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Abstract. The direct kinematics of several planar mechanisms, includ-
ing 3RPR planar platform robots, reduce to the problem of assembling
a 3RR planar structure, also known as the pentad mechanism. A general
pentad has at most six isolated real assemblies, which are the solutions of
a system of polynomial equations. As the parameters of the mechanism
are specialized, the nonsingular roots can merge to form singular roots
of multiplicity up to six. While classical results concerning four-bars can
be used to derive 3RR mechanisms with multiplicity as high as four, the
results presented here are the first to provide a complete solution to the
case of multiplicity six, thereby solving a problem formulated by the sec-
ond author. In such a configuration, the idealized mechanism still has an
isolated root but, in practice, when small deformations or joint clearance
are allowed, the mechanism can move through a large displacement.
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1 Introduction

The direct kinematics problem for an n-DOF robot requires solving for the
assembly configuration of the device when n inputs are held fixed. Assuming that
the device is built with rigid links and algebraic joints, when the n inputs are
held constant, the device generally becomes a zero-DOF structure with a finite
number of assembly configurations. If the device is in a singular configuration,
even though ideally it has just one local assembly configuration, in practice
small deflections of the links or small clearances in the joints allow substantial
movement, sometimes referred to as “shaky” degree(s) of freedom. Similarly, if
one builds an ideally zero-DOF structure in a singular configuration, it may
accommodate substantial local deflections. This is not always an undesirable
situation, as one might intentionally build such a device and make use of its
motion capability. Compared to using a true 1-DOF mechanism, the singular
structure may have fewer joints or may be stiffer in directions complementary to
the allowed motion. This may be particularly relevant to designing mechanisms
that use compliant joints as these must always have a limited range of motion.
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In particular, this article analyzes the singular configurations of the 3RR pla-
nar pentad mechanism consisting of a coupler link supported relative to a ground
link by three legs, all joints being revolute “R” joints (see Figure 1). For brevity,
in the rest of this article, we shall refer to this structure as simply the “pentad.”
Beyond its existence as a structure in its own right, the pentad also arises in the
direct kinematics analysis of several planar robot devices, including the 3RPR
planar platform robot where the prismatic “P” joints are the inputs. It also
arises in the input/output analysis of Stephenson II and III six-bar mechanisms
when the input is the dyadic link to ground.

Singularities can be higher-order. If the direct kinematics problem is reduced
to a univariate polynomial, the multiplicity of a singularity is the algebraic degree
of the corresponding root, e.g., a double root of the polynomial is a multiplicity-
two singularity. Since the direct kinematics of a general pentad has six roots,
pentads can have singularities of multiplicity from 2 up to 6. Higher-order singu-
larities are of interest since they will generally have a larger shaky motion than
one with a lower-order.

Pentads with multiplicity up to four can be constructed using classical results
for four-bars. This is because the assembly configurations of a pentad can be
found as the intersection of the four-bar coupler curve defined by four of the
pentads links with the circle defined by the final leg. Multiplicity three can be
achieved at any point along a four-bar coupler curve by placing the final ground
pivot at the center of curvature. Multiplicity four occurs where that center lies
on the cubic of stationary curvature.

The case of multiplicity six, the highest possible order, was considered in [7].
Examples for the general case and symmetric case having multiplicity six were
demonstrated. Moreover, the problem of counting the number of solutions in
the general case was formulated, which is solved below using techniques from
numerical algebraic geometry (e.g., see the books [2,8] for a general overview).
In particular, we find that the coupler plane of a general four-bar has 72 points
that can be connected to a corresponding center point in the ground link to
form a multiplicity six pentad structure. The final result is a 72-path parameter
homotopy for finding these points, reducible to 36 paths through the use of a
two-way symmetry. Furthermore, we study a subcase in which an additional
symmetry reduces the homotopy to 24 paths.

The rest of the article is structured as follows. Section 2 summarizes known
results for singularities of pentads. Section 3 describes computing an eliminant
for the loop closure equations of the pentad which is used in Section 4 to formu-
late a polynomial system describing the multiplicity six conditions. A summary
of computational results is provided in Section 5 with Section 6 considering the
special case of symmetric pentads. A short conclusion is provided in Section 7.

Notation: Throughout this article, when considering the number of solutions of
a polynomial system, we are counting them in the complex number field, which
is an upper bound on the number of real roots. We formulate the problem in
isotropic coordinates wherein a point P in the plane with Cartesian coordinates
(x, y) is represented by the pair of isotropic coordinates (p, p̄) = (x+ iy, x− iy),
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Fig. 1: Pentad structure such that a0, b0, a4, b4 are vectors in the complex plane,
r1, r2, r3 are real leg lengths, and θ1, θ2, θ3, θ4 are rotations (complex numbers
with unit magnitude).

where i2 = −1. It follows that (x, y) ∈ R2 if and only if p̄ is the complex conjugate
of p, which becomes the definition of “real” in isotropic coordinates. Rotation
of P about the origin (0, 0) by angle Θ gives the point (θp, θ̄p̄), where θ = eiΘ

and θ̄ = e−iΘ. For real angle Θ, |θ| = |θ̄| = 1 and θ̄ = 1/θ so that θθ̄ = 1.

