-
responding ZGF turns out to be zero [6, 7] due to a per-
fect cancelation among Gribov copies. Thus, when inserted
into the generating functional, the expectation value of a
gauge-�xed observable turns out to be of the indeterminate
form 0/0, called the Neuberger 0/0 problem. The problem
yields that a BRST formulation on the lattice can not be
constructed and it is argued this may also hamper com-
parisons of the results from the lattice with the continuum
approaches [8�10].

In theory, to �x a gauge, one must solve the gauge-�xing
condition, a task that could turn out to be extremely di�-
cult in the nonperturbative regime due to the nonlinearity
of the equations. Hence, gauge-�xing is currently formu-
lated as a functional minimization problem in the lattice
�eld theory simulations because, generally speaking, nu-
merical minimization is a less di�cult task than �nding
solutions of a system of nonlinear equations.

Let us consider an action that is invariant under the gauge

transformation Uj,µ → g†jUj,µgj+µ̂, where Uj,µ ∈ SU(NC)

are the gauge-�elds, gj ∈ SU(NC) are the gauge transfor-
mations, j is the lattice-site index, and µ is the directional
index. Then, the standard choice (using the Wilson formu-
lation of gauge �eld theories on the lattice) of the lattice
Landau gauge-�xing functional, which we call the naïve lat-
tice Landau gauge functional, to be minimized with respect
to gj, is

FU (g) =
∑
j,µ

(
1− 1

Nc
Re Trg†jUj,µgj+µ̂

)
, (1)

for SU(Nc) groups. Points which are roots of the �rst

derivatives fj(g) := ∂FU (g)
∂gj

= 0 for each lattice site j

yield the lattice divergence of the lattice gauge �elds and
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in the naïve continuum limit recovers the Landau gauge
∂µAµ = 0. The matrixMFP is the Hessian matrix of FU (g)
with respect to the gauge transformations. ZGF is then the
sum of the signs of the determinants of MFP computed at
the Gribov copies.

The minima of FU (g) are by de�nition solutions of the
gauge-�xing conditions, but the minima only form a sub-
set of the set of all Gribov copies, since the latter includes
saddles and maxima in addition to the minima. The set of
minima of FU (g) is called the �rst Gribov region. There
is no cancelation among these Gribov copies, so the Neu-
berger 0/0 problem does not appear if one restricts the
gauge-�xing to the space of minima instead of all solutions
of the gauge-�xing condition. This restricted gauge-�xing is
called the minimal Landau gauge [11] and can be written in
terms of a renormalizable action with auxiliary �elds (see,
e.g., [12] for a review). However, the number of minima
may turn out to be di�erent for di�erent gauge-orbits and
increases exponentially with increasing lattice size, as was
shown for the compact U(1) case in Refs. [13�18]. Thus,
the corresponding ZGF , which counts the number of min-
ima for each gauge-orbit in the minimal Landau gauge, is
orbit-dependent, and inserting ZGF in the generating func-
tional becomes a di�cult task.

To resolve the gauge-dependence issue, one may further
restrict the gauge-�xing to the space of global minima,
called the fundamental modular region (FMR). In this
gauge, known as the absolute Landau gauge, again the Neu-
berger 0/0 problem is avoided as in the minimal Landau
gauge case. However, the corresponding ZGF may be orbit-
independent since the number of global minima is thought
to be constant for any gauge-orbit (it is also anticipated
that the set of con�gurations with degenerate global min-
ima is a set of measure zero which forms the boundary of the
FMR). Thus, the FMR is expected to not have any Gribov
copies within it [19, 20]. This claim was veri�ed to be true
for the compact U(1) case for the one- and two-dimensional
lattice in Refs. [13, 14]. The problem with the absolute
Landau gauge is that one must �nd the global minimum of
FU (g) for sampled orbits, which corresponds to �nding the
global minimum of spin glass model Hamiltonians, a task
in most cases known to be an NP hard problem.

In the past few years, a few further suggestions to evade
the Neuberger problem and restore BRST formulations on
the lattice have been put forward in Refs. [21�25], which
are reviewed in Ref. [26]. In the current paper, we con-
centrate on the stereographic lattice Landau gauge which
was proposed in Refs. [8, 9, 13]. In Section II, we �rst
review this proposed modi�cation of lattice Landau gauge-
�xing via stereographic projection of the gauge-�xing man-
ifold. We also give a plausible topological argument on why
the proposal might fail. In particular, the orbit indepen-
dence of the corresponding ZGF is crucial to ensure that
the stereographic lattice Landau gauge is a viable candi-
date to evade the Neuberger 0/0 problem. We also show
why topologically the stereographic projection might turn
out to be orbit dependent. In Refs. [13, 15, 27], the prob-
lem of �nding all Gribov copies on the lattice was trans-
formed into a problem in algebraic geometry. However, for
the stereographic lattice Landau gauge, it was not possible
to solve the corresponding equations using the then avail-

able algebraic geometry methods. In Appendix A, with
the improved algorithms, we give explicit calculations of
the number of Gribov copies using an algebraic geometry
based method which guarantees to �nd all isolated solu-
tions for the simplest non-trivial case of the stereographic
lattice Landau gauge, i.e., 3×3 lattice with periodic bound-
ary conditions. With these stronger results, we show that
ZGF for the stereographic lattice Landau gauge is orbit in-
dependent over the orbit space except for a region of zero
measure.

