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ABSTRACT
Cognate linkages are mechanisms that share the same mo-

tion, a property that can be useful in mechanical design. This
paper treats planar curve cognates, that is, planar mechanisms
whose tracing point draws the same curve. While Roberts cog-
nates for planar four-bars are relatively simple to understand
from a geometric drawing, the same cannot be said for pla-
nar six-bar cognates, especially the intricate diagrams Dijksman
presented in cataloging all the known six-bar curve cognates.
The purpose of this article is to show how the six-bar cognates
can be easily understood using kinematic equations written us-
ing complex vectors, giving a simple method for generating these
cognates as alternatives in a mechanical design. The simplicity
of the approach enables the derivation of cognates for eight-bars
and possibly beyond.

1 Introduction
Cognate linkages are mechanisms that share the same mo-

tion, and in particular, curve cognates are distinct mechanisms,
each with one degree of freedom, whose respective tracing point
draws the same curve. Since cognates may occupy different re-
gions of space and have different transmission characteristics,
they can be useful in finding a more suitable mechanical design
for the same function.

We will show how curve cognates for general planar six-bar
linkages can be generated by a simple sequence of operations:

∗Address all correspondence to this author.

interchange certain link rotations, match coefficients in the kine-
matic equations, and then solve the resulting linear equations.
Given knowledge of which link rotations can be interchanged,
the procedure is easy to carry out, easy to interpret graphically,
and easy to understand. The simplicity of the approach makes it
extensible to eight-bars and possibly beyond. We illustrate this
by deriving an eight-bar curve cognate.

The more difficult tasks of determining which rotations can
be interchanged and showing that this procedure generates all
possible cognates are beyond the scope of this paper: these will
be addressed in a companion paper [1] that completes the theory
of cognates for general six-bar linkages.

The most famous result in cognate theory is from 1875,
when Roberts [2] showed that every four-bar coupler curve is
triply generated. That result is sometimes called the Roberts-
Chebyshev Theorem in recognition of Chebyshev’s independent
discovery of it three years later [3]. To our knowledge no re-
sults on cognates of six-bar linkages were found until the work of
Hartenberg and Denavit [4], followed by Roth [5] and Soni [6].
See Nolle [7] (with reference list in [8]) for a historical review
as of 1974. Finally, nearly one hundred years after Roberts, Di-
jksman [9, 10, 11] compiled cognates for all the six-bar planar
linkages. Soni also found cognates for certain eight-bars [12].

Dijksman presented his results by means of intricate geo-
metric constructions. Although correct, these drawings and their
explanatory text can be rather difficult to decode, presenting a
barrier to understanding and using these results. The purpose
of this article is to present a simple method of understanding
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and drawing planar cognates using a complex vector approach.
We are by no means the first to approach cognates from this
direction; indeed, Nolle [7] states that Schor (1941), Schmid
(1950), Meyer zur Capellen (1956), and Wunderlich (1958) all
used some version of a complex plane formulation in treating
Roberts cognates. No doubt there have been others as well, since
the complex plane formulation is arguably the most natural way
to treat any planar linkage with all rotational joints. Nonetheless,
by taking this approach, we not only confirm Dijksman’s results
but also reveal the basic principles that explain all of them.

The rest of the paper is organized as follows. Section 2 pro-
vides background information involving inversions of linkages,
types of cognates, and complex vector notation. Section 3 illus-
trates our methodology on the Sylvester’s skew pantograph. Sec-
tion 4 revisits Roberts cognates for four-bars. Sections 5 and 6
apply the method to selected Stephenson-type and Watt-type six-
bar linkages, respectively. Section 7 demonstrates the method on
an eight-bar linkage. A short conclusion is provided in Section 8.

2 Background
This section provides an introductory review to mechanism

types and their inversions, types of cognates, and complex vector
notation as applied to planar linkages. For this paper, we restrict
ourselves to planar mechanisms with rigid links connected by
rotational (pin) joints. Each joint connects two links, thereby im-
posing one vector constraint, equivalent to two scalar constraints,
requiring that the respective center points of the joint on the two
links must coincide. Furthermore, for the purpose of classify-
ing mechanisms with one degree of freedom, we consider only
unexceptional mechanisms, being those whose number of free-
doms does not change when the link dimensions are perturbed in
a general fashion.

2.1 Mechanism Types, Inversions, and Curve Types
The classification of mechanism types considers only the

number of links and a list of which pairs of links are connected
by a joint. Since a rigid body moving freely in the plane has
three degrees of freedom—two translations and one rotation—
and each joint imposes two scalar constraints, the Grashof mo-
bility criterion for unexceptional linkages says that the number
of degrees of freedom, a.k.a. the mobility M, of an N-link pla-
nar mechanism with one link held stationary as the ground link
and J rotational joints is M = 3(N − 1)− 2J. Accordingly, for
mobility M = 1, N must be even, so the cases to be considered
are two-bars, four-bars, six-bars, etc., having N = 2L links and
J = 3L−2 joints, where L is the number of independent loops in
the mechanism.

