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Cognate linkages are mechanisms that share the same mo-
tion, a property that can be useful in mechanical design. This
paper treats planar curve cognates, that is, planar mecha-
nisms with rotational joints whose coupler points draw the
same curve, as well as coupler cognates and timed curve
cognates. The purpose of this article is to develop a straight-
forward method based solely on kinematic equations to con-
struct cognates. The approach computes cognates that arise
from permuting link rotations and is shown to reproduce all
of the known results for cognates of four-bar and six-bar
linkages. This approach is then used to construct a cognate
of an eight-bar and a ten-bar linkage.

1 Introduction
Cognate linkages are mechanisms that share the same

motion. Curve cognates, in particular, are distinct mecha-
nisms, each with one degree of freedom, whose respective
coupler points draw the same curve. Since cognates may
occupy different regions of space and have different trans-
mission characteristics, they can be useful in finding a more
suitable mechanical design for the same function. Knowl-
edge of cognates can also be useful when solving mechanism
synthesis problems, especially in confirming that a complete
solution list has been found [1, 2].

We will show how curve cognates for general planar
linkages can be generated by a simple sequence of opera-
tions: form complex-vector loop equations, interchange cer-
tain link rotations, match coefficients in the kinematic equa-
tions, and then solve the resulting linear equations. An inter-
change of link rotations means to permute complex rotations
applied to the links. For example, swapping rotations for

∗Address all correspondence to this author.

two links means that one is aiming to construct a cognate in
which the two links in the cognate linkage simply have ro-
tational characteristics that are swapped between the corre-
sponding two links in the original linkage. The matching of
coefficients ensures that the kinematic equations hold for all
input angles and thus the resulting linkage is indeed a curve
cognate since it traces out the same coupler curve.

Given knowledge of which link rotations can be inter-
changed, the procedure is straightforward to carry out, and
the results are easy to interpret graphically and ready for
computer simulation. If one posits an interchange that does
not correspond to a cognate, this is revealed as an inconsis-
tency in the linear equations. The method can be used to re-
produce all the known results for curve cognates of the four-
bar and all the six-bars. In addition, curve cognates are also
constructed for an eight-bar and a ten-bar linkage.

Even if one considers all possible permutations for the
interchange of rotations, a process whose complexity grows
quickly with the number of links, this does not a priori mean
that all possible cognates have been found. Until proven oth-
erwise, there remains the possibility that some more subtle
transformation of the linkage could leave the coupler curve
invariant. A companion paper [3] completes the theory of
cognates for general six-bar linkages by showing that the in-
terchange of rotations does in fact produce all possible cog-
nates. A complete cognate theory for eight-bars and beyond
is still open, but already the approach of [3] sets limits on
which interchanges have a chance to produce cognates. The
method presented here produces the cognates for any valid
permutation one specifies.

The most famous result in cognate theory is from 1875
in which Roberts [4] showed that every four-bar coupler
curve is triply generated. That result is sometimes called the
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Roberts-Chebyshev Theorem in recognition of Chebyshev’s
independent discovery of it three years later [5]. To our
knowledge, no results on cognates of six-bar linkages were
found until the work of Hartenberg and Denavit [6], followed
by Roth [7] and Soni [8]. See Nolle [9] (with reference list
in [10]) for a historical review as of 1974. Finally, nearly one
hundred years after Roberts, Dijksman [11, 12, 13] compiled
cognates for all the six-bar planar linkages. In the confer-
ence paper [14] upon which the present article expands, we
showed how our method reproduces the skew pantograph, all
known cognates for the four-bar, Watt six-bars, Stephenson-I
and Stephenson-III six-bars, and a new eight-bar cognate.
Soni also found cognates for certain eight-bars [15].

Dijksman provides the most comprehensive list of six-
bar cognates by showing that cognates can be generated from
permutations of link rotations and presented his results by
means of intricate geometric constructions. Although cor-
rect, these drawings and their explanatory text can be rather
difficult to decode thereby presenting a barrier to understand-
ing and using those results. The purpose of this article is
to present a simple method of understanding by construct-
ing planar cognates using a complex vector approach. We
are by no means the first to approach cognates from this di-
rection; indeed, Nolle [9] states that Schor (1941), Schmid
(1950), Meyer zur Capellen (1956), and Wunderlich (1958)
all used some version of a complex plane formulation in
treating Roberts cognates. No doubt there have been oth-
ers as well since the complex plane formulation is arguably
the most natural way to treat any planar linkage with all ro-
tational joints. Rather than studying each mechanism type in
isolation, our contribution is an approach that allows one to
understand all the known results in terms of how a permuta-
tion of link rotations leads to a cognate and to construct new
cognates for eight-bars, ten-bars, and beyond.

The rest of the paper is organized as follows. Following
a list of nomenclature in Section 2, Section 3 provides back-
ground information on types of cognates and complex-vector
notation. Section 4 presents our method of constructing cog-
nates. Section 5 illustrates the method by considering in suc-
cession Roberts cognates for four-bars, the Stephenson-2A
six-bar, the Watt-1A six-bar, an eight-bar, and a ten-bar. Af-
ter the summary in Section 6, an appendix gives recipes for
constructing all possible six-bar cognates.

2 Nomenclature
We use the following conventions and notations. Let N

be the number of links and L = N/2− 1 be the number of
loops in the mechanism. One link is designated the ground
and another one is designated the coupler. For example, the
Watt six-bar has Watt-1 and Watt-2 inversions depending on
which link is called ground, and then a choice of coupler link
gives curve types Watt-1A and Watt-1B.

• The ground link is always link 0.
• Rotation θi, i = 1, . . . ,N−1, is the rotation of link i rela-

tive to ground in complex-vector form, i.e., θi = e
√
−1Θi ,

where Θi is the (real) rotation angle of link i.

• Link parameters ai,bi,ci, i = 0,1, . . . ,N − 1, are com-
plex vectors fixed in link i. We choose one joint of each
moving link as its origin, then ai,bi,ci specify the rel-
ative locations of the other joints. The origin for the
ground link is chosen arbitrarily.