In Section III, we propose a novel modi�cation via orb-
ifolding of the gauge-�xing manifold that is topologically
valid unlike the stereographic case, and show that ZGF is
orbit-independent for this gauge-�xing. Though the idea of
an orbifold lattice Landau gauge was conceived in 2009 in
Ref. [13], the necessary mathematical framework, namely,
Morse theory for orbifolds, was published later in that
year [28]. We brie�y review the de�nition of an orbifold
and Morse theory for orbifolds. Then, we apply these con-
cepts to propose a modi�ed lattice Landau gauge based on
orbifolding of the gauge-�xing group manifold. We show
how the modi�cation evades the Neuberger 0/0 problem for
compact U(1) while maintaining orbit-independence. We
then conclude the paper in Section IV.

II. STEREOGRAPHIC LATTICE LANDAU

GAUGE

The following is a review of the stereographic lattice Lan-
dau gauge. We start by noting that a major breakthrough
to resolve the Neuberger 0/0 problem came from Schaden,
who in Ref. [29] interpreted the Neuberger 0/0 problem in
terms of Morse theory. It can be shown that the corre-
sponding ZGF for Landau gauge on the lattice calculates
the Euler characteristic χ of the group manifold G at each
site of the lattice, i.e., for a lattice with N lattice-sites,

ZGF =
∑
j

sign(det MFP (g)) = (χ(G))N , (2)

where the sum runs over all the Gribov copies. This result is
based on the Poinca¯e�Hopf theorem, which states that the
Euler characteristic χ(M) of a compact, orientable, smooth
manifold M is equal to the sum of indices of the zeros of a
smooth vector �eld on M. In the case that the vector �eld
is the gradient of a non-degenerate height function, a dif-
ferentiable function from the manifold M to R with isolated
critical points, the index at a critical point is ±1 depending
on the sign of the Hessian determinant at the critical point
1 From Eq. (2), we identify FU (g) as a height function of the
gauge-�xing manifold, Gribov copies as the critical points,

1 It should be emphasised that in Refs. [13, 14, 30], it was shown
that the naïve lattice Landau gauge is not a Morse function at a
few special orbits, such as the trivial orbit, due to the existence
of isolated and continuous singular critical points. However, for
a generic random orbit, it is indeed a Morse function and it is
this property that saves the topological interpretation of the gauge-
�xing procedure [29].
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and MFP as the corresponding Hessian matrix. This in-
terpretation establishes the fact that the gauge-�xing on
the lattice can be viewed as a Witten-type topological �eld
theory [31].

For compact U(1), for which the group manifold is S1, the
link variables and gauge transformations in terms of angles
φj,µ, θj ∈ (−π, π] mod 2π are Uj,µ = eiφj,µ and gj = eiθj ,
respectively. Thus, the naïve gauge �xing functional in
Eq. (1) is reduced to

Fφ(θ) =
∑
j,µ

(
1− cos(φj,µ + θj+µ̂ − θj)

)
≡
∑
j,µ

(1− cosφθj,µ), (3)

and the corresponding gauge-�xing conditions are:

fj(θ) = −
d∑

µ=1

(
sinφθj,µ − sinφθj−µ̂,µ

)
= 0, (4)

where φθj,µ := φj,µ + θj+µ̂ − θj. A given random set of φj,µ
is called a random orbit. Moreover, when all φj,µ are zero,
it is called the trivial orbit. We choose periodic bound-
ary conditions (PBC) which are given by θj+Nµ̂ = θj and
φj+Nµ̂,µ = φj,µ, where N is the total number of lattice sites
in the µ-direction. With PBC, there is a global degree of
freedom leading to a one-parameter family of solutions with
θj → θj + ϑ,∀j where ϑ is an arbitrary constant angle. We
remove this degree of freedom by �xing one of the variables
to be zero, i.e., θ(N,...,N) = 0. Then, {φj,µ} take random
values independent of the action, i.e., the strong coupling
limit β = 0, which is su�cient to answer the questions we
are interested in this paper.

We can view Eq. (3) as a height function from S1×· · ·×S1

to R. Since χ(S1) = 0, ZGF = 0. In fact, for any compact,
connected Lie group G that is not 0-dimensional, it is well
known that χ(G) is zero2.

To evade the Neuberger 0/0 problem, Schaden proposed
to construct a BRST formulation for the coset space
SU(2)/U(1) of a SU(2) theory. For this coset space, χ
is non-zero. The proposal was generalized to �x gauge
of an SU(Nc) gauge theory to the maximal Abelian sub-
group (U(1))Nc−1 in Refs. [32, 33]. In short, the Neuberger
0/0 problem for an SU(Nc) lattice gauge theory lies in
(U(1))Nc−1, and can be avoided if the problem for com-
pact U(1) is avoided.

Following this interpretation, a promising proposal to evade
the Neuberger 0/0 problem via a modi�cation of the gauge-
�xing group manifold (i.e., the manifold of the combina-

tion g†jUj,µgj+µ̂) of compact U(1) developed using stere-
ographic projection at each lattice site was presented in
Refs. [8, 9, 13]. The stereographic gauge �xing functional

2 To see this, note that if t 7→ g(t) is a one-parameter group in G
and Lg(t) denotes left-multiplication by g(t), then the derivative of
Lg(t) at t = 0 produces a vector �eld on G which never vanishes.
Then χ(G) = 0 follows from the Poincaré�Hopf theorem.

was proposed as:

F sφ(θ) = −2
∑
j,µ

ln(cos(φθj,µ/2)), (5)

and the corresponding gauge-�xing conditions are:

fsj (θ) = −
d∑

µ=1

(
tan(φθj,µ/2)− tan(φθj−µ̂,µ/2)

)
= 0 (6)

for all lattice sites j.