A convenient way to represent and categorize linkage types
is by type graphs in which nodes correspond to links and edges
correspond to joints. We ban graphs that contain any subgraph

with N > 1 and mobility M < 1, such as a triangle, because a
subgraph with M = 0 is equivalent to a single rigid link and a
general linkage with M < 0 cannot be assembled. This leaves a
unique two-bar type, a unique four-bar type, two six-bar types
(known as Watt and Stephenson six-bars), and sixteen eight-bar
types, with the number of types growing rapidly for higher N.
Table 1 shows type graphs for N = 2, 4, and 6.

Inversions of a linkage are obtained by designating one link
as the stationary ground link, indicated in Table 1 with a triangle
symbol (△). There are two inversions of the Watt six-bar and
three for the Stephenson six-bar.

For the purpose of drawing a curve in the plane, we addition-
ally designate a link that will contain the tracing point. In the case
of a four-bar, this link is called the coupler, and its tracing point
draws a four-bar coupler curve. By analogy, the curves drawn by
six-bars and beyond are often also called coupler curves. The last
column in Table 1 shows all ways to choose a coupler link, indi-
cated with a square symbol (✷), such that the resulting coupler
curve type is not already produced with smaller N. For example,
for the four-bar, only the link opposite the ground is available
since the links adjacent to ground produce the same type of curve
as the two-link mechanism, namely circles. Similarly, the Watt-2
six-bar yields no new coupler curve types: it can only produce
two-bar and four-bar curves. In all, there is one two-bar curve
type (circles), one four-bar curve type, two Watt six-bar curve
types (Watt-1A and Watt-1B), and four Stephenson six-bar curve
types (suffixed as 1, 2A, 2B, and 3).

N Type Graph Inversions Curve Type Graphs
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TABLE 1. Mechanism types and coupler curve types up to N = 6. A
triangle (△) indicates the ground link, and a square (✷) indicates the
coupler link.
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Table 4 of [11, pg. 183] catalogs curve cognates for the
four-bar and all the six-bar curve types. A two-bar has no curve
cognates since the circle it draws uniquely locates the joint in
the ground link at the center of the circle, and the radius of the
circle uniquely defines the length of the rotating bar. For the
higher linkages, Dijksman reports the number of curve cognates
as given in Table 2. We demonstrate how to derive simple formu-
las for most of these in Sections 4, 5, and 6. Although we omit
derivations for the Stephenson-2 cognates due to space consider-
ations, the methodology also applies to these. Furthermore, our
methodology also applies to eight-bars and beyond. Since eight-
bars are too numerous to beneficially catalog exhaustively, we
instead demonstrate the construction of cognates for one illustra-
tive case in Section 7.

Type Cognates Type Cognates

4-bar 3 Stephenson-1 2

Watt-1A 2-D set Stephenson-2A 4

Watt-1B 4 Stephenson-2B 3

Watt-2 N/A Stephenson-3 6

TABLE 2. Number of curve cognates for each curve type

2.2 Types of cognates
The cognates under consideration here are curve cognates,

that is, linkages which draw the same curve. We only treat cog-
nates of the same curve type, ignoring the possibility that a six-
bar might duplicate a four-bar curve or that two types of six-bars
might draw the same curve.

Some curve cognates satisfy additional criteria that define
subclasses of interest. A coupler cognate is a curve cognate
where the coupler link maintains the same orientation as the
original. Moreover, after selecting an input link, a timed curve
cognate is a curve cognate with the same functional relationship
between the input rotation and the point on the coupler curve.
Finally, a timed coupler cognate is both a coupler cognate and a
timed curve cognate with respect to an input link. In either type
of timed cognate, we only allow links adjacent to ground to be
selected as the input. Once a curve cognate is found, it is straight-
forward to check these additional criteria and we will do so.

Another class of cognates that have been considered else-
where are function cognates. These cognates maintain the func-
tional relationship between an input crank and an output link.
Since our focus is on curve cognates and some function cognates
are not curve cognates, we will not consider function cognates in
the present study.

2.3 Complex vector notation
To simplify the mathematical formulas used to represent

linkages and compute cognates, we use a complex vector for-
mulation. Thus, a vector [a b] in the plane is represented by a
complex number a + bi where i =

√
−1 which can always be

cast in the form seiΘ where s is a scalar and Θ is an angle in
radians. Complex arithmetic facilitates geometric transforma-
tions. In particular, complex addition implements translation,
while multiplication by seiΘ corresponds to a stretch-rotation,
which stretches by s and performs a complex rotation by angle Θ.
Throughout this paper, we use θ to abbreviate the complex rota-
tion, θ = eiΘ, and more specifically, after numbering the links
of a mechanism, θ j is the complex rotation of link j. By con-
vention, we will always number the ground link as link 0, which
does not move.

To illustrate the complex vector notation, we begin with the
case of a four-bar linkage. Referring to Figure 1, we have a loop
closure equation

a0 −b0 +a1θ1 +a2θ2 +a3θ3 = 0 (1)

and a coupler point equation

p = a0 +a1θ1 +b2θ2. (2)

Note that by subtracting one from the other, we have an alternate
coupler point equation

p = b0 +(b2 −a2)θ2 −a3θ3. (3)

This is just the sum of vectors going on a different path from
the origin to the coupler point. Although equivalent, one of (2)
or (3) will prove more convenient depending on which of the two
cognates to the initial linkage one wishes to pursue.