• θ′i, i = 1, . . . ,N−1, and a′i,b
′
i,c

′
i, i = 0, . . . ,N−1, are the

rotations and link parameters for a cognate mechanism.
• p is the complex vector from the ground origin to the

coupler point. By definition, it is the same for both the
original and cognate linkages.

• Complex number γ j, j = 1, . . . ,L is a non-zero scal-
ing factor arising in the proof that loop equation j for
the original mechanism is equivalent to a corresponding
loop equation for its cognate.

3 Background
This section provides an introductory review to types of

cognates, and to complex-vector notation as applied to planar
linkages. For this paper, we restrict ourselves to planar mech-
anisms with rigid links connected by rotational (pin) joints.
Each joint connects two links, thereby imposing one vec-
tor constraint, equivalent to two scalar constraints, requiring
that the respective center points of the joint on the two links
must coincide. For the purpose of classifying mechanisms
with one degree of freedom, we consider only unexceptional
mechanisms, being those whose number of freedoms does
not change when the link dimensions are perturbed in a gen-
eral fashion. For N links and J joints, these mechanisms
obey the Grashof mobility criterion: M = 3(N−1)−2J. For
M = 1 degree of freedom, this implies the mechanism must
have N = 2L+ 2 links and J = 3L+1 joints, where L is the
number of independent loops in the mechanism.

3.1 Types of cognates
The cognates under consideration here are curve cog-

nates, that is, linkages which draw the same curve. We only
treat cognates of the same curve type, ignoring the possibil-
ity that a six-bar might duplicate a four-bar curve or that two
types of six-bars might draw the same curve.

Some curve cognates satisfy additional criteria that de-
fine subclasses of interest. A coupler cognate is a curve cog-
nate where the coupler link maintains the same orientation
as the original. Alternatively, after selecting an input link, a
timed curve cognate is a curve cognate with the same func-
tional relationship between the input rotation and the point
on the coupler curve. Finally, a timed coupler cognate is both
a coupler cognate and a timed curve cognate with respect to
an input link. Once a curve cognate is found, it is straight-
forward to check these additional criteria and we will do so.

Another class of cognates that have been considered
elsewhere are function cognates. These cognates maintain
the functional relationship between an input crank and an
output link. Some function cognates are not curve cognates,
but those that are can be easily recognized here.
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Fig. 1. Four-bar linkage

3.2 Complex-vector notation
To simplify the mathematical formulas used to represent

linkages and compute cognates, we use a complex-vector
formulation. Thus, a vector [a b] in the plane is represented
by a complex number a + bi where i =

√
−1. Any com-

plex number can be cast in the form seiΘ where s is a scalar
and Θ is an angle in radians. Complex arithmetic facilitates
geometric transformations. In particular, complex addition
implements translation, while multiplication by seiΘ corre-
sponds to a stretch-rotation, which stretches by s and per-
forms a complex rotation by angle Θ. Throughout this pa-
per, we use θ to abbreviate the complex rotation, θ = eiΘ,
and more specifically, after numbering the links of a mech-
anism, θ j is the complex rotation of link j. By convention,
the ground link, which does not move, is always link 0.

To illustrate the complex-vector notation, we begin with
the case of a four-bar linkage. Referring to Figure 1, we have
a loop closure equation

f1 = a0 −b0 +a1θ1 +a2θ2 +a3θ3 = 0 (1)

and a coupler-point equation

f2 = a0 +a1θ1 +b2θ2 = p. (2)

Note that by subtracting one from the other, we have an
alternate coupler-point equation

p = b0 +(b2 −a2)θ2 −a3θ3. (3)

This is just the sum of vectors going on a different path from
the origin to the coupler point. Although equivalent, one of
Eq. (2) or Eq. (3) will prove more convenient depending on
which cognate of the initial linkage one wishes to pursue.

The link dimensions and the placement of the ground
pivots in the plane are given by a0, b0, a1, a2, b2, a3. To
compute the mechanism’s motion, consider that given one
link rotation, say θ1, one can solve Eq. (1) for θ2 and θ3,

keeping in mind that the complex loop equation is equiva-
lent to two scalar equations (by taking its real and imaginary
parts) and the rotations are each parameterized by a single
scalar angle. Then, one can evaluate the coupler point posi-
tion using Eq. (2) or Eq. (3). A more facile approach based
on using the complex conjugate of the loop equation is pre-
sented in [16, 17]. This paper does not need to solve the
loop and coupler-point equations; instead, we merely need
to show that cognate mechanisms satisfy the same equations,
i.e., trace the same coupler curve as the original mechanism.

4 Cognate Construction Procedure
The key steps in our method for constructing curve cog-

nates for an L-loop mechanism are as follows. It can be seen
that including the origin point in the ground link and the cou-
pler point in the coupler link, an unexceptional, mobility-1,
L-loop mechanism has 4L+ 2 independent link parameters
and N = 2L+2 links. Let q = (q1, . . . ,q4L+2) be the link pa-
rameters of the original linkage and q′ be those for the cog-
nate. Similarly, let θ = (θ1, . . . ,θ2L+1) be the link rotations
for the original linkage and θ′ the rotations for the cognate.

1. Choose a permutation P for interchanging link rota-
tions between the original and the cognate mechanism.
Hence, we are seeking a cognate whose link rotations
are θ′ = P(θ).

2. For the original mechanism, form L independent
complex-vector loop equations,

f1(q,θ) = 0, . . . , fL(q,θ) = 0
and one coupler-point equation for a complex-vector
path from the origin to the coupler point, p,

p = fL+1(q,θ).
3. Similarly, for the cognate mechanism, write equations

f1(q′,θ′) = 0, . . . , fL(q′,θ′) = 0, fL+1(q′,θ′) = p.

4. Substitute θ′ = P(θ) into equations from Step 3 yielding
f ′1(q

′,P(θ)) = 0, . . . , f ′L(q
′,P(θ)) = 0, f ′L+1(q

′,P(θ)) = p.

5. If the corresponding equations in Steps 3 and 4 do not
contain the same set of link rotations, replace equations

f1(q,θ) = 0, . . . , fL(q,θ) = 0, fL+1(q,θ) = p

with independent linear combinations to allow every
link rotation to be properly matched in the final step.