Here, the Euler characteristic of the modi�ed manifold is
non-zero, so the Neuberger 0/0 problem is avoided. Ap-
plying the same approach to the maximal Abelian sub-
group (U(1))Nc−1, as mentioned above, the generalization
as stereographic projection for SU(Nc) lattice gauge the-
ories is also possible when the odd-dimensional spheres
S2k+1, k = 1, . . . , Nc − 1, are stereographically projected
to the real projective space RP (2k). In those references,
using topological arguments the number of Gribov copies
was shown to be exponentially suppressed for the stereo-
graphic lattice Landau gauge compared to the naïve gauge
and the corresponding ZGF for the stereographic lattice
Landau gauge was shown to be orbit-independent for com-
pact U(1) in one dimension. Since it can be shown that
the FP operator for the stereographic lattice Landau gauge
is generically positive (semi-)de�nite, ZGF counts the total
number of local and global minima. The stereographic lat-
tice Landau gauge is thought to be a promising alternative
to the naïve lattice Landau gauge, except that the orbit-
independence of ZGF was yet to be con�rmed for lattices
in more than one dimension.

It is interesting to point out that in supersymmetric Yang�
Mills theories on the lattice, non-compact parameteriza-
tions of the gauge �elds similar to the stereographic pro-
jection have been used [34], independently of the develop-
ment of the stereographic lattice Landau gauge (see, e.g.,
[35, 36] for earlier accounts on non-compact gauge-�elds
on the lattice). The non-compact parameterization in the
supersymmetric lattice �eld theories, unlike the compact
(group based) parameterization, surprisingly avoids the
well-known sign problem in these lattice theories [37, 38].
Recently, a more direct connection between the sign prob-
lem in lattice supersymmetric theories and the Neuberger
0/0 problem has been established [39] by noticing that the
complete action of, for example, the N = 2 supersymmet-
ric Yang-Mills theories in two dimensions can be shown to
be a gauge-�xing action via Faddeev-Popov procedure to
�x a topological gauge symmetry in this case.

A. Orbit-dependence of the Stereographic Lattice

Landau Gauge

The following provides an explanation of toopologically
subtleties of the stereographic gauge (see [40, 41] for further
background). Let M be a closed manifold (i.e., compact
and without boundary). A smooth function f : M → R
has a critical point at x if dfx is nonsingular; a critical
point x is degenerate if the Hessian Hf(x) of f at x is sin-
gular and non-degenerate otherwise. A Morse function is
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a smooth function whose critical points are isolated and
non-degenerate. Given such a Morse function of f , the
gradient ∇f is a tangent vector �eld to M that vanishes
at exactly the critical points x ∈ M for f . As f is Morse,
it has isolated critical points, which must then be �nite as
M is closed. The requirement that a critical point x of f
be nondegenerate implies that the index indx(∇f) of the
vector �eld ∇f at x is ±1, depending only on the sign of
the determinant of the Hessian Hf(x) of f at x. Therefore,
letting C denote the set of critical points in M, we have

∑
x∈C

sign(detHf(x)) =
∑
x∈C

indx(∇f) (7)

= χ(M),

where the last equality follows from the Poincaré�Hopf the-
orem. Hence, in the case where M =

∏
j S

1 is the product

of circles parameterized by the {φθj,µ} at each lattice site,
the partition function ZGF in fact depends only on M, and
computes χ(M) for any collection of {φj,µ} or any choice of
Morse function Fφ.

In the case thatM is not closed but rather an open manifold
without boundary, the sum in Eq. (7) depends on f , and not
simply on M. This can be seen, for instance, by choosing
a Morse function on the circle S1 with at least two critical
points (whose indices must sum to 0) and then by de�ning
M to be an open subset of S1. Then, M can be chosen to
be an interval in S1 which contains a single critical point x,
in which case the sum is ±1 depending on indf (x). Also,
one can choose M to be an open interval in S1 containing
no critical points, in which case the sum is 0. Note that in
each of these cases, the manifold M is di�eomorphic to an
open interval. In short, when M is not closed, the sum of
the indices depends on the height function.

Using the stereographic gauge �xing functional Eq. (5), it
can be shown that the Hessian is generically positive [15],
so that ZGF is strictly positive and counts the number of
critical points. For a 1-dimensional lattice, there are only
N critical points [13, 42], so the corresponding ZGF = N ,
which is independent of orbits, and thus ZGF does not de-
pend on the choice of {φj,µ}. In higher dimensions, how-
ever, the above phenomenon may occur, and ZGF may vary
with the choice of {φj,µ} since the stereographic gauge is
outside the applicability of Morse theory.

Appendix A demonstrates that, for the stereographic lat-
tice Landau gauge for a 2-dimensional lattice, the number
of Gribov copies and hence ZGF indeed are orbit indepen-
dent quantities except in a region of orbit space with mea-
sure zero, via explicit calculations. Speci�cally, we use an
algebraic geometry based method which guarantees to �nd
all isolated solutions of a given nonlinear system of equa-
tions with polynomial-like nonlinearity to show that though
the number of Gribov copies for the 3×3 lattice for the com-
pact U(1) case is constant, 11664, for most of the random
orbits {φj,µ}, there are regions in the orbit space for which
the numbers of Gribov copies di�er from this number.