The link dimensions and the placement of the ground piv-
ots in the plane are given by a0, b0, a1, a2, b2, a3. To compute

FIGURE 1. Four-bar linkage
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the mechanism’s motion, consider that given one link rotation,
say θ1, one can solve (1) for θ2 and θ3, keeping in mind that the
complex loop equation is equivalent to two scalar equations (by
taking its real and imaginary parts) and the rotations are each pa-
rameterized by a single scalar angle. Then, one can evaluate the
coupler point position using (2) or (3). A more facile approach
based on using the complex conjugate of the loop equation is
presented in [13, 14]. In this paper, we will not need to solve
the loop and coupler point equations; instead, we merely need
to show that cognate mechanisms satisfy the same equations and
therefore produce the same coupler curve.

3 Skew Pantograph
Before proceeding to an analysis of four-bar and six-bar cog-

nates, let us consider the skew pantograph, a mechanism discov-
ered by Sylvester [15] that is capable of reproducing a scaled
translate of a given curve. Not only are cognates for the four-bar
and Stephenson-3 mechanisms directly derivable via the skew
pantograph construction, but also our derivation of the mecha-
nism will be the first illustration of our methodology for deriving
all of the cognates.

Consider the dyad coupler mechanism of Figure 2(a) in
which point q of link 2 is constrained to follow curve C. In this
manner, link 2 is a coupler between two curves: C and the circle
drawn by link 1. As the mechanism moves, point p traces out a
coupler curve. We wish to find a curve cognate mechanism of
the same type, where curve C is replaced by a similar curve C′,
that is, C′ is a stretch-rotation β of C about a center α:

C′ = α +β (C−α), (4)

where α,β are complex numbers.

Theorem 3.1 (Dyad coupler cognate). For the coupler
mechanism as in Figure 2(a) given by link parameters a0, a1,
a2, b2, and curve C, there exists a coupler curve cognate that is
another dyad coupler mechanism whose curve C′ is similar to C,

(a) (b)

FIGURE 2. Dyad coupler mechanism and skew pantograph

and whose link parameters are given by

a′0 = a0, a′1 = b2, a′2 =
b2

a2
a1, b′2 = a1, C′ = a0 +

b2

a2
(C−a0).

Corollary 3.2 (Skew pantograph (Sylvester [15])). As in
Figure 2(b), by joining two dyads at point p, construct a four-bar
linkage with link parameters a0, a1, a2, b2, a′1 = b2, a′2 =

b2
a2

a1,
and b′2 = a1. Then, points q and q′ trace out similar curves.

For clarity, we note that in the skew pantograph, the two
triangle links labeled 2 and 2′ in Figure 2(b) are similar.

While the ability of the skew pantograph to duplicate
curve C is interesting in itself, our interest will be in viewing it
as two coupler mechanisms that are curve cognates for the path
traced out by point p. For consistency with the way we present
cognates below, we present the mapping between x and f (x) in
the form of a table, as follows with β = b2

a2
:

Link Rotations Mechanism Parameters
Cognate link 1 link 2 link 0 link 1 link 2 curve

x θ1 θ2 a0 a1 a2 b2 C
f (x) θ2 θ1 a0 b2 βa1 a1 a0 +β (C−a0)

Proof of Theorem 3.1 Let θ1 and θ2 be the rotations of links 1
and 2, respectively, as q moves along C. Summing complex vec-
tors from the origin to q and from the origin to p, we have

q = a0 +a1θ1 +a2θ2, p = a0 +a1θ1 +b2θ2. (5)

For the cognate linkage, we similarly have

q′ = a′0 +a1θ ′
1 +a′2θ ′

2, p′ = a′0 +a′1θ ′
1 +b′2θ ′

2. (6)

Now consider interchanging the rotations, that is, let

θ ′
1 = θ2, θ ′

2 = θ1, (7)

and enforce the relations

p′ = p, q′ = α +β (q−α). (8)

Substituting from (5,6) into (7,8) gives

a′0 +a′1θ2 +b′2θ1 = a0 +a1θ1 +b2θ2 (9)
a′0 +a′1θ2 +a′2θ1 = α +β (a0 +a1θ1 +a2θ2 −α). (10)

We wish to find values of a′0, a′1, a′2, b′2, α , and β such that
these equations hold for all values of θ1 and θ2. Equating the
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coefficients of 1, θ1, and θ2 from both sides of (9) yields

a′0 = a0, a′1 = b2, b′2 = a1. (11)

Doing the same for (10) yields

a′0 = α +β (a0 −α), a′1 = βa2, a′2 = βa1. (12)

Together, (11,12) are six equations for the six parameters of the
cognate. Since substituting values from Theorem 3.1 shows that
all six equations are satisfied, f (x) is a cognate of x. End of proof.