6. Set each loop function for the cognate equal to a stretch-
rotation of its corresponding function from the original:

f ′i (q
′,P(θ)) = γi fi(q,θ), i = 1, . . . ,L.

7. Set the coupler points equal:
f ′L+1(q

′,P(θ)) = fL+1(q,θ).
8. Solve for the cognate parameters q′ and stretch-rotations

γ1, . . . ,γL by matching the coefficients of the link rota-
tions and constant term in the loop (Step 6) and coupler-
point (Step 7) equations.

The final solution is a mechanism that satisfies the same
set of loop equations and the same coupler-point equation as
the original mechanism, hence it is a curve cognate. If the
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permutation chosen at Step 1 does not alter the rotation of
the input link, then we obtain a timed curve cognate. If the
permutation does not alter the rotation of the coupler link,
then we obtain a coupler cognate. It is sometimes possible to
satisfy both of these and thus obtain a timed coupler cognate.

For the matching procedure to succeed in Step 8, the
equations produced in Steps 6-7 must have the same link ro-
tations appearing on both sides. For example, if link rota-
tion 1 is to be interchanged with link rotation 2, then every
equation must involve either both links 1 and 2 or neither of
them. Usually, but not always, with appropriate choices of
loops and paths in Steps 2-3, one is able to match rotations
without needing rearrangement in Step 5.

If rotations match properly, the process of solving for
the cognate in Step 8 is simple. As illustrated in Eqs. (1-3),
the equations in the complex-vector formulation are linear
in the parameters and the only unknowns on the right-hand
side of the equations in Steps 6-7 are the stretch-rotations,
which also appear linearly. Hence, the equations to solve in
Step 8 are all linear and so the system is straightforward to
solve symbolically. We note that not all permutations one
might consider at Step 1 lead to cognates: invalid choices
become apparent in Step 8 as an inconsistent set of linear
equations. This may happen if the number of coefficients to
match exceeds the number of unknowns. On the other hand,
it may also happen that the number of coefficients to match
is smaller than the number of unknowns, in which case there
exists a positive-dimensional set of cognates. In particular,
this happens for the Watt-1A mechanism, which has a two-
dimensional family of curve cognates (see Section 5.3).

5 Examples
Our procedure becomes much clearer when applied to a

specific mechanism. We will first illustrate it using the sim-
plest example of interest, the four-bar linkage, followed by
a Stephenson-2A six-bar, the Watt-1A six-bar, an eight-bar,
and a ten-bar. An appendix summarizes how to derive cog-
nates for all the planar six-bar curve mechanisms.

5.1 Four-bar: Roberts cognates
The existence of three curve cognates for every four-bar

linkage was first proved by Roberts [4]. Figure 2 shows their
geometric construction, as was found by Chebyshev [5] and
Cayley [18]. This arrangement contains three similar trian-
gles, links 2, 2′, and 2′′, and three parallelograms. A proof
that the four-bars labeled “swap 1-2” and “swap 2-3” are
truly cognates of the original requires showing that point c0
stays fixed as the original four-bar moves. In a geometric ap-
proach, this fact follows from showing that the focal triangle
a0,b0,c0 is also similar to the coupler triangle, link 2. Our
approach proves this while at the same time generating the
formulas for the cognate link parameters and for the location
of point c0.

In the Chebyshev-Cayley construction shown in Fig. 2,
the parallelogram attached to a0 shows that link 1′ has the
same rotation link 2 and link 2′ has the same rotation as

link 1. That is, the cognate linkage labeled “swap 1-2” inter-
changes the rotations of links 1 and 2. In addition, the other
two parallelograms imply that link 3′ and link 3 undergo the
same rotation. Hence the “swap 1-2” cognate has rotations
(θ′1,θ

′
2,θ

′
3) = (θ2,θ1,θ3). As implied by its label, the “swap

2-3” cognate obeys a different permutation of the link rota-
tions, namely (θ′′1 ,θ

′′
2 ,θ

′′
3) = (θ1,θ3,θ2). The key observation

Dijksman used in finding six-bar cognates was that these also
involve permuting link rotations. Our methodology derives
from this observation: once a valid permutation of the link
rotations is specified, all the cognate linkage parameters are
determined by solving a system of linear equations.

We begin by considering the “swap 1-2” cognate. The
four-bar has 1 loop and 4 links, and its 6 link parameters
are denoted a0,b0,a1,a2,b2,a3. In Step 1, we consider the
permutation (θ′1,θ

′
2,θ

′
3) = (θ2,θ1,θ3). The loop equation

Eq. (1) and the coupler-point equation Eq. (2) are used for
the original mechanism in Step 2 and for the cognate mech-
anism in Step 3 with a′0 in place of a0, θ′1 in place of θ1, and
so on. After the substitution in Step 4, Step 5 is unnecessary
since the same set of link rotations appear in f1, f ′1 and in
f2, f ′2, respectively. Steps 6-7 yield

f ′1 = γ1 f1 : a′0−b′0 +a′1θ2 +a′2θ1 +a′3θ3

= γ1(a0 −b0 +a1θ1 +a2θ2 +a3θ3),
(4)

f ′2 = f2 : a′0 +a′1θ2 +b′2θ1 = a0 +a1θ1 +b2θ2. (5)

In Step 8, equating the coefficients of the link rotations 1, θ1,
θ2, θ3 on both sides of these equations yields a set of seven
linear equations in seven unknown parameters, these being
(a′0,b

′
0,a

′
1,a

′
2,b

′
2,a

′
3) for the cognate linkage and the stretch-

rotation γ1. Listing these out, the loop equation Eq. (4) gives

a′0 −b′0 = γ1(a0 −b0), a′2 = γ1a1, a′1 = γ1a2, a′3 = γ1a3 (6)

while the coupler-point equation Eq. (5) yields

a′0 = a0, b′2 = a1, a′1 = b2. (7)

Since a′1 = γ1a2 and a′1 = b2, one finds that γ1 = b2/a2,
which is the stretch-rotation that transforms a2 into b2.
With γ1 known, all of the cognate parameters are easily de-
termined from Eqs. (6,7). In particular, one sees that ground
pivot a′0 stays fixed, i.e., a′0 = a0, whereas ground pivot b′0
moves to a new location b′0 = c0 := a0 +(b2/a2)(b0 − a0).
We label this new ground pivot as c0 in Figure 2. As is
well-known, (a0,b0,c0) are the singular foci of the four-bar’s
coupler curve and they form a triangle that is similar to the
coupler triangle, (0,a2,b2) [19].

