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Abstract

This paper develops a theory of putty-clay investment under factor price uncertainty using a
Brownian motion framework. Ex ante the 4rm faces a choice of technologies that di5er by their
relative factor intensities, but ex post technologies are Leontief. The presence of competing tech-
nologies and factor price uncertainty can cause delay of pro4table investments for a monopolist
4rm facing a one-time investment decision. Furthermore, uncertainty can cause an existing 4rm
to wait for more extreme operating cost di5erentials before switching technologies. These delays
in investment are present even without considering the e5ect of uncertainty on the 4rm’s choice
of scale.
c© 2004 Published by Elsevier B.V.
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0. Introduction

Firms often must account for uncertainty in future input prices when deciding on
their investment strategies. It is clear that general uncertainty in production costs yields
parallel results to models where 4rms face uncertain demand. Such models have been
well studied in the literature within a Brownian motion framework (e.g. Dixit, 1995;
Dixit and Pindyck, 1994; Abel and Eberly, 1996, 1997) and this research has explained
how 4xed or irreversible costs to investment can create ranges of inaction in a 4rm’s
optimal behavior. However, ?uctuations in absolute input prices are not the only un-
certain aspect of input prices a5ecting the investment decision. This paper shows that
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uncertainty of relative input prices can also play a role in investment inaction through
its e5ect on the 4rm’s choice of technology. If 4rms face 4xed costs of changing the
factor intensities used in production, zones of investment inaction will exist over ranges
of relative prices.
This paper focuses on investment decisions given ‘putty-clay’ technology, i.e., tech-

nology characterized by initial ?exibility in the scale and use of inputs, but less ?exi-
ble after irreversible capital investments have been made. 1 Recent work has examined
putty-clay technology and its potential role in explaining recessions or business cy-
cles. Gilchrist and Williams (2000) emphasize the importance of capacity constraints
involved with a putty-clay technology in capital and labor. In their model permanent
shocks to factor prices produce prolonged and asymmetric investment and employ-
ment responses that are consistent with business cycle evidence. Wei (2003) examines
whether the OPEC oil crisis could explain the stock market collapse in the early 1970s
by forcing 4rms to abandon capital used in energy-intensive technologies. 2 In contrast
to these studies that focus on the level of input prices, I examine the role of uncer-
tainty regarding relative input prices in explaining delayed investment. If the extent of
input uncertainty varies over time, this link may contribute an additional consideration
to our understanding of investment dynamics.
Several studies have addressed the putty-clay aspect of technology and its impli-

cations on investment under uncertainty. Using a general equilibrium vintage capital
model, Gilchrist and Williams (2002) show how greater uncertainty in the produc-
tivity of putty-clay investments can lead to reduced investment at the micro-level
(through smaller project sizes), and smaller increases in investment at the aggregate
level (through entry) than in standard vintage capital models. Kon (1982) shows how
output price uncertainty could lead to investment in more labor-intensive technolo-
gies. Using a two-period setup, Hiebert (1990) demonstrates how uncertainty regarding
wages could lead to less investment in capital. His result, however, was driven by
a change in the 4rm’s desired scale. This paper will show that even when scale of
production is in?exible, investment can be lowered by input price uncertainty.
While the e5ect of input price uncertainty on decisions of scale are well-known, the

focus here is its e5ect on technology choice. In order to isolate this e5ect from the de-
mand/scale decision of the 4rm, the analysis assumes that the 4rm’s quantity produced
is constant. This allows the 4rm’s problem to essentially be reduced to one of cost
minimization. Though this particular setup is meant as an abstraction, it resembles the
problem of a price-regulated monopolist facing excess demand. An example, would be
an electric power company considering building a new plant, where the price is set by
regulators and the 4rm must produce the full demand (Christensen and Greene, 1976).

1 It is not diMcult to think of cases where such a model is 4tting. One example could be a farmer deciding
whether to invest in a tractor/thresher, or to choose a more labor-intensive technology using hand tools and
bullocks. Dixit (1994) poses the problem of a power plant choosing between a coal-burning furnace or an
oil-burning furnace. Similarly, a manufacturer may have to choose either a high-tech process line requiring
relatively more skilled labor, or a series of machines that can be manually operated by unskilled workers.

2 In a related paper, Atkeson and Kehoe (1999) model energy-use using a putty-clay technology and show
that it 4ts the cross-sectional relationship between energy prices and capital stocks better than a standard
technology.
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The 4rm chooses between a capital-intensive technology (nuclear or hydro-electric) or
a raw materials-intensive technology (coal-burning) and considers the ?uctuating price
of the raw material in making its investment decision. A similar example is posed by
Dixit (1995). 3

A second technical abstraction is chosen with the intent of isolating the e5ect of
a putty-clay technology on the 4rm’s investment decision: the 4rm chooses between
di5erent Leontief technologies. Thus, while the 4rm can substitute between factors ex
ante, it faces 4xed-proportion technology ex post.
This paper analyzes the optimal policies of a 4rm under two distinct models. In

both models, the 4rm faces a 4xed cost of purchasing capital, but operating costs are
stochastic. Although the models could represent various scenarios with di5erent inputs,
including the example given above, the analysis is posed as a choice between capital
and labor. The 4rst model describes a ‘monopolist’ facing an irreversible decision on
an option to invest. The 4rm is a monopolist, not in the sense of being a price-setter,
but in the sense of being the sole possessor of a (potentially) positive net-present value
investment opportunity.
Section 1 illustrates this problem. Section 2 follows a similar setup, but it analyzes

a 4rm that is already producing and must decide whether to switch technologies. The
models’ conclusions are summarized in Section 3.