The key steps for constructing this and all the other coupler
cognates to follow are:

1. write complex vector equations for the original mechanism
and its cognate,

2. interchange some link rotations between the original and
the cognate,

3. set the coupler points equal,
4. set the loop equations equal up to stretch-rotation,
5. solve for the cognate parameters that match coefficients of

the rotations.

In Step 2 for the dyad mechanism, there was only one candidate
for a pair of rotations to swap. For the mechanisms to follow,
there are more possibilities, some of which generate cognates
and some that do not.

4 Four-Bar: Roberts Cognates
To further illustrate our procedure for deriving curve cog-

nates, we begin by revisiting Roberts Theorem for four-bars.
Here, and in similar statements to follow, the cognates are sum-
marized in a tabular form where the first row, labeled x, contains
the link rotations and link vectors for the mechanism as labeled
in the relevant figure, and subsequent rows show the new values
these take in the cognates. For example, below, to reach a partic-
ular location on the coupler curve, for the original mechanism x,
link 1 has rotation θ1, whereas for its cognate f (x), link 1 has the
rotation θ2, which is the rotation that applies to link 2 of x when
reaching that same point on the curve. Similarly, the ground pivot
located at b0 for x moves to c0 for cognate f (x).

The following is Roberts-Chebyshev Theorem [2, 3, 16].

Theorem 4.1 (Four-Bar Cognates). Every general four-
bar coupler curve is triply generated, that is, for general four-
bar x, there exist curve cognates f (x) and g(x):

Link Rotations Link Parameters
Cognate link 1 link 2 link 3 link 0 link 1 link 2 link 3

x θ1 θ2 θ3 a0 b0 a1 a2 b2 a3
f (x) θ2 θ1 θ3 a0 c0 b2 γa1 a1 γa3
g(x) θ1 θ3 θ2 c0 b0 ζ a1 ζ a3 −γa3 ζ a2

where

γ = b2/a2, ζ = 1−b2/a2, and c0 = a0 + γ(b0 −a0).

Corollary 4.2. The timed curve cognate of x is g(x) if link 1 is
designated as the input link and it is f (x) if link 3 is the input.
There are no coupler cognates.

The corollary follows from the theorem just by noting which
links keep the same rotation between x and its curve cognates.
There are no coupler cognates since the rotation of link 2, the
coupler, is not the same for any pair of cognates.

Note that Theorem 4.1 is stated as the existence of curve
cognates f (x) and g(x) without claiming that no other curve cog-
nates exist. Although it is true that no other cognates exist, we
do not prove that here.

Figure 1 showed a four-bar linkage with Figure 3 illustrating
Roberts cognates. Note that links on the opposing sides of a par-
allelogram, of which there are three, undergo the same rotation.

Proof of Theorem 4.1 As a preparatory step, we note that
we can multiply the loop equation (1) by any nonzero complex
number without changing its meaning, that is, for γ ∕= 0,

γ(a0 −b0 +a1θ1 +a2θ2 +a3θ3) = 0 (13)

implies the same constraint between the rotations as (1).
Let the vector (a0,b0,a1,a2,b2,a3) describe the original

four-bar and let (a′0,b
′
0,a

′
1,a

′
2,b

′
2,a

′
3) describe a cognate of it.

Likewise, the two linkages have rotations (θ1,θ2,θ3) and
(θ ′

1,θ
′
2,θ

′
3), respectively. For these two linkages to be curve cog-

nates, they must have the same coupler point so we denote it
simply as p. Accordingly, the loop and coupler point equations
for the cognate are

a′0 −b′0 +a′1θ ′
1 +a′2θ ′

2 +a′3θ ′
3 = 0, (14)

p = a′0 +a′1θ ′
1 +b′2θ ′

2. (15)

FIGURE 3. Roberts cognates
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Curve cognate f (x) is generated by swapping rotations 1
and 2. Substituting (θ ′

1,θ
′
2,θ

′
3) = (θ2,θ1,θ3) into (14,15) and

setting these equal to (13,2), respectively, yields

0 =a′0 −b′0 +a′1θ2 +a′2θ1 +a′3θ3

γ(a0 −b0 +a1θ1 +a2θ2 +a3θ3),
(16)

p = a′0 +a′1θ2 +b′2θ1 = a0 +a1θ1 +b2θ2. (17)

Equating the coefficients of the rotations 1, θ1, θ2, θ3 on both
sides of these equations yields a set of seven linear equations in
seven unknown parameters, these being (a′0,b

′
0,a

′
1,a

′
2,b

′
2,a

′
3) for

the cognate linkage and the factor γ . Listing these out in detail,
the coupler point equation (17) yields

a′0 = a0, b′2 = a1, a′1 = b2, (18)

while the loop equation (16) gives

a′0−b′0 = γ(a0−b0), a′2 = γa1, a′1 = γa2, a′3 = γa3. (19)

We notice that expressions for a′1 appear in both (18) and (19).
Setting these equal, we obtain γ = b2/a2, which is the stretch-
rotation that transforms a2 into b2. Rearranging the first entry
of (19) shows that b′0 is a new ground pivot, which we rename as
c0 := b′0 = a0 + γ(b0 −a0). By these calculations, we see that at
each configuration of x, the linkage f (x) gives the same coupler
point p, and hence it is a coupler cognate of x.