The simple linear relations of Eqs. (6,7) directly imply
the parallelograms and similar triangles in the Chebyshev-
Cayley geometric construction. In particular, b′2 = a1,
a′1 = b2 in Eq. (7) imply that quadrilateral a1,b2,b′2,a

′
1 is a

parallelogram, while b′2 = a1,a′2 = γ1a1, hence γ1 = a′2/b′2,
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Fig. 2. Roberts cognates with numerical values of the parameters
presented in Example 5.1

along with γ1 = b2/a2 shows that triangle 2′ is similar to
triangle 2. These geometric relations automatically appear
using our approach.

A second cognate is found by swapping rotations be-
tween links 2 and 3. Call its parameters a′′0 , . . . ,a

′′
3 to dis-

tinguish them from those for the first cognate. The same
procedure applies, but to successfully match terms in Step 8,
we can use the alternate coupler-point equation Eq. (3) at
Step 3. Since Eq. (3) was obtained by subtracting Eq. (1)
from Eq. (2), this preliminary rearrangement avoids needing
any additional rearrangement in Step 5. This time, one finds
that b′′0 = b0 stays in place while a0 moves to the third singu-
lar focus, a′′0 = b′0 = c0. Matching all coefficients we find the
stretch rotation factor, call it ζ1, to be

ζ1 = 1− b2

a2

with cognate link parameters

a′′0 = c0 b′′0 = b0 a′′1 = ζ1a1

a′′2 = ζ1a3 b′′2 = a3(ζ1 −1) a′′3 = ζ1a2.

One may also swap rotations between links 1 and 3.
To carry through the matching procedure without needing
Step 5, one picks Eq. (2) at Step 2 and Eq. (3) at Step 3.
Thus, after the substitution θ′1 = θ3 and θ′3 = θ1 at Step 4,
the same rotations, namely θ1 and θ2 appear on both sides
in Step 7. The result computed in Step 8 is valid but it does
not produce a new four-bar. Instead, this simply produces the
original four-bar with its links renumbered 0-3-2-1 in place
of 0-1-2-3. While this renumbering is not interesting from
a mechanical standpoint, it is meaningful algebraically. As
shown in [2], the system of path-synthesis equations for a
four-bar coupler curve to pass through nine given precision
points has 8652 solutions that arise in a six-way symme-
try: three cognates which each allow a two-way renumber-
ing. Hence, the 8652 solutions correspond with 1442 distinct
coupler curves, each of which is generated by three four-bar
curve cognates.

Finally, we observe that the first cognate (a′0, . . . ,a
′
3) is

a timed curve cognate if link 3 is the input, while the second
cognate (a′′0 , . . . ,a

′′
3) is if link 1 is the input. Neither is a

coupler cognate since they do not preserve the rotation of
link 2.

Example 5.1. The table below lists the parameters for the
four-bar linkage along with the parameters (to 4 decimal
places) for the cognates derived above and drawn in Figure 2.

Original Swap 1-2 Swap 2-3
a0 0.0+0.0i 0.0000+0.0000i −0.6549+2.2196i
b0 3.0+0.8i −0.6549+2.2196i 3.0000+0.8000i
a1 0.8+0.8i 0.2000+0.9000i 1.4118+0.2196i
a2 1.2−0.3i −0.6118+0.5804i 1.2431−0.4392i
b2 0.2+0.9i 0.8000+0.8000i 0.2431−0.7392i
a3 1.0+0.3i −0.2431+0.7392i 1.0000−1.2000i

5.2 Stephenson-2A
The Stephenson-2 six-bar has two coupler curve types

depending on which link is designated the coupler. Figure 3
shows the Stephenson-2A option where link 5 carries the
coupler point. (The alternative, Stephenson-2B, places the
coupler point on link 2.) Cognates for the Stephenson-2A
appear as a group of four: the original, swap rotations 2-3,
swap rotations 4-5, and swap both 2-3 and 4-5. We will show
how to derive all the Stephenson-2A curve cognates and also
illustrate what goes wrong for an inadmissible permutation.

Fig. 3. Stephenson-2A mechanism (top left), swap 2-3 (top right),
swap 4-5 (bottom left), and swap 2-3 and 4-5 (bottom right) with nu-
merical values of the parameters presented in Example 5.2
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5.2.1 Swap rotations 2-3
To derive the cognate that swaps link rotations 2 and 3,

we wish to form loop and coupler-point equations that either
contain both or neither of links 2 and 3. Loops 0-1-2-3-4 and
2-3-4-5 suffice, as does the path to the coupler point using
links 0-4-5. Accordingly, at Step 2, we have

f1 = a0 −b0 +a1θ1 +a2θ2 −a3θ3 −a4θ4 = 0, (8)
f2 = b2θ2 +a3θ3 +b4θ4 +a5θ5 = 0, (9)
f3 = b0 +(a4 −b4)θ4 +b5θ5 = p. (10)

At Step 3, we use the same equations with a′0 in place of a0,
θ′1 in place of θ1, and so on. After substituting θ′2 = θ3, and
θ′3 = θ2, Steps 6-7 give

f ′1 =γ1 f1 :
a′0 −b′0 +a′1θ1 +a′2θ3 −a′3θ2 −a′4θ4

= γ1(a0 −b0 +a1θ1 +a2θ2 −a3θ3 −a4θ4),

f ′2 =γ2 f2 :
b′2θ3 +a′3θ2 +b′4θ4 +a′5θ5

= γ2(b2θ2 +a3θ3 +b4θ4 +a5θ5),

f ′3 = f3 :
b′0 +(a′4 −b′4)θ4 +b′5θ5

= b0 +(a4 −b4)θ4 +b5θ5.