III. ORBIFOLDING

The following uses orbifolding to develop a modi�cation of
lattice Landau gauge which is topologically rigorous unlike
the steregraphic gauge. We start by reviewing some of the
basic concepts about orbifolds. We give the de�nition of a
orbifold and then describe Morse theory for orbifolds. We
then apply Morse theory for orbifolds to propose a modi�ed
lattice Landau gauge via orbifolding the gauge-group man-
ifold that evades the Neuberger 0/0 problem while being
orbit-independent.

Let M be a manifold and G a �nite group of di�eomor-
phisms of M. Then the quotient G\M is an example of
a global quotient orbifold or simply orbifold. Note that in
general, orbifolds are required to be only locally of the form
G\M, but we restrict our attention here to global quotient
orbifolds; e.g., see [43]. A point in G\M corresponds to the
G-orbit Gx = {gx : g ∈ G} of x ∈M.

There are several Euler characteristics for orbifolds, and
each can be computed using a Morse function with modi-
�cations to the method of Eq. (7). The reader is warned
that the term �orbifold Euler characteristic� can refer to
di�erent Euler characteristics in the literature. The most
primitive Euler-characteristic, in the sense that other Euler
characteristics can be de�ned in terms of it, is the so-called
Euler�Satake characteristic χES(M, G), which is given by

χES(M, G) = χ(M)/|G|, (8)

where |G| denotes the order, or number of elements, of G.
It was de�ned for general orbifolds in [44]; see also [45, 46].
Note that in general, χES is a rational number. One may
also consider the usual Euler characteristic (of the under-
lying topological space) χ(G\M), which is related to the
Euler�Satake characteristic via

χ(G\M) =
1

|G|
∑
g∈G

χ(Mg)

=
∑

(g)∈G∗

χ(Mg)/|Z(g)| (9)

=
∑

(g)∈G∗

χES(Mg, Z(g)),

where Z(g) = {h ∈ G : gh = hg}, Mg = {x ∈ M : gx = x}
is the set of points in M �xed by g, (g) = {hgh−1 : h ∈ G}
is the conjugacy class of g in G, and G∗ the set of con-
jugacy classes in G. Note that χES(Mg, Z(g)) coincides
for each element of a conjugacy class, so that the last two
sums are well-de�ned. In particular, χ(G\M) is the sum of
the Euler�Satake characteristics of the orbifolds Z(g)\Mg,
which for g 6= 1 are called twisted sectors. The nontwisted

sector corresponding to g = 1 coincides with G\M. The
collection t(g)∈G∗Z(g)\Mg is called the inertia orbifold, de-
noted Λ(G\M), (see e.g. [43]) so that succinctly, the usual
Euler characteristic χ(G\M) is the Euler�Satake character-
istic of the inertia orbifold.

The stringy orbifold Euler characteristic χstr(M, G), intro-
duced in [47, 48] for global quotients and [49] for general
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orbifolds, see also [50], is de�ned analogously as

χstr(M, G) =
1

|G|
∑

(g,h)∈G2
com

χ(M〈g,h〉), (10)

where G2
com denotes the set of (g, h) ∈ G2 = G × G such

that gh = hg and M〈g,h〉 = {x ∈ M : gx = hx = x}
denotes the set of points �xed by both g and h. This Eu-
ler characteristic is related to the others as follows. For
a pair of commuting elements (g, h) ∈ G2

com, let [g, h] =
{(kgk−1, khk−1) : k ∈ G} (the orbit of (g, h) under the
action of G on G2

com by simultaneous conjugation), let
G2
com∗ = {[g, h] : (g, h) ∈ G2

com} (the set of orbits), and
let Z(g, h) = Z(g) ∩ Z(h) denote the subgroup of G con-
sisting of elements that commute with both g and h. Then
computations similar to those in Eq. (9) demonstrate that

χstr(M, G) =
∑

(g)∈G∗

χ(Z(g)\Mg) (11)

=
∑

[g,h]∈G2
com∗

χES(M〈g,h〉, Z(g, h)).

In other words, χstr(M, G) is the usual Euler char-
acteristic of the inertia orbifold, and as well coin-
cides with the Euler�Satake characteristic of the orbifold
t[g,h]∈G2

com∗
Z(g, h)\M〈g,h〉. Observe that this latter dis-

joint union is in fact the inertia orbifold of the inertia
orbifold, which we refer to as the double-inertia orbifold

Λ2(G\M). The orbifold corresponding to [g, h] = [1, 1] is
the nontwisted double-sector, while the other orbifolds are
referred to as twisted double-sectors. The reader is warned
that double-sectors do not coincide with 2-multi-sectors de-
�ned in [43] unless G is abelian3.

A Morse function on a global quotient orbifold G\M is de-
�ned to be a Morse function f : M→ R that is G-invariant,
i.e. f(gx) = x for each g ∈ G and x ∈M. The latter condi-

tion implies that f yields a continuous function f̃ : G\M→
R on the topological space G\M given by f̃(Gx) = f(x).
Morse theory has recently been developed for orbifolds in
the general context of Deligne-Mumford stacks [28] which,
in particular, demonstrates that orbifolds always admit
Morse functions, and establishes Morse inequalities for an
orbifold and the corresponding inertia orbifold.

To compute the Euler characteristic χES using a Morse
function4, one can apply the Poincaré�Hopf theorem for
orbifolds as demonstrated in Ref. [44].