We may derive g(x) in a similar fashion to our proof of f (x).
This time, since g(x) interchanges θ2 with θ3, it is advantageous
to use the alternative coupler point equation (3). Denoting the
link parameters for g(x) as a′′0 , b′′0 , etc., and this time rescaling
the loop equation (1) by ζ , we have

0 =a′′0 −b′′0 +a′′1θ1 +a′′2θ3 +a′′3θ2

= ζ (a0 −b0 +a1θ1 +a2θ2 +a3θ3), (20)
p =b′′0 +(b′′2 −a′′2)θ3 −a′′3θ2 = b0 +(b2 −a2)θ2 −a3θ3. (21)

Matching term-by-term yields g(x) as given in Theorem 4.1.

End of proof.

Second proof of g(x): Although the following derivation
of g(x) does not generalize for use in the treatment of six-bars,
it shows the group structure of four-bar cognates. It relies on the
fact that links 1 and 3 play equivalent roles in the four-bar, and
so swapping the labeling of the links gives two ways of writing
the same four-bar. Since we traverse the loop in the opposite

direction, the signs of some parameters reverse:

Link Rotations Link Parameters
Cognate link 1 link 2 link 3 link 0 link 1 link 2 link 3

x θ1 θ2 θ3 a0 b0 a1 a2 b2 a3
s(x) θ3 θ2 θ1 b0 a0 −a3 −a2 b2 −a2 −a1

Given f (x) and s(x), one finds that g(x) = s( f (s(x))).
End of second proof for g(x).

One may wonder what happens if the transformations f (x)
and s(x) are repeated in various combinations. It is easy to see
that each is its own inverse: x = f ( f (x)) = s(s(x)). Moreover, if
they are repeated in alteration, no new cognates result, because
x = s( f (s(g(x)))). These facts show that repeated application
of the transformations f (x) and s(x) results in a closed group of
order 6, being the three curve cognates each written two ways
(i.e., x and s(x) are the same linkage). This same six-fold group-
ing appears in solutions to the nine-point coupler curve synthesis
problem for four-bars [17].

A final alternative proof is via Theorem 3.1.
Alternative proof: The four-bar can be regarded as a dyad coupler
mechanism of the type illustrated in Figure 2(a) where curve C is
a circle. Applying Theorem 3.1 to dyad 1-2 with curve C being
the circle drawn by link 3 gives cognate f (x), while applying it to
dyad 3-2 with curve C being the circle drawn by link 1 gives g(x).
End of alternative proof.

Finally, we note that in the mapping from x to f (x), one fixed
pivot stays in place at a0, while the new one at c0 is such that
triangle a0,b0,c0 is similar to the coupler triangles 2, 2′, and 2′′

in Figure 3. Moreover, a0, b0, and c0 are the singular foci of the
coupler curve [18]. These are well-known classical results.

Example 4.3. The below table lists the parameters for the four-
bar linkage along with the parameters (to 4 decimal places) for
the two cognates derived in Theorem 4.1 and drawn in Figure 3.

x f (x) g(x)
a0 0.0+0.0i 0.0000+0.0000i −0.6549+2.2196i
b0 3.0+0.8i −0.6549+2.2196i 3.0000+0.8000i
a1 0.8+0.8i 0.2000+0.9000i 1.4118+0.2196i
a2 1.2−0.3i −0.6118+0.5804i 1.2431−0.4392i
b2 0.2+0.9i 0.8000+0.8000i 0.2431−0.7392i
a3 1.0+0.3i −0.2431+0.7392i 1.0000−1.2000i

5 Stephenson-type six-bar cognates
The following applies the techniques provided in Sec-

tions 3 and 4 to derive curve cognates for Stephenson-1 and
Stephenson-3 six-bar curves. The methodology also applies to
the Stephenson-2A and -2B curves, omitted here to save space.
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FIGURE 4. Stephenson-1 mechanism and a cognate

5.1 Stephenson-1
Figure 4 displays the notation for the Stephenson-1 six-bar.

Theorem 5.1 (Stephenson-1 Cognates). Every general
Stephenson-1 coupler curve is doubly generated by x and f (x):

Link Rotations Link Parameters
Cognate 1 2 3 4 5 0 1 2 3 4 5

x θ1 θ2 θ3 θ4 θ5 a0 b0 a1 b1 a2 a3 b3 a4 a5 b5
f (x) θ2 θ1 θ3 θ4 θ5 c0 b0 γ1a2 γ2a2 γ1a1 γ1a3 γ2b3 γ2a4 γ2a5 b5

such that

γ1 =
b1(a3 +b3)

b1a3 +a1b3
, γ2 =

a1(a3 +b3)

b1a3 +a1b3
, c0 = b0 + γ1(a0 −b0).