Matching terms on the left to those on the right of these
equalities, one obtains 12 linear conditions in the 12
unknowns, these being the 10 cognate link parameters,
a′0, . . . ,b

′
5, and the two stretch-rotations γ1,γ2. The 12 condi-

tions are quite simple and sparse, including

a′0 −b′0 = γ1(a0 −b0), a′1 = γ1a1, a′2 =−γ1a3,

. . . , b′0 = b0, a′4 −b′4 = a4 −b4, b′5 = b5. (11)

From the whole set of 12 equations, one finds the stretch-
rotations to be

γ1 =
b2(a4 −b4)

b2a4 +a2b4
, γ2 =

a2(b4 −a4)

b2a4 +a2b4
,

and the cognate link parameters as

a′0 = b0 + γ1(a0 −b0)

b′0 = b0 a′1 = γ1a1 a′2 =−γ1a3

b′2 = γ2a3 a′3 =−γ1a2 a′4 = γ1a4

b′4 = γ2b4 a′5 = γ2a5 b′5 = b5.

Links 1 and 4 adjacent to ground keep their original ro-
tations as does the coupler link 5. Accordingly, this cognate
is a timed coupler cognate for input at either link 1 or 4.

5.2.2 Swap rotations 4-5
We will not write out the details for deriving the cog-

nate obtained by swapping the rotations of links 4 and 5.
One may find it similarly to the procedure in section 5.2.1
by using loops 0-1-2-5-4 and 2-3-4-5, and the path 0-4-5 to
the coupler point. Since links 4 and 5 appear in every equa-
tion, these satisfy the matching condition so Step 5 is not uti-
lized. Moreover, we again obtain 12 linear conditions in 12
unknowns which are readily solved for the required stretch-
rotations,

γ1 =
−b5

a5
, γ2 =

b5(a4 −b4)

a5b4
,

and the cognate mechanism’s parameters,

a′0 = b0 + γ1(a0 −b0)

b′0 = b0 a′1 = γ1a1 a′2 = γ1(a2 +b2)− γ2b2

b′2 = γ2b2 a′3 = γ2a3 a′4 = a5(γ2 − γ1)

b′4 = γ2a5 a′5 = γ2b4 b′5 = a4 −b4.

Since link 1 keeps its original rotation, this cognate is a timed
curve cognate for input at link 1.

5.2.3 Swap both rotations 2-3 and 4-5
Once one has the formulas in hand for swapping 2-3

and for swapping 4-5, one can compute the result of swap-
ping both by applying the two sets of formulas in sequence.
The order of the sequence, 2-3 then 4-5 versus 4-5 then 2-3,
doesn’t matter: the same final cognate results.

Even though the sequential option is available, let’s con-
sider how to derive the cognate as one double-swap. This
will illustrate a case where Step 5 comes into play. The trou-
ble is that although the loop 2-3-4-5 and the coupler path
0-4-5 both satisfy the matching criterion, there is no second
loop equation that does so. The possibilities for a second
loop are 0-1-2-3-4 which swaps to 0-1-3-2-5 as well as the
loop 0-1-2-5-4 which swaps to 0-1-3-4-5. For both, we see
that the cognate loop has a link rotation that is not matched in
the original. The way out of this bind is to use a linear com-
bination of the loops to eliminate the unmatched rotation.

We already wrote the equations for loops 0-1-2-3-4 and
2-3-4-5 and for path 0-4-5 to the coupler point as f1, f2, f3 in
Eqs. (8,9,10). After the double-swap, we get rotations 0-1-
3-2-5 in f ′1. To match these, consider the linear combination
that eliminates θ4 between f1 and f2:

g1 := b4 f1 +a4 f2

= b4(a0 −b0)+b4a1θ1 +(b4a2 +a4b2)θ2 (12)
+a3(a4 −b4)θ3 +a4a5θ5 = 0.

This combination contains rotations for links 0-1-2-3-5,
which are the same ones that appear in loop 0′-1′-2′-3′-4′

after the double-swap of rotations turns it into 0-1-3-2-5.
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Therefore, at Step 5, f1 is replaced by g1 yielding at
Steps 6-7 the following equations:

f ′1(q
′,P(θ)) = γ1g1(q,θ), f ′2(q

′,P(θ)) = γ2 f2(q,θ),
f ′3(q

′,P(θ)) = f3(q,θ)

where P(θ1,θ2,θ3,θ4,θ5) = (θ1,θ3,θ2,θ5,θ4).
After matching coefficients we again end up with 12 lin-

ear equations in 12 unknowns and find the stretch-rotation
factors to be

γ1 =
b2b5

a2a5
, γ2 =−b5(a2b4 +a4b2)

a2b4a5

and the cognate parameters as

a′0 = b0 + γ1(a0 −b0)

b′0 = b0 a′1 = γ1a1 a′2 = γ1a3(
a4

b4
−1)

b′2 = γ2a3 a′3 = γ2b2 a′4 = b5 + γ2a5

b′4 = γ2a5 a′5 = γ2b4 b′5 = a4 −b4.

Example 5.2. The table below lists the parameters for the
Stephenson-2A six-bar mechanism along with the param-
eters (to 4 decimal places) for the three cognates derived
above and drawn in Figure 3.

Swap
Original Swap 2-3 Swap 4-5 2-3 & 4-5

a0 0.0+0.0i 0.3204+0.6180i 0.3139+0.3869i 1.1198+1.1559i
b0 1.0+0.0i 1.0000+0.0000i 1.0000+0.0000i 1.0000+0.0000i
a1 −0.2+0.5i 0.1731+0.4634i 0.0562+0.4204i 0.6019+0.1713i
a2 0.4−0.1i 0.3460−0.4388i 0.5535−0.3591i 0.2957−0.8438i
b2 −0.1+0.6i −0.3662−0.0965i −0.1542+0.5861i −0.8562+0.4630i
a3 −0.6+0.1i −0.2100+0.3152i −0.6044+0.0442i 0.1603+0.9601i
a4 −0.2+0.3i 0.0495+0.3275i 0.5280+0.4040i 0.8572−0.4767i
b4 −0.4−0.3i −0.1505−0.2725i 1.1280−0.2960i 1.4572−1.1767i
a5 1.1−0.4i 0.7268+0.0538i −0.3693−0.3343i −0.7612−0.2463i
b5 −0.6+0.7i −0.6000+0.7000i 0.2000+0.6000i 0.2000+0.6000i

5.2.4 An inadmissible permutation: swap rotations 2-5
One may wonder why other permutations besides the

swapping of 2-3 and 4-5 do not give curve cognates for the
Stephenson-2A. To illustrate, consider swapping the rota-
tions of links 2 and 5. Loops 0-1-2-5-4 and 2-3-4-5 and
vector path 0-1-2-5 all contain both 2 and 5, so the match-
ing condition is satisfied. The trouble is that in contrast to the
swaps previously considered, this time the path to the coupler
point traverses four instead of just three links. The conse-
quence is that we have 13 coefficients to match, and we only
have 12 unknowns. A row reduction procedure shows that
these equations are in general incompatible, so rotations 2
and 5 cannot be interchanged.