2 Multiplicity 1 to 6 and ∞

Figure 1 shows a pentad consisting of grounded points O, P , S, connected to
points R, Q, T in a coupler link via legs of length r1, r2, r3 ∈ R. Considering T to
be the coupler point of four-bar OPQR, we see that the assembly configurations
of the pentad correspond to the intersections of that coupler curve with the
circle of radius r3 centered on S. This viewpoint allows one to draw on classical
results to construct singular pentads with multiplicity up to 4. Reference texts
for the classical results include [4,6], while [7] illustrates their use for constructing
singular pentads.

In [7], instances of pentads with multiplicity 6 were found by using Newton’s
method from an initial guesses. It also demonstrated full solutions by Gröbner
basis calculations for a subcase where a high degree of symmetry was imposed.
Prior to our current contribution, the general case remained open.

Beyond multiplicity six, the only possibility is for the pentad to have a 1-
dimensional motion. The only nontrivial case is the double parallelogram mecha-
nism, wherein the whole coupler plane moves in a circle without rotating. There
are two additional trivial cases that we will encounter in our study here: when
T = R and S = O the pentad degenerates into a four-bar, and the same happens
when T = Q and S = P .
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3 Pentad Eliminant

To prepare for solving the multiplicity 6 case, we first form an eliminant for the
loop closure equations of the pentad. We could form the eliminant for any of
the link rotations θ1, θ2, θ3, θ4. We choose to form it for θ4, the rotation of the
coupler triangle. Using complex vector notation as indicated in Figure 1, the
loop closure equations are:

a0 − r1θ1 + r2θ2 − a4θ4 = 0, (1)

b0 − r1θ1 + r3θ3 − b4θ4 = 0, (2)

Applying the Main Theorem of [9] gives an eliminant for θ4 as

f(θ4) = det

[
D1θ4 +D2 AT

A −D̄1θ
−1
4 − D̄2

]
= 0, (3)

D1 =

b4 0 0
0 (−b4 + a4) 0
0 0 −a4

 , D2 =

−b0 0 0
0 (b0 − a0) 0
0 0 a0

 , A =

 0 −r3 −r1
r3 0 r2
r1 −r2 0

 ,

(4)

where the entries of D̄1 are the complex conjugates of those of D1 and similarly
for D̄2 and D2. This means that in D̄1, we replace a4 with ā4, etc.

Expanding the determinant gives the eliminant in the form

f(θ4) = c0θ
3
4 + c1θ

2
4 + c3θ4 + c4 + c̄3θ

−1
4 + c̄2θ

−2
4 + c̄0θ

−3
4 = 0. (5)

The notation c̄i indicates a symmetry wherein the last three coefficients are
complex conjugates of the first three, while the middle one, c4, is its own complex
conjugate. Multiplying by θ34 clears the reciprocals to turn this into a sextic
polynomial in θ4. To simplify the presentation, let x = θ4 and rewrite (5) as

f(x) = c0x
6 + c1x

5 + c2x
4 + c3x

3 + c4x
2 + c5x+ c6 = 0. (6)

Expressions for the coefficients in terms of the pentad parameters are quite long,
so we do not report them here. Nonetheless, they are easily generated from (3)
using a symbolic mathematical program.

It is significant to note that the link lengths r1, r2, and r3 only appear in the
coefficients ci with even powers, so the degree of the equations can be reduced
by making the replacements qi = r2i , i = 1, 2, 3.

4 Formulation for Multiplicity 6 Singularities

The coefficients of the polynomial (5) are functions of all the parameters of
the pentad. To find multiplicity 6 pentads, we take the four-bar OPQR as
given, and we solve for points S and T and the leg length r3. This means that
a0, ā0, a4, ā4, q1, q2 are given, and we wish to find b0, b̄0, b4, b̄4, q3. Since reflecting

the four-bar through line
←→
OP preserves lengths, the solutions will appear in pairs.
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Our first task is to derive the conditions for (5) to have a root of multiplicity 6.
This requires f(x) to have the form

f(x) = (ux+ v)6 = (u6)x6 + (6u5v)x5 + (15u4v2)x4

+ (20u3v3)x3 + (15u2v4)x2 + (6uv5)x+ (v6). (7)

Comparing this to (6), we see that the coefficients ci, i = 0, . . . , 6 must satisfy

6vc0 = uc1, 15vc1 = 6uc2, 20vc2 = 15uc3,

15vc3 = 20uc4, 6vc4 = 15uc5, vc5 = 6uc6. (8)

This results in a polynomial system of six equations in the five unknown pentad
parameters, (b0, b̄0, b4, b̄4, q3) ∈ C5, and [u, v] ∈ P1. A solution to this system
gives the parameters of the pentad along with the rotation of the coupler link
at the singular position, namely θ4 = x = −v/u.