3 The reader may have noticed that the three Euler characteristics
χES , χ, and χstr form the 0th, 1st, and 2nd elements of a sequence
of Euler characteristics for orbifolds, so that others can be de�ned.
This was observed in [51], and this sequence was de�ned and studied
for global quotients in [52]. More generally, an Euler characteristic
corresponding to each �nitely generated discrete group (with the
above sequence corresponding to the groups Zm for m = 0, 1, 2, . . .)
was assigned to a global quotient an orbifold in [53, 54], and these
Euler characteristics were de�ned for arbitrary orbifolds in [55].

4 Satake worked with V-manifolds, orbifolds where each group ele-
ment is assumed to �x a subset of codimension at least 2. However,
this result can be extended to general orbifolds by applying it to
the orientable double-cover, which always satis�es this hypothesis,
and can be proved directly for global quotient orbifolds using the
Poincaré�Hopf theorem for manifolds.

For a global quotient orbifold G\M, a point Gx is a critical

point of f̃ if x is a critical point of f , and Gx is said to be
degenerate (respectively non-degenerate) if x is degenerate
(respectively non-degenerate) for f . Note that the require-
ment that f is G-invariant implies that these notions do
not depend on the choice of x from the orbit Gx.

Similarly, the gradient ∇f (depending on a choice of Rie-
mannian metric) de�nes a G-equivariant vector �eld on M,

which induces a vector �eld denoted ∇f̃ on the orbifold
G\M. If Gx is a zero of ∇f̃ (equivalently, a critical point

of f̃), then the index of ∇f̃ at Gx is de�ned to be

indorbGx(∇f̃) =
1

|Gx|
indx(f)

where Gx = {g ∈ G : gx = x} is the subgroup of G that
�xes x. That is, the index of a critical point on an orbifold
is the index of a corresponding critical point on the man-
ifold divided by |Gx|. Again, the (manifold) index can be
computed as the sign of the determinant of the Hessian.

If C denotes the set of critical points of f̃ on G\M, then
Satake's Poincaré�Hopf theorem for orbifolds implies

∑
Gx∈C

1

|Gx|
sign(detHf(x)) =

∑
Gx∈C

indorbGx(f̃)

= χES(M, G).

Therefore, the sum of the (orbifold) indices of the critical
points computes the Euler�Satake characteristic. In the
context of global quotients, it is not hard to show that a
Morse function f̃ on G\M de�nes a Morse function Λf̃ on
the inertia orbifold Λ(G\M) as well as a Morse function

Λ2f̃ on the double-inertia orbifold Λ2(G\M) by restricting

f̃ to the appropriate �xed-point submanifolds. By Eq. (9)
and (11), we obtain that applying the procedure above to

Λf̃ or Λ2f̃ yields χ(G\M) and χstr(M, G), respectively.

A. A simple example

To illustrate this procedure, consider the orbifold given by
M = S1 and G = Z2, where the nontrivial element a of Z2

acts via eiθ 7→ e−iθ. The resulting orbifold can be identi�ed
with {eiθ : 0 ≤ θ ≤ π}, as each eiθ with π < θ < 2π is in
the orbit of ei(2π−θ). It is therefore homeomorphic to a
closed interval, where the endpoints are the images of the
two points �xed by Z2. Then we have that χES(M, G) = 0,
as χ(S1) = 0, and χ(G\M) = 1, the Euler characteristic
of a closed interval. To compute χstr(M, G), note that all
elements of G2 = {(1, 1), (1, a), (a, 1), (a, a)} are mutually
commuting, and the common �xed-point set of each is two
points except for the trivial pair (1, 1) which �xes all of S1.
Hence, applying Eq. (10) yields χstr(M, G) = 3.

To compute these Euler characteristics using a Morse func-
tion, we choose f(θ) = cos(θ). The corresponding f̃ has
critical points at the orbits of θ = 0 and θ = π. The
Hessians of f at these two critical points are −1 and 1, re-
spectively, and the isotropy groups are both Z2, so that we
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compute

χES(M, G) = indorbG0 (∇f̃) + indorbGπ(∇f̃)

=
−1

|Z2|
+

1

|Z2|
= −1

2
+

1

2
= 0.

To compute χ, we note that the inertia orbifold Λ(G\M) in
this case has three connected components, the nontwisted
sector as well as two points, each equipped with trivial
Z2-actions. The function f restricted to a point trivially
has a non-degenerate critical point of index 1. It follows
that χ(G\M) is given by the sum of χES(M, G), computed
above, as well as one term of the form 1/|Z2| = 1/2 for each
twisted sector. That is,

χ(G\M) = χES(M, G) +
1

|Z2|
+

1

|Z2|
= 1.

Similarly, as Λ2(G\M) consists ofG\M as well as six points,
each with isotropy Z2, we have

χstr(M, G) = χES(M, G) + 6

(
1

|Z2|

)
= 3.

B. Orbifolding the lattice Landau gauge

To apply the lattice Landau gauge procedure for com-
pact U(1) to orbifolds, we de�ne a Z2-action on the space
variables {φθj,µ} by letting the nontrivial element a ∈ Z2

act via a : φθj,µ 7→ −φθj,µ. The choice of group ac-
tion is motivated by the fact that the gauge �xing func-
tion Eq. (3) is invariant under this action. However,

though it is the case that χES((S1)N
d−1,Z2) = 0, neither

χ(Z2\(S1)N
d−1) nor χstr((S

1)N
d−1,Z2) vanish. The in-

ertia orbifold Λ(Z2\(S1)N
d−1) consists of the nontwisted

sector as well as 2N
d−1 points with trivial Z2-action, each

given by the orbit of a point (φθj,µ) where each φθj,µ is 0 or
π, so that

χ
(
Z2\(S1)N

d−1
)

= 2N
d−2.