Corollary 5.2. Since the rotations of links 3 and 5 are both pre-
served, if link 3 is the input, this is a timed coupler cognate. Oth-
erwise, if link 1 is the input, this is a coupler cognate, but its
timing is not preserved.

Proof: Similar to the way we treated curve cognates for the four-
bar, we denote a cognate with a′0 in place of the original a0, etc.
We set loop equations, of which there are now two, for the cog-
nate equal to scaled versions of the loop equations for the orig-
inal six-bar, and we equate their coupler points. Swapping the
rotations of links 1 and 2 in the cognate, we have

0 =a′0 −b′0 +a′1θ2 +a′2θ1 −a′3θ3

= γ1(a0 −b0 +a1θ1 +a2θ2 −a3θ3), (22)
0 =b′1θ2 +a′2θ1 +b′3θ3 +a′4θ4 +a′5θ5

= γ2(b1θ1 +a2θ2 +b3θ3 +a4θ4 +a5θ5), (23)
p =b′0 +(a′3 +b′3)θ3 +b′5θ5 = b0 +(a3 +b3)θ3 +b5θ5. (24)

Equating coefficients in each equation yields the following:

a′0 −b′0 = γ1(a0 −b0), a′1 = γ1a2, a′2 = γ1a1, a′3 = γ1a3,

b′1 = γ2a2, a′2 = γ2b1, b′3 = γ2b3, a′4 = γ2a4, a′5 = γ2a5,

b′0 = b0, a′3 +b′3 = a3 +b3, b′5 = b5.

This is a system of linear equations in the unknowns a′0, . . . ,b
′
5

and γ1,γ2. There are 12 equations for 12 unknowns, having the
unique answer given in Theorem 5.1.
End of proof.

One may confirm that x = f ( f (x)), so this is a group of just
two curve cognates.

To demonstrate what would happen if one tries to perform
an interchange which is not permitted, consider swapping rota-
tions 2 and 3. To simplify the computation, we replace (24) with

a0 +(a1 +b1)θ1 −a4θ4 +(b5 −a5)θ5 = p.

Applying the two stretch-rotation factors and equating coeffi-
cients in each equation, as above, yields

a′0 −b′0 = γ1(a0 −b0), a′1 = γ1a1, a′2 =−γ1a3, a′3 =−γ1a2,

b′1 = γ2b1, a′2 = γ2b3, b′3 = γ2a2, a′4 = γ2a4, a′5 = γ2a5,

a′0 = a0, a′1 +b′1 = a1 +b1, a′4 = a4, b′5 −a′5 = b5 −a5.

This is a set of 13 linear equations in 12 unknowns.
For general choices of the Stephenson-1 parameters
(a0,b0,a1,b1,a2,a3,b3,a4,a5,b5), this system is inconsis-
tent, showing that swapping rotations 2 and 3 does not generally
lead to a curve cognate. In fact, performing elimination on the
linear system, one finds that there exists a solution if and only if
a1a4(a3 +b3) = 0. But any Stephenson-1 linkage satisfying that
condition is degenerate: its coupler point is either stationary or
moves on a circle.

It would be laborious to check that no other permutation of
the rotations besides the swap of θ1 and θ2 leads to a valid cog-
nate. Furthermore, it is not obvious that permuting rotations is
the only way to generate a cognate. We address completeness of
the cognate theory in a companion paper [1].

Example 5.3. The below table lists the parameters for the
Stephenson I linkage along with the parameters (to 4 decimal
places) for the cognate derived in Theorem 5.1 and drawn in Fig-
ure 4.

x f (x) x f (x)
a0 −2.0+0.0i −0.7323+1.1043i a3 −0.7+0.5i 0.0198+0.5696i
b0 0.0+0.0i 0.0000+0.0000i b3 1.0+0.5i 0.2802+0.4304i
a1 0.3+0.4i 0.4214−0.5155i a4 −0.8−0.6i −0.1777−0.4236i
b1 0.6−0.4i 0.3731+0.2719i a5 −1.8+0.4i −0.8063−0.2595i
a2 1.0+0.1i 0.3307−0.0192i b5 −1.1+0.6i −1.1000+0.6000i

5.2 Stephenson-3
Figure 5 displays the notation for the Stephenson-3 six-bar.

Theorem 5.4 (Stephenson-3 Cognates (Roth [5])).
Every general Stephenson-3 coupler curve is sextuply generated
by x, f (x), g(x), skew(x), f (skew(x)), and g(skew(x)) where
f (x) and g(x) are the same as in Theorem 4.1 leaving the
rotations and parameters of links 4 and 5 undisturbed, while

7 Copyright c© 2020 by ASME



FIGURE 5. Stephenson-3 mechanism

skew(x) is the result of applying Theorem 3.1 to links 4-5 with
curve C being the four-bar curve drawn by links 0,1,2,3. For
convenience, we tabulate skew(x):

Link Rotations Link Parameters
Cognate 1 2 3 4 5 0 1 2 3 4 5

x θ1 θ2 θ3 θ4 θ5 a0 b0 c0 a1 a2 b2 a3 a4 a5 b5
skew(x) θ1 θ2 θ3 θ5 θ4 d0 e0 c0 βa1 βa2 βb2 βa3 b5 βa4 a4

where

β = b5/a5, d0 = c0 +β (a0 −c0), e0 = c0 +β (b0 −c0).