Examination of the coefficient formulas show that if we divide the mecha-
nism parameters into two groups as {q3, b0, b4} and {b̄0, b̄4}, then the coefficients
have bidegree (2, 2). Hence, each equation in the system (8) has 3-homogeneous
degree (2, 2, 1) and the system has a 3-homogeneous Bézout number that is the
coefficient of α3β2γ in (2α+2β+γ)6, which equals 1920. This is an upper bound
on the number of solutions of the system, and is equal to the number of paths
that will be tracked in a 3-homogeneous homotopy to solve the system.

In Section 2, for multiplicity ∞, we noted that the pentad degenerates into
a four-bar with a one-dimensional motion if S, T are matched to either O,P or
R,Q. These correspond to the vanishing of all the coefficients ci, i = 0, . . . , 6.
Some of the 1920 paths of a 3-homogeneous homotopy will terminate on these
sets in singularities that slow down computation. Moreover, the one-dimensional
motion of the pentad corresponds to [u, v] being undetermined. In the case that
we try to solve the system symbolically with a Gröbner basis algorithm, these
curves prevent finding the isolated solutions we seek without additional compu-
tations, e.g., saturation. To remove these one-dimensional components, it suffices
to perform a so-called probabilistic saturation, e.g., see [5]. In particular, by ap-
pending an equation of the form

1− w

6∑
i=0

ξici = 0, (9)

where ξ0, . . . , ξ6 are chosen randomly in C and w is a new variable, these compo-
nents are removed but the isolated points remain with probability one. Whenever
all ci = 0, w → ∞ sending the problematic components to infinity. This lets a
Gröbner basis computation find the isolated roots directly and also allows the
homotopy software Bertini [1] to abandon the paths as they diverge to infinity
without wasting computational effort approximating their endpoints precisely.
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5 Computational Results

Solving the system (8,9) using a 4-homogeneous homotopy (with w in a group of
its own) requires tracking 1920 paths. The results for generic, complex parame-
ters (a0, ā0, a4, ā4, r1, r2) are summarized as follows:

– 72 nonsingular isolated solutions,
– 32 singular solutions of multiplicity 6,
– 8 singular solutions of multiplicity 15,
– the remaining 1536 paths diverge to infinity.

Counting multiplicities, there are 72 · 1 + 32 · 6 + 8 · 15 = 384 finite solutions.
Separately, we computed the degree of the system using Macaulay2 [3] in finite
fields of characteristic 7919 and 31991. Each of these returned a degree of 384
whose radical had degree 112 = 72+32+8. The agreement between these finite-
field computations and the homotopy results lends credence to the conclusion
that we have found the generic number of solutions over the complex numbers.

All of these solutions satisfy (7) in that f(θ4) = (uθ4 + v)6 = 0 for a coupler
rotation of θ4 = −v/u. However, only the 72 nonsingular solutions actually give
multiplicity 6 configuration of the pentad. The singular solutions correspond
to situations where the circle swept by T around center S touches the four-bar
coupler curve generated by OPQR with coupler point T at more than one point,
all with the same coupler rotation. For example, as shown in Figure 4, the coupler
curve and circle may touch with multiplicity 4 at one point and multiplicity 2
at another, or in two points with multiplicities 5 and 1 (always with the same
coupler rotation, −v/u).

Fig. 2: For singular solutions of the multiplicity 6 problem, the coupler curve and
circle touch in two points.

Accordingly, the only true multiplicity 6 assemblies of the pentad are those
given by the 72 nonsingular roots. Hence, having solved the problem for generic
parameters, we may solve any target problem using a 72-path parameter homo-
topy that moves from those generic values to the target values. Note that for a
real example, the target parameters have ā0 the complex conjugate of a0, ā4 the
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complex conjugate of a4, and q1, q2 real and positive. Similarly, the “real” assem-
blies are the solutions where (b0, b̄0) and (b4, b̄4) are pairs of complex conjugates,
q3 is real and positive, and θ4 = −v/u has unit magnitude. Due to reflection sym-

metry through line
←→
OP , solutions appear in symmetric pairs. Hence, a 36-path

homotopy tracking just one of each pair suffices to find all of them.

O P

R

Q

O P

R

Q

Fig. 3: Two multiplicity 6 solutions for the same four-bar OPQR

Figure 3 shows several solutions computed in this manner. It is unknown at
this time what the maximum number of real solutions can be, only that it will
be an even number less than or equal to 72.

6 Symmetric Case

The problem can be specialized to symmetric four-bars, where r1 = r2. For this

subcase, the perpendicular bisector of
←→
OP is a second line of symmetry. Using

the 72-path homotopy of the general case still yields 72 solutions, as follows:

– 6 symmetric pairs with S on the perpendicular bisector of
←→
OP ,

– 6 symmetric pairs with S on
←→
OP ,

– 12 groups of 4 with S off the lines of symmetry.

The study in [7] was restricted to only the first type. As in the general case, by
taking advantage of symmetries, one can find all solutions by tracking just one
in each symmetry orbit, for 24 paths in all. Figure 4 shows two solutions.

7 Conclusion

We have solved the problem formulated in [7] of counting the number of 3RR
planar pentad mechanisms with a sixth-order singularity. Our method results in
a 72-path homotopy for finding all solutions, reducible by symmetry to 36 paths
for the general case and 24 paths for the symmetric case.
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Fig. 4: Solutions for the symmetric case
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