Similarly, as each of the pairs of group elements (1, a),

(a, 1), and (a, a) �x again 2N
d−1 points, the double-inertia

Λ2(Z2\(S1)N
d−1) consists of the nontwisted sector and

3 · 2Nd−1 points with trivial Z2-action, so that

χstr
(
(S1)N

d

,Z2

)
= 3 · 2N

d−2.

To apply the procedure, then, given a random choice of

{φj,µ}, is to use the Morse function F̃ on Z2\(S1)N
d−1

induced by F on (S1)N
d−1 de�ned in Eq. (3) with no

changes to the gauge-�xing and boundary conditions. Since

Λ2(Z2\(S1)N
d−1) consists only of the nontwisted double-

sector and 0-dimensional twisted double-sectors, the re-
striction of Λ2F̃ to each connected component of a twisted
double-sectors trivially has a nondegenerate critical point
with positive index. Hence, if C denotes the set of critical
points on the nontwisted sector, we have

ZGF =
∑

Z2θ∈C

1

|(Z2)θ|
sign(detMFP ) + 3 · 2N

d−2 = 3 · 2N
d−2.

Note that the sum vanishes because it computes

χES((S1)N
d−1,Z2) = 0. Hence the critical points in the

nontwisted sectors occur in pairs with positive and neg-
ative Hessian determinants. Furthermore, note that the
computation of the sum di�ers from the manifold case in
that a pair of stationary points {φθj,µ} and {−φθj,µ} of F

are the same stationary point for F̃ , and hence the sign of
detMFP is counted only once. This may be accomplished
algebraically by choosing a single φθj,µ and considering only

critical points such that 0 ≤ φθj,µ ≤ π; for critical points

such that φθj,µ = 0 or π, we choose another variable and
restrict in the same way.

As an example, let N = 3 and d = 1. We consider the
trivial orbit for simplicity, i.e. each φi = 0, and �x θ3 = 0
to remove the global degree of freedom arising from the pe-
riodic boundary condition θN+3 = θi; see Section II. Then
we have

Fφ(θ) =

N∑
i=1

(1− cosφθi )

= 3− cos(θ2 − θ1)− cos(−θ2)− cos(θ1).

Setting ∂
∂θi
Fφ(θ) = 0 for i = 1, 2, we �nd �ve solutions

for (θ1, θ2): (0, 0), (0, π), (π, 0), (π, π), and (2π/3,−2π/3).
Note that we only consider solutions such that 0 ≤ θ1 ≤ π
as above, because the solution (−2π/3, 2π/3) is in the same
Z2-orbit as (2π/3,−2π/3) and hence represents the same
point on the orbifold. The Hessian determinants of these
critical points are +3,−1,−1,−1, and 3/4, respectively,
and the �rst four critical points are �xed by Z2 while the
last is �xed only by the trivial element. It follows that
the indices are given by 1/2,−1/2,−1/2,−1/2, and 1, re-
spectively, and their sum computes χES

(
(S1)2,Z2) = 0.

To compute χ
(
Z2\(S1)2), we consider Fφ(θ) as a function

on the larger space Λ
(
Z2\(S1)2) consisting of Z2\(S1)2

as well as four isolated points �xed by Z2 corresponding
to the �xed points (0, 0), (0, π), (π, 0), and (π, π). Each
point is isolated and hence trivially a critical point with
index 1/|Z2|, so summing these indices along with those
on Z2\(S1)2 described above yields χ

(
Z2\(S1)2) = 2. For

Λ2

(
Z2\(S1)2), we consider instead three copies of each iso-

lated �xed point, one for each nontrivial commuting pair
(1, a), (a, 1), and (a, a), yielding twelve critical points with
index 1/|Z2| and hence χstr

(
(S1)2,Z2) = 6.

C. An Integral Formulation of ZGF for Orbifolding

For the sake of completeness, we also provide an expres-
sion of ZGF in the usual integral formulation a la Faddeev-
Popov procedure, which we plan to further re�ne to suit
the needs of the lattice simulations. To compute the topo-

logical Euler characteristic χ(Z2\(S1)N
d−1), we have

ZGF =

∫ orb

Λ(Z2\(S1)Nd−1)

DθDφ
Nd−1∏
i=1

δ(fi)
H(F )

|H(F )|
(12)

where Dθ indicates integration over each θ, the fi are the
stationary equations, i.e., fi = ∂F

∂θi
, andH(F ) is the hessian
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determinant of F . The integral is computed in the orbifold
sense, see [43, Section 2.1]. If we let X denote the subset of

(S1)N
d−1 × Z2 consisting of pairs (θ, g) such that gθ = θ,

then this orbifold integral can be expressed using the usual
integral as

ZGF =
1

2

∫
X

DθDφ
Nd−1∏
i=1

δ(fi)
H(F )

|H(F )|
, (13)

where the prefactor 1/2 arises from the order of Z2 and the
de�nition of orbifold integration.

D. Summary of the Procedure

To summarize, the procedure for computing the topological
and stringy Euler characteristic from the naive gauge-�xing
functional can be divided in three steps. In the �rst step:

1. Find all the stationary points of Fφ(θ) as given in

Eq. 3 by solving ∂F
∂θi

= 0, i = 1, ..., Nd.

2. Call the solution vectors of these equations φθ. Let's
say there are M solutions.

3. If for two solutions, say φθ(1) and φθ(2), we have
φθ(1) = −φθ(2), then discard one of them. Hence,
m ≤M solutions are left in the end.