5.3 Watt-1A six-bar
Among the six-bar coupler curve mechanisms, only the

Watt-1A, shown in Figure 4, has a positive-dimensional set

Fig. 4. Watt-1A mechanism (left) and a cognate (right) with numeri-
cal values of the parameters presented in Example 5.3

of curve cognates. Let’s see how our method of constructing
cognates deals with this.

The Watt-1A cognates derive from the trivial permuta-
tion: no swaps at all. The loops are 0-1-2-3 and 2-3-5-4 and a
path to the coupler point is 0-3-5. The number of coefficients
to match in these equations is 4+4+3= 11, and as is always
the case for six-bars, we have 12 unknowns: 10 link parame-
ters and 2 stretch-rotations. Accordingly, we can specify one
link vector, say a′0, and still satisfy all the conditions imposed
by matching coefficients of the rotations. Since a link vector
has a real and an imaginary part, the set of curve cognates is
two-real-dimensional.

Specifying a′0, we find the stretch-rotation factors to be

γ1 =
a′0 −b0

a0 −b0
, γ2 = 1+

a3(a0 −a′0)
b3(a0 −b0)

and the cognate mechanism link parameters

b′0 = b0 a′1 = γ1a1 a′2 = γ1a2

b′2 = γ2b2 a′3 = γ1a3 b′3 = γ2b3

a′4 = γ2a4 a′5 = γ2a5 b′5 = b5.

Since all the links of the cognate keep their original ro-
tations, the result is a timed coupler cognate.

Example 5.3. The table below lists the parameters for the
Watt-1A six-bar linkage along with the parameters (to 4 dec-
imal places) for a cognate with a′0 = 0.4+0.1i. Both mech-
anisms are drawn in Figure 4.

Original Cognate Original Cognate
a0 0.0+0.0i 0.4000+0.1000i a3 0.1−0.1i 0.0286−0.0571i
b0 0.7+0.0i 0.7000+0.0000i b3 −0.2−0.4i −0.1286−0.4429i
a1 −0.1+0.3i 0.0000+0.1429i a4 0.4+0.1i 0.3871+0.1757i
a2 0.7−0.2i 0.2714−0.1857i a5 0.1−0.2i 0.1386−0.1843i
b2 −0.3+0.5i −0.3971+0.4514i b5 0.2+0.2i 0.2000+0.2000i

5.4 An eight-bar cognate
So far, we have used our approach to provide simple

demonstrations of known results in cognate theory. How-
ever, the beauty of the approach is that it easily generates
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cognates for more complex linkages. To show this, we gen-
erate a novel cognate of the eight-bar linkage in Figure 5.

We can generate a cognate by swapping the rotations of
links 1 and 2. Three compatible loops are 0-1-2-3, 1-2-3-5-4,
and 4-5-7-6. The vector path 0-3-5-7 to the coupler point is
also compatible. There are 4+5+4+4 = 17 coefficients to
match. The number of link parameters is 4L+ 2 = 14 and
there will be 3 stretch-rotations associated to matching the
loops for a total of 17 unknowns. Therefore, we can expect
that this swap will lead to a unique cognate.

The relevant loop and coupler-point equations are:

0 = a0 −b0 +a1θ1 +a2θ2 +a3θ3, (13)
0 = b1θ1 −a2θ2 −b3θ3 +a4θ4 −b5θ5, (14)
0 = b4θ4 −a5θ5 +a6θ6 +a7θ7, (15)

p = b0 +(b3 −a3)θ3 +(a5 +b5)θ5 +b7θ7. (16)

The cognate uses these same equations except interchang-
ing rotations 1 and 2. After introducing three stretch-rotation
factors, one for each loop equation Eqs. (13)-(15), and equat-

Fig. 5. An eight-bar mechanism (top) and a cognate (bottom) with
numerical values of the parameters presented in Example 5.4

ing coefficients, one obtains stretch-rotations

γ1 =
b1(a3 −b3)

a1b3 +b1a3
, γ2 =

a1(b3 −a3)

a1b3 +b1a3
,

γ3 =
a1(a3b5 +b3a5)+b1a3(a5 +b5)

a5(a1b3 +a3b1)
,

and cognate mechanism link parameters

a′0 = γ1a0 +(1− γ1)b0, b′0 = b0,

a′1 = γ1a2, b′1 =−γ2a2, a′2 = γ1a1,

a′3 = γ1a3, b′3 = γ2b3, a′4 = γ2a4,

b′4 = γ3b4, a′5 = γ3a5, b′5 = γ2b5,

a′6 = γ3a6, a′7 = γ3a7, b′7 = b7.

Since rotation 7 is preserved, this is a coupler cognate.
When link 3 is the input crank, this is a timed coupler cog-
nate. If instead link 1 is the input, timing is not preserved.

Example 5.4. The table below lists the parameters for the
eight-bar linkage along with the parameters (to 4 decimal
places) for the cognate derived above and drawn in Figure 5.

Original Cognate Original Cognate
a0 −4.0+0.0i −2.2665+1.2640i a4 2.1+0.5i 0.7494+1.4184i
b0 0.0+0.0i 0.0000+0.0000i b4 −1.5+0.4i −1.4238−0.6638i
a1 0.8+1.0i 1.4797−0.6767i a5 2.5+0.6i 1.5503+2.0892i
b1 −1.0+0.5i −1.1130−1.4949i b5 −2.3+0.4i −1.3503−1.0892i
a2 2.5+0.2i 0.7693+0.3138i a6 1.9+0.6i 1.0847+1.6995i
a3 0.7−1.2i 0.0174−0.9011i a7 2.1−0.4i 1.8894+1.0534i
b3 0.9+0.4i 0.2174+0.6989i b7 −0.5+0.9i −0.5000+0.9000i

5.5 A ten-bar cognate
As a final demonstration of the simplicity of the ap-

proach, we use the method to generate a novel cognate to
the ten-bar linkage in [20, Fig. 15] that is shown in Figure 6.