Corollary 5.5. Both f (x) and g(x) are coupler cognates of x.
Timed coupler cognates are f (x) if link 3 is the input, g(x) if
link 1 is the input, and both f (x) and g(x) if link 4 is the input.
Meanwhile, skew(x) does not preserve the rotation of the cou-
pler, but it is a timed curve cognate if either of links 1 or 3 is the
input. Timing is preserved for f (skew(x)) if link 3 is the input,
and it is preserved for g(skew(x)) if link 1 is the input.

No further proof is necessary, since these cognates are de-
fined in terms of Theorems 3.1 and 4.1.

6 Watt-type six-bar cognates
As mentioned in Section 2.1, Watt-2 only draws a four-bar

curve and will not be considered. The following summarizes
cognates for Watt-1A and Watt-1B inversions of six-bar linkages.

6.1 Watt-1A
For all of the six-bars of Stephenson topology considered in

Section 5, the resulting system of linear equations had a unique
solution for each valid interchange of rotations. However, for the
Watt-1A, illustrated in Figure 6, the companion paper [1] shows
that no nontrivial interchanges are valid. Nonetheless, it happens
that there is a two-dimensional family of cognates that includes
the original mechanism, as detailed in the following theorem.

Theorem 6.1 (Watt-1A cognates). For every general
Watt-1A six-bar, there exists a two-dimensional family of
cognate mechanisms, summarized as

Link Rotations Link Parameters
Cognate 1 2 3 4 5 0 1 2 3 4 5

x θ1 θ2 θ3 θ4 θ5 a0 b0 a1 a2 b2 a3 b3 a4 a5 b5
f (x,a′0) θ1 θ2 θ3 θ4 θ5 a′0 b0 γ1a1 γ1a2 γ2b2 γ1a3 γ2b3 γ2a4 γ2a5 b5

such that

γ1 =
a′0 −b0

a0 −b0
, γ2 = 1+

(a0 −a′0)a3

(a0 −b0)b3

and where a′0 can be chosen freely in the complex plane.

Corollary 6.2. Every member of f (x,a′0) in Theorem 6.1 is a
timed coupler cognate.

If one chooses a′0 = a0, then f (x,a0) returns the origi-
nal mechanism, i.e., x = f (x,a0). The set of cognates is two-
dimensional since a′0 has real and imaginary parts.

The corollary holds because the rotation of every link is pre-
served between x and each member of f (x,a′0).
Proof: All of the link rotations are preserved. Thus, the equations
to match term-by-term are

0 =a′0 −b′0 +a′1θ1 +a′2θ2 +a′3θ3

= γ1(a0 −b0 +a1θ1 +a2θ2 +a3θ3),

0 =b′2θ2 +b′3θ3 +a′4θ4 +a′5θ5

= γ2(b2θ2 +b3θ3 +a4θ4 +a5θ5),

p =b′0 − (a′3 +b′3)θ3 +b′5θ5 = b0 − (a3 +b3)θ3 +b5θ5.

Matching coefficients of the rotations yield 11 linear equations
in 12 unknowns, these being 10 link parameters along with γ1
and γ2. Letting a′0 be free and solving for the remaining un-
knowns gives the link parameters as listed in Theorem 6.1.
End of proof.

FIGURE 6. Watt-1A mechanism
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6.2 Watt-1B
We complete our investigation of six-bars by computing

cognates of the Watt-1B, which is shown in Figure 7.

Theorem 6.3 (Watt-1B cognates). Every general Watt-1B
coupler curve is quadruply generated by x, f (x), g(x), and h(x)
which are described as follows

Link Rotations
Cognate 1 2 3 4 5

x θ1 θ2 θ3 θ4 θ5
f (x) θ1 θ3 θ2 θ4 θ5
g(x) θ1 θ2 θ3 θ5 θ4
h(x) θ1 θ3 θ2 θ5 θ4

Link Parameters
0 1 2 3 4 5

a0 b0 a1 a2 b2 a3 b3 a4 b4 a5
c0 b0 γ1a1 γ1a3 −a3 −b2 γ2b2 γ2a4 c4 γ2a5
d0 b0 ζ1a1 ζ1a2 ζ2b2 ζ1a3 ζ2b3 ζ2a5 −a5 −b4
e0 b0 λ1a1 λ1a3 λ2b3 λ1a2 λ2b2 λ2a5 a3a5/b3 λ2a4

where

γ1 =−b2/a2, γ2 =−a3/b3,

c0 = γ1a0 +(1− γ1)b0, c4 = (1− γ2)a4 +b4,

ζ1 =
a3a4 +b3a4 +b3b4

a3a4
, ζ2 =−b4

a4
, d0 = ζ1a0 +(1−ζ1)b0,

λ1 =
b2b4

a2a4
, λ2 =−a3a4 +b3a4 +b3b4

b3a4
, e0 = λ1a0 +(1−λ1)b0.