4. Compute the hessian determinant at each of the m
solutions.

5. For each solution φθ, the index is ±1 if φθ 6= −φθ and
± 1

2 if φθ = −φθ, where the sign is that of the hessian
determinant.

6. Compute the sum of the indices for each solution.
This sum will be always zero in our case.

For the second step (the �xed points):

1. The �xed vectors are simply φθ =
(0, 0, ..., 0), (0, 0, ..., 0, π), ..., (π, π, ..., π), i.e., all

the 2N
d−1 combinations of 0 and π. These solutions

already appeared in the �rst step, but are now con-
sidered as isolated points (twisted sectors) associated
to the nontrivial group element.

2. By convention, the `hessian determinant' for each of
these solutions is positive, and each solution is �xed
by construction, so the index of each of these points
is + 1

2 .

3. The (topological) Euler characteristic χ(G\M) is
given by the sum of all indices found in the �rst two

steps, χ(G\M) = 0 + ( 1
2 ) · 2Nd−1 = 2N

d−2.

Finally, the third step (for the �xed points associated to
commuting pairs):

1. The �xed vectors are the same as in the second
step, but we now consider three copies of each for
the three nontrivial commuting pairs of group ele-
ments ((a, 1), (1, a), and (a, a) where a is the non-
trivial element of Z2).

2. We again have that the index of each such point is + 1
2 .

3. The stringy Euler characteristic of the orbifold is then
the sum of the indices from �rst and third step, i.e.,

ZGF = χstr(M,Z2) = 0 + ( 1
2 ) · 3 · 2Nd−1 = 3 · 2Nd−2.

IV. CONCLUSION

Like many other crucial nonperturbative phenomena,
gauge-�xing and the BRST symmetry are yet to be well
understood in the nonperturbative regime of gauge �eld
theories. In this paper, we �rst reviewed and investigated
a recently proposed modi�ed Landau gauge on the lattice,
known as stereographic lattice Landau gauge. We gave
plausible arguments to demonstrate why this gauge may
not turn out to be a valid topological �eld theory due to
the fact that the procedure is outside the applicability of
Morse theory. In Appendix A, we use algebraic geometry
to show for the simplest non-trivial example of 3 × 3 lat-
tice with periodic boundary conditions for compact U(1)
that though the number of Gribov copies for the stereo-
graphic lattice Landau gauge remains constant for almost
all the random gauge-orbits, there are certain regions in the
gauge-orbit space for which the number of Gribov copies
di�ers from the generic case. Since the corresponding ZGF
counts the number of Gribov copies for the stereographic
lattice Landau gauge, our results yields that the ZGF is
orbit independent over the orbit space except for a region
with measure zero.

We then proposed modi�ed lattice Landau gauge via orb-
ifolding of the gauge-�xing manifold which is mathemat-
ically more rigorous due to the recently developed Morse
theory for orbifolds. We reviewed the de�nition and de-
scription of Morse theory for an orbifold. We also discussed
three di�erent Euler characteristics of an orbifold. We then
demonstrated how Morse theory for orbifolds can be ap-
plied to modify the naïve lattice Landau gauge so that the
corresponding ZGF for the orbifold lattice Landau gauge,
which computes the stringy (or the usual) Euler charac-
teristic of an orbifold, is orbit-independent and also evades
the Neuberger 0/0 problem since the Euler characteristic is
non-zero. The orbifolds we considered are always compact
since the original manifold is compact. Thus, our modi�ed
lattice Landau gauge is fundamentally di�erent than the
stereographic lattice Landau gauge in that the former re-
tains the compactness of the gauge-�xing manifold, and is
close in the spirit of the standard Wilsonian formulation of
lattice gauge theories.

We anticipate that our modi�ed lattice Landau gauge, com-
bined with the coset space gauge-�xing as proposed by
Schaden, may turn out to be the most viable candidate to
evade the Neuberger 0/0 problem which has prohibited re-
alizing the BRST symmetry on the lattice for over 25 years.
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Appendix A: Results from Homotopy Continuation for

the Stereographic Projection

The following shows that ZGF for the stereographic lattice
Landau gauge-�xing functional is orbit independent over
the orbit space except for regions having measure zero. For
this, we �rst note that the Hessian matrix of Eq. (5) is
generically positive-de�nite [13, 15]. Hence, ZGF in Eq. (2)
computes the number of stationary points of Eq. (5) for
the given gauge-orbit. Thus, we need to compute the num-
ber of solutions of Eq. (6) for various orbits (i.e., random
values of {φj,µ}, at the strong coupling limit β = 0) and de-
termine if they remain constant. Finding all the solutions
of such a nonlinear system of equations is a very di�cult
task. In Refs.[13, 15, 27] the problem of solving gauge-
�xing conditions on the lattice was translated in terms of
algebraic geometry in order to be able to use the numeri-
cal algebraic geometry methods to �nd all the solutions of
these equations. With the improved version of the corre-
sponding algorithms, we can now solve the equations for at
least the simplest nontrivial lattices in 2D successfully. To
use this method for our purposes, we begin by transform-
ing our system of trigonometric equations into a system of
polynomial equations by �rst expanding Eq. (6) using the
trigonometric identity

tan
x+ y + z

2
=

sinx+ cos z sin y + cos y sin z

cosx+ cos y cos z − sin y sin z
. (A1)