The following loop and coupler-point equations are
compatible with swapping link rotations 3 and 4:

0 = a0 −b0 +a1θ1 +a2θ2 +a6θ6, (17)
0 = b0 − c0 +b2θ2 +a3θ3 +a4θ4, (18)
0 = b3θ3 +b4θ4 +b5θ5 +a8θ8, (19)

0 = a0 − c0 +(a1 −b1)θ1 +a3θ3

−b4θ4 −a5θ5 −a7θ7 −a9θ9,
(20)

p = a0 +(a1 −b1)θ1 −a7θ7 +b9θ9. (21)

A count of the conditions to be satisfied from matching coef-
ficients is 4+4+4+7+4 = 23 while there are just 22 un-
knowns: 18 link parameters and 4 stretch-rotation factors.
By that count, one might hastily conclude that there are too
few freedoms to match all the conditions, but it turns out that
the conditions are in fact compatible. In particular, since nei-
ther θ1 nor θ7 is involved in the swap, their coefficients in
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Eqs. (20,21) lead to the following four equations:

a′1 −b′1 = γ4(a1 −b1), a′7 = γ4a7,

a′1 −b′1 = a1 −b1, a′7 = a7.

It is easily seen that these four equations only place three
conditions on the parameters. Carrying out the entire proce-
dure, one finds a unique solution for the stretch-rotations:

γ1 =
a0a4 +b4b0 −b4c0 − c0a4

a4(a0 −b0)
, γ2 =−b4

a4
,

γ3 =−a3

b3
, γ4 = 1,

and the link parameters:

a′0 = a0 b′0 = c0 + γ2(b0 − c0) c′0 = c0

a′1 = γ1a1 b′1 = b1 +a1(γ1 −1) a′2 = γ1a2

b′2 = γ2b2 a′3 =−b4 b′3 = γ3b4

a′4 = γ2a3 b′4 =−a3 a′5 = a5

b′5 = γ3b5 a′6 = γ1a6 a′7 = a7

a′8 = γ3a8 a′9 = a9 b′9 = b9.

This is a coupler cognate since the rotation of link 9 is pre-
served. When link 1 or 2 is the input, this is a timed coupler
cognate. When link 3 is the input, timing is not preserved.

Fig. 6. A ten-bar mechanism (top) and a cognate (bottom) with nu-
merical values of the parameters presented in Example 5.5

Example 5.5. The table below lists the parameters for the
ten-bar linkage along with the parameters (to 4 decimal
places) for the cognate derived above and drawn in Figure 6.

Original Cognate Original Cognate
a0 0.0+0.0i 0.0000+0.0000i a4 0.6+0.3i −0.5533−0.0067i
b0 1.0+0.0i 2.3667+1.0000i b4 −0.1+0.5i −0.2000+0.7000i
c0 2.2+0.1i 2.2000+0.1000i a5 −0.6+0.3i −0.6000+0.3000i
a1 0.5+0.3i 0.8833+1.2100i b5 0.7+0.3i 0.8941−0.3235i
b1 0.4−0.7i 0.7833+0.2100i a6 0.2+0.0i 0.4733+0.2000i
a2 0.3−0.3i 1.0100−0.4100i a7 −0.3−0.5i −0.3000−0.5000i
b2 0.4+0.5i 0.2867−0.3933i a8 −0.1−1.1i −1.0294−0.9176i
a3 0.2−0.7i 0.1000−0.5000i a9 −0.9−0.1i −0.9000−0.1000i
b3 −0.5+0.3i 0.3353+0.5412i b9 0.6+0.5i 0.6000+0.5000i

6 Conclusion
We have presented a method of deriving planar curve

cognates and illustrated its application to the four-bar, sev-
eral six-bars, one eight-bar, and one ten-bar linkage. Cog-
nates are found by interchanging link rotations in a complex-
vector formulation of loop and coupler-point equations, re-
sulting in formulas that are easy to apply, especially in a
computer graphics environment. As we saw in Section 5.2.4,
not all permutations lead to valid cognates. Thus, at the level
of development presented here, some trial-and-error would
be required to find all cognates of a given linkage type for
linkages with N > 6. A companion paper [3] addresses the
issue of finding all possible valid permutations.

Appendix A summarizes how to derive all known six-
bar curve cognates. Beyond giving simple derivations for
known cognates, the procedure also allows one to produce
new cognates as demonstrated in Sections 5.4 and 5.5 by
finding a novel cognate of an eight-bar and ten-bar linkage.
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A Deriving all six-bar cognates
For easy reference, we provide a quick summary of how

to derive all planar four-bar and six-bar cognates. For each
curve type, we provide:

• the mechanism’s type graph (which represents links as
nodes and joints as edges), where the ground link is al-
ways link 0 and the coupler is marked with an overbar,

• the link rotations that are to be swapped,

• the loops and the path to the coupler point used for the
original mechanism,

• for one cognate of the Stephenson-2A where a lin-
ear combination of loops is required, it is denoted as
(0-1-2-4̂-5)+(2-3-4̂-5) to indicate that the combination

eliminates θ4 as detailed in Eq. (12),

• for one cognate of the Watt-1B where a linear combi-
nation of the path to the coupler point and a loop is
required, it is denoted as p=(0-3̂-4-5)+(2-3̂-4-5) to in-
dicate that the combination eliminates θ3 which is ob-
tained by simply rescaling the loop and adding it to the
path to the coupler point,

• the loops and the path to the coupler point used for the
cognate mechanism, given before and after the permu-
tation of rotations, e.g., if rotations 2 and 3 are to be
swapped, we might write 0′-1′-2′-3′→0-1-3-2.