Corollary 6.4. Curve cognate f (x) is a coupler cognate of x. If
link 1 is the input, it is also a timed coupler cognate of x. Curve
cognate g(x) is a timed curve cognate of x for either input, link 1
or link 3. Curve cognate h(x) is a timed curve cognate if link 1
is the input.

Proof: To prove f (x), use loops 0-1-2-3 and 2-3-5-4 and use the
path 0-3-2-4 from o to p. Interchange the rotations of links 2
and 3, and follow the usual procedure, scaling the first loop by γ1
and the second by γ2.

FIGURE 7. Watt-1B mechanism

To prove g(x), use the same two loops, but take the path
0-3-5-4 from o to p. Interchange the rotations of links 4 and 5
and introduce scalings ζ1 and ζ2 on the loops.

Curve cognate h(x) is the result of applying both the former
mappings: h(x) = f (g(x)). End of proof.

7 An eight-bar cognate
So far, we have used our approach to provide simple proofs

of known results in cognate theory. However, the beauty of the
approach is that it easily generates cognates for more complex
linkages. To show this, we generate a novel cognate of the eight-
bar linkage shown in Figure 8.

The relevant loop and coupler point equations are:

a0 −b0 +a1θ1 +a2θ2 +a3θ3 = 0, (25)
b1θ1 −a2θ2 −b3θ3 +a4θ4 −b5θ5 = 0, (26)

b4θ4 −a5θ5 +a6θ6 +a7θ7 = 0, (27)
b0 +(b3 −a3)θ3 +(a5 +b5)θ5 +b7θ7 = p. (28)

Consider interchanging rotations 1 and 2; and introduce three
stretch-rotation factors, one for each loop equation (25)-(27). Af-
ter equating coefficients from each kinematic equation, one ob-
tains the cognate parameters which are summarized as:

Link Rotations
Cognate 1 2 3 4 5 6 7

x θ1 θ2 θ3 θ4 θ5 θ6 θ7
f (x) θ2 θ1 θ3 θ4 θ5 θ6 θ7

Link Parameters
0 1 2 3 4 5 6 7

a0 b0 a1 b1 a2 a3 b3 a4 b4 a5 b5 a6 a7 b7
γ1a0 +(1− γ1)b0 b0 γ1a2 −γ2a2 γ1a1 γ1a3 γ2b3 γ2a4 γ3b4 γ3a5 γ2b5 γ3a6 γ3a7 b7

where

γ1 =
b1(a3 −b3)

a1b3 +b1a3
, γ2 =

a1(b3 −a3)

a1b3 +b1a3
, (29)

γ3 =
a1(a3b5 +b3a5)+b1a3(a5 +b5)

a5(a1b3 +a3b1)
. (30)

FIGURE 8. An eight-bar mechanism and a cognate
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Since rotation 7 is preserved, this is a coupler cognate. When
link 3 is the input crank, this is a timed curve and timed coupler
cognate. However, it is not a timed curve cognate when link 1 is
the input crank.

The companion paper [1] shows that no other permutations
of the link rotations are possible.

Example 7.1. The below table lists the parameters for the
eight-bar linkage along with the parameters (to 4 decimal places)
for the cognate derived above and drawn in Figure 8.

x f (x) x f (x)
a0 −4.0+0.0i −2.2665+1.2640i a4 2.1+0.5i 0.7494+1.4184i
b0 0.0+0.0i 0.0000+0.0000i b4 −1.5+0.4i −1.4238−0.6638i
a1 0.8+1.0i 1.4797−0.6767i a5 2.5+0.6i 1.5503+2.0892i
b1 −1.0+0.5i −1.1130−1.4949i b5 −2.3+0.4i −1.3503−1.0892i
a2 2.5+0.2i 0.7693+0.3138i a6 1.9+0.6i 1.0847+1.6995i
a3 0.7−1.2i 0.0174−0.9011i a7 2.1−0.4i 1.8894+1.0534i
b3 0.9+0.4i 0.2174+0.6989i b7 −0.5+0.9i −0.5000+0.9000i

8 Conclusion
We have presented a method of deriving planar curve cog-

nates and illustrated its application to the four-bar, several six-
bars, and one eight-bar linkage. Cognates are found by inter-
changing link rotations in a complex vector formulation of loop
and coupler-point equations, resulting in formulas that are easy to
apply in a computer graphics environment. Beyond giving sim-
ple derivations for known cognates, the procedure also allows
one to find new cognates, as we show by finding a cognate of an
example eight-bar linkage. Although for organizational clarity
we have reported all the results in a theorem-proof format, our
true intent is to present the procedure used inside the proofs.

The procedure depends on the selection of valid permuta-
tions of link rotations. As we saw in Section 5.1, not all permu-
tations lead to valid cognates. Thus, at the level of development
presented here, some trial-and-error would be required to find
all cognates of a given linkage type. Moreover, although all the
known planar cognates are obtained by interchanging link rota-
tions, there is no a priori reason to believe that this is the only
way a cognate can arise. A companion paper [1] addresses these
issues, allowing one to confidently find all possible cognates.
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