Replacing sin θj and cos θj with sj and cj, resp., yields

fsj (c, s) =
∑
µ

( sinφj,µcj − cosφj,µsj + sj+µ̂
sinφj,µsj + cosφj,µcj + cj+µ̂

− sinφj−µ̂,µcj−µ̂ − cosφj−µ̂,µsj−µ̂ + sj
sinφj−µ̂,µsj−µ̂ + cosφj−µ̂,µcj−µ̂ + cj

)
.(A2)

Due to the Pythagorean identity, we add the additional con-
straint equations c2j +s2

j −1 = 0 for each j. As the simplest
non-trivial case, we take the 3×3 lattice. To make sure that
there are only isolated solutions, we also �x θ3,3 = 0 and
then remove the equation f3,3 = 0 from the system. Since
the above equations have denominators, we introduce aux-
iliary variables to produce polynomial conditions to satisfy
the system. For the 3 × 3 lattice, this produces a system
of 48 quadratic polynomial equations in 48 variables that
depends on 18 parameters {φj,µ}. This procedure is a one-
to-one transformation so that no solutions of the original
system are lost in the transformation.

1. Methods

We solve the system consisting of 48 equations using a
two-phase methodology from numerical algebraic geome-
try known as a parameter homotopy which guarantees to
�nd all the solutions of a given system of multivariate poly-
nomial equations for any given parameter points. We give
a brief summary; for further details, see Refs. [56, 57] and
Refs. [15, 27, 30, 58�67] for the related applications in lat-
tice �eld theories and other particle physics areas.

First, in the ab initio phase, we choose a random set of com-
plex parameters P0 := {φ∗j,µ} and numerically compute the
set of solutions S0 to the system using homotopy continu-
ation with regeneration [68], implemented in Bertini [69].
This phase, which is performed only once, took roughly 20.5
hours on a cluster consisting of four AMD 6376 Opteron
processors, i.e., 64 computing cores running at 2.3 GHz.
Subsequent computations make use of these results to sig-
ni�cantly reduce the e�ort involved in solving the system.
In particular, we �nd that there are 11664 nonsingular iso-
lated solutions for the random set of parameters P0.

In the second phase, known as the parameter homotopy

phase, we solve the system for various choices of parame-
ters. For each set of parameters {φj,µ}, we use Bertini

to numerically track paths starting at the points in S0.
We numerically follow paths de�ned by a continuous
deformation of the parameters from P0 to {φj,µ}, so that
the endpoints are the solutions we seek. On the same
cluster, this phase takes an average of 39 minutes to
compute solutions for a given set of parameters.

2. Results

First, to determine the behavior of the system at general
points in the parameter space, we solved the system for 780
random sets of real parameters {φj,µ}. In each instance, we
�nd that there are 11664 real solutions. Thus, we conjec-
ture that all 11664 complex solutions are real for all points
in the real parameter space except on several regions.

Next, we investigate the discriminant locus, which is the set
on which the system has nongeneric behavior. We �nd that
when the angles in {φj,µ} are deliberately chosen so that
they adhere to some structure, such as rational multiples
of π, it is quite easy to �nd a point in the parameter space
such that the system has fewer than 11664 real solutions.
Thus, the number of stationary points of Eq. (5) di�ers
for various orbits, and ZGF for the stereographic lattice
Landau gauge-�xing functional is orbit-dependent.

The following �gures summarize these results. Figure 1
plots ZGF (or, equivalently, the number of real solutions)
corresponding to various sets of parameters P1, . . . , P4. Fig-
ure 2 plots a subset of the discriminant locus projected onto
the two parameters φ(1,1),1 and φ(1,1),2 in which the rest of
the parameters are �xed to the angles given in Table I. To
locate points on the discriminant locus, we used the fact
that for parameter values to have fewer than 11664 real
solutions, we must have corresponding denominators equal
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to zero in Eq. (A2). Since we introduced auxiliary vari-
ables for denominators when constructing the polynomial
system, we can perform parameter homotopies in which
the destination systems have these `denominators' equal to
zero. We note that the points shown here are only a subset
of the discriminant locus, which is an algebraic curve in this
projection. Nevertheless, these computed points illustrate
the abundance of parameter choices for which the system
has nongeneric behavior.

Figure 1. ZGF corresponding to various sets of parameters Pk
which are de�ned as follows. For P1, we set each parameter to
a distinct angle via φj,µ = π/(j2 +3(j1− 1)+9(µ− 1)). For P2,
we set φj,µ = π/2 for all j and µ. For P3, we set φj,µ = 0 for all
j and µ. For P4, we set φj,µ = π/3 + (π/6)(µ− 1).

j1 1 1 2 2 2 3 3 3

j2 2 3 1 2 3 1 2 3

µ 1 1 1 1 1 1 1 1

φ(j1,j2),µ −π2
π
5 −

5π
11

15π
17 − 15π

23
28π
31

24π
41 − 7π

47

j1 1 1 2 2 2 3 3 3

j2 2 3 1 2 3 1 2 3

µ 2 2 2 2 2 2 2 2

φ(j1,j2),µ
2π
3 − 5π

7
π
13

17π
19

27π
29 − π

37 −
30π
43

44π
53

Table I. Fixed parameter values used for Figure 2.

Figure 2. Subset of the discriminant locus projected onto two
parameters for the 3× 3 lattice. The other φs are �xed as listed
in Table I. While varying φ(1,1),1 and φ(1,1),2 and leaving all
other φs �xed for the 3 × 3 lattice, the points in this plot are
the points at which ZGF di�ers from the generic value 11664.
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