Comparing the specifications in this appendix for the four-
bar, Stephenson-2A, and Watt-1A to the corresponding
derivations in the main body may help clarify the abbrevi-
ated notation. One can easily verify that the functions for the
original and the cognate mechanism contain the same rota-
tions, so that coefficient matching can be done, and that the
number of coefficients to be matched is less than or equal to
the number of unknowns (6 link parameters plus one stretch-
rotation for the four-bar, 10 link parameters plus 2 stretch-
rotations for the six-bars). The “less than” case occurs only
for the Watt-1A (as shown in Section 5.3). In all other cases,
further analysis of these linear matching conditions shows
that they are independent, and hence each permutation cor-
responds with a unique cognate.

A.1 Four-bar
A cognate triple exists (original plus two cognates).

0 1

3 2
Swap Original Cognate

1′2′→21 0-1-2-3 0′-1′-2′-3′→0-2-1-3
p=0-1-2 p=0′-1′-2′→0-2-1

2′3′→32 0-1-2-3 0′-1′-2′-3’→0-1-3-2
p=0-3-2 p=0′-3′-2′→0-2-3

A.2 Stephenson-1
A cognate pair exists.

0
1

2

3

❅❅ 󰂸󰂸
❅❅󰂸󰂸

4

5 Swap Original Cognate
0-1-2-3 0′-1′-2′-3′→0-2-1-3

1′2′→21 1-4-5-3-2 1′-4′-5′-3′-2′→2-4-5-3-1
p=0-3-5 p=0′-3′-5′→0-3-5

A.3 Stephenson-2A
A cognate quadruple exists.

5
4

3
2

❅❅ 󰂸󰂸
❅❅󰂸󰂸

0

1

Swap Original Cognate
0-1-2-3-4 0′-1′-2′-3′-4′→0-1-3-2-4

2′3′→32 2-3-4-5 2′-3′-4′-5′→3-2-4-5
p=0-4-5 p=0′-4′-5′→0-4-5

0-1-2-5-4 0′-1′-2′-5′-4′→0-1-2-4-5
4′5′→54 2-3-4-5 2′-3′-4′-5′→2-3-5-4

p=0-4-5 p=0′-4′-5′→0-5-4
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Swap Original Cognate
2′3′→32 2-3-4-5 2′-3′-4′-5′→3-2-5-4

and (0-1-2-3-4̂)+(2-3-4̂-5) 0′-1′-2′-3′-4′→0-1-3-2-5
4′5′→54 p=0-4-5 p=0′-4′-5′→0-5-4

A.4 Stephenson-2B
A cognate triple exists.

2
4

3
5

❅❅ 󰂸󰂸
❅❅󰂸󰂸

0

1

Swap Original Cognate
0-1-5-2-4 0′-1′-5′-2′-4′→0-1-5-4-2

2′4′→42 2-4-3-5 2′-4′-3′-5′→4-2-3-5
p=0-1-5 p=0′-1′-5′→0-1-5

0-1-5-3-4 0′-1′-5′-3′-4′→0-1-5-4-3
3′4′→43 2-4-3-5 2′-4′-3′-5′→2-3-4-5

p=0-1-5 p=0′-1′-5′→0-1-5

A.5 Stephenson-III
There exists a group of six cognates. As found in [7]

and discussed in [14], these can be generated by applying
the 3-way Roberts cognates to the four-bar 0-1-2-3 and a
2-way skew pantograph transformation to the dyad 0-4-5.
Our method also applies, as summarized below.

1
0

3
2

❅❅ 󰂸󰂸
❅❅󰂸󰂸

4

5

Swap Original Cognate
0-1-2-3 0′-1′-2′-3′→0-2-1-3

1′2′→21 0-1-2-5-4 0′-1′-2′-5′-4′→0-2-1-5-4
p=0-4-5 p=0′-4′-5′→0-4-5
0-1-2-3 0′-1′-2′-3′→0-1-3-2

2′3′→32 0-3-2-5-4 0′-3′-2′-5′-4′→0-2-3-5-4
p=0-4-5 p=0′-4′-5′→0-4-5
0-1-2-3 0′-1′-2′-3′→0-1-2-3

4′5′→54 0-1-2-5-4 0′-1′-2′-5′-4′→0-1-2-4-5
p=0-4-5 p=0′-4′-5′→0-5-4

1′2′→21 0-1-2-3 0′-1′-2′-3′→0-2-1-3
and 0-1-2-5-4 0′-1′-2′-5′-4′→0-2-1-4-5

4′5′→54 p=0-4-5 p=0′-4′-5′→0-5-4
2′3′→32 0-1-2-3 0′-1′-2′-3′→0-1-3-2

and 0-3-2-5-4 0′-3′-2′-5′-4′→0-2-3-4-5
4′5′→54 p=0-4-5 p=0′-4′-5′→0-5-4

A.6 Watt-1A
A two-dimensional set of cognates exists.

0 3

1 2

5

4
Swap Original Cognate

0-1-2-3 0′-1′-2′-3′→0-1-2-3
none 2-3-5-4 2′-3′-5′-4′→2-3-5-4

p=0-3-5 p=0′-3′-5′→0-3-5

A.7 Watt-1B
A cognate quadruple exists.

0 3

1 2

4

5

Swap Original Cognate
0-1-2-3 0′-1′-2′-3′→0-1-3-2

2′3′→32 2-3-4-5 2′-3′-4′-5′→3-2-4-5
p=0-3-2-5 p=0′-3′-2′-5′→0-2-3-5
0-1-2-3 0′-1′-2′-3′→0-1-2-3

4′5′→54 2-3-4-5 2′-3′-4′-5′→2-3-5-4
p=0-3-4-5 p=0′-3′-4′-5′→0-3-5-4

Swap Original Cognate
2′3′→32 0-1-2-3 0′-1′-2′-3′→0-1-3-2

and 2-3-4-5 2′-3′-4′-5′→3-2-5-4
4′5′→54 p=(0-3̂-4-5)+(2-3̂-4-5) p=0′-3′-4′-5′→0-2-5-4

A.8 Watt-2

4 0

5 3

1

2 The Watt-2 linkage can only draw circles and
four-bar curves. The formulas for the four-bar
can be applied to loop 0-1-2-3.
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