1. One-time investment decision problem

As explained above, I abstract from demand uncertainty and scale decisions by
assuming the 4rm faces a 4xed demand, q, at a constant output price, 4 p. The in-
vestment opportunity involves the 4xed cost of an initial capital purchase. The price
of capital is normalized to one. Capital does not depreciate. 5 Thus, the 4rm has no
further capital expenses beyond the initial investment, 6 but must pay labor each period
at a wage, w. The wage process follows a geometric Brownian motion with drift, �,

3 Another example would be a 4rm that has sole possession of a technology to produce a good below the
(constant) marginal cost of the current producer. If the market for the good were also perfectly inelastic,
the 4rm would price just below the cost of the competitor and capture the full market.

4 This assumption could be relaxed. It is conceptually straightforward, although algebraically tedious, to
model a 4rm that chooses its scale given a more realistic demand function. This would not qualitatively
change the results, however. The results are driven by the form of the technology, which is putty-clay in a
speci4c sense: neither capital nor quantities can be freely adjusted after the original investment decision is
made.

5 Identically, depreciation could occur through an exogenous Poisson failure rate, �. The results of this
section would still hold with a new interpretation of � = �̃ + � as an augmented discount rate.

6 The model could be easily generalized to allow for non-wage production costs proportional to the stock
of capital K̃ (at a rate, r). The rK̃ term could represent the cost of replacing depreciated capital, maintenance
costs, or even energy costs that are proportional to the amount of capital used. These non-wage production
costs would also be included as irreversible costs in the decision (i.e. K = (1 + r=�)K̃). Alternatively, one
could think of the up front cost K̃ as a capital installation cost (proportional to the amount of capital) and
r as the rental rate of capital.
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and variance, 
:
dw
w

= � dt + 
 dz;

where z is a Wiener process.

1.1. Single technology

For expositional purposes, 4rst consider the problem of a 4rm deciding whether
or not to invest in a project with only a single available production technology. The
technology requires K1 units of capital and L1 units of labor to produce the desired
quantity, q. The 4rm has no shutdown option. The expected value of investing in the
technology at wage w, hereafter referred to as the investment value, is

V1(w) =
pq
�

− wL1
�− �

− K1; (1)

where � is the rate at which the 4rm discounts future pro4ts. Assuming �¿� keeps
the discounted expected value of labor costs bounded. I also assume pq=� − K1¿ 0,
i.e., the investment is pro4table at some positive wage.
Since the investment value is a function of the wage rate, the 4rm will choose to

invest at a suMciently low wage, but wait if the wage is too high. If the 4rm had a
‘now or never’ opportunity to invest, and the wage were below the threshold w̃ de4ned
by V1(w̃) = 0, the 4rm would clearly invest. When the 4rm has the option of waiting,
however, it realizes that the wage could rise to an unpro4table level in the future, and
so it may want to wait to see future movements in w. Since the 4rm could always
invest immediately, the value function of a 4rm with the option to invest or wait, V (w)
(hereafter referred to as the value function) is weakly greater than the investment value
V1(w) at every wage. Indeed, at w̃ (the indi5erence wage for the 4rm with a ‘now
or never’ opportunity) the value of waiting will be positive. The 4rm will wait for a
lower wage w∗ ¡w̃, before making the irreversible investment.

For wages below w∗, the 4rm invests and so the value function, V (w), equals the
investment value, V1(w). For the inaction region above w∗, the 4rm earns no current
period return from the potential investment, so the value function simply equals an
option value function, F(w) (hereafter referred to as the investment option value). The
Bellman equation for F(w) is simply E(dF)=�F dt. By the application of Ito’s lemma,
F(w) is described by

�F(w) = �wF ′(w) + 1
2


2w2F ′′(w) for w∈ [w∗;∞): (2)

The investment option value solving this di5erential equation is of the form

F(w) = C1w�1 + C2w�2 ; (3)

where �1 and �2 are the roots of the quadratic equation:
1
2


2�2 +
(
� − 1

2

2) � − �= 0: (4)

It can be easily shown that one root (�1) is positive, while the other (�2) is negative.
Furthermore, the upper bound on the trend in the wage (�¡�) implies �1¿ 1.
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Since the value of the investment is bounded above by pq=�, it can be shown that
C1 = 0. The constants C2 and w∗ are 4xed by smooth pasting and value matching
conditions, two standard conditions in the literature (see Dixit and Pindyck, 1994).
The value matching condition states that the value function must be continuous at w∗

and therefore F(w∗) = V1(w∗). The value-matching condition is therefore

C2(w∗)�2 =
pq
�

− w∗L1
�− �

− K1: (5)

The smooth-pasting condition states that the 4rst derivative of the value function must
also be continuous at w∗, so F ′(w∗) = V ′

1 (w
∗). Though formal explanations for this

condition exist (see Dixit and Pindyck, 1994), intuitively a kink in the value function at
w∗ can be ruled out for two reasons. First, an upward-pointing (i.e., V ′

1 (w
∗)¿F ′(w∗))

kink can be ruled out because otherwise at some point just inside the inaction region
(i.e., w̃ = w∗ + �), V1(w̃) would exceed F(w̃). Second, a downward-pointing (i.e.,
V ′
1 (w

∗)¡F ′(w∗)) could also never be optimal because of the high variation in the
Brownian motion wage process. By waiting a little longer (i.e., dt) the 4rm could see
the next movement (of a larger

√
dt order) of the wage process, and the discounted

expectation (weighted-average) of wages on either side of the downward-pointing kink
exceeds the value of investing at the kink.
Substituting in to the smooth-pasting condition yields

�2C2(w∗)�2−1 =
−L1
�− �

: (6)

Note that (5) and (11) can be solved to yield

C2 =
1

1 − �2

(
pq
�

− K1

) [
�2 (�− �)
L1 (1 − �2)

(
K1 − pq

�

)]�2
; (7)

w∗ =
�2

1 − �2

(
�− �
L1

) (
K1 − pq

�

)
: (8)

Given our assumptions C2 and w∗ are both positive. A graphical representation of
the investment value, investment option value, inaction region, and resulting value
function is shown in Fig. 1. The tangency point at w∗ satis4es value-matching and
smooth-pasting. The gray line denotes the value function V (w) which coincides with
the investment option value F(w) in the inaction region, and the investment value
V1(w) in the investment region. For illustration, the function F(w) is extended to the
left of w∗ as a dashed line, while the thin solid straight line is the extension of V1(w)
to the left of w∗.

1.2. Choice of technologies

Now consider a 4rm choosing between the initial technology for producing q (Tech-
nology 1, de4ned by the input requirements K1 and L1), and a second more labor-
intensive technology (Technology 2, de4ned by K2¡K1 and L2¿L1). The 4rm must
now decide not only when but also in which technology to invest.
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Fig. 1. Case of single technology: investment value, investment option value, and value function.

Following Eq. (1), the investment value for Technology 2 is

V2(w) =
pq
�

− wL2
�− �

− K2: (9)

Since both technology values are functions of the wage rate, the choice of technology
could also depend on the wage. The low labor requirements of Technology 1 may be
preferred at high wages, but the low capital requirements of Technology 2 might be
better if the wage were low1. Again, if the 4rm had a ‘now or never’ opportunity to
invest and the wage were low enough to be pro4table, the 4rm would clearly pick the
technology with the highest investment value at that wage.
With the option of waiting to invest, the 4rm again has an inaction region at high

wages (w¿w∗) and an investment option value function of the form in Eq. (3)
satisfying Eq. (2).
The method for determining the constants C2 and w∗ now involves both technologies,

however. It can be illustrated by 4rst considering the case of Technology 1 alone
(presented in the previous section) and the analogous case of Technology 2 alone. Let
Fi represent the investment option value for technology i. Note, both F1 and F2 must
satisfy the identical di5erential Eq. (2). Furthermore, the roots of the quadratic Eq. (4)
depend only the parameters of the wage process (not on the technology), so F1 and
F2 must have the same exponential form, with only the coeMcients di5ering. Thus, F1

and F2 are log-parallel with di5erent C2 and w∗, denoted C2; i and w∗; i.
The values of C2 and w∗ are determined by choosing the investment option value

(and corresponding w∗; i) with the greater C2; i. The exponential investment option value
curve is always weakly greater than the relevant linear investment value curve with
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equality only at the tangency point, w∗. For values above this critical wage, the value
function of the option to invest in a range of technologies, V (w), is simply the invest-
ment option value of the 4rst technology to be selected as the wage falls, F(w).
Depending on the input requirements and the price process, at very high wages the

4rm could wait to invest in either Technology 2 or Technology 1. These two scenarios
are depicted graphically in Figs. 2 and 3, respectively.
Fig. 2(a) is an overlay of the single-technology value functions for Technology 1

and Technology 2. The case depicted is, C2;2¿C2;1, so the investment option value
is greater for Technology 2 (thin dashed line) than for Technology 1 (thin dash-dotted
line). In this case, the entire value function for Technology 2 (long shaded dashes)
dominates the value function for Technology 1 (short shaded dashes), so that the
presence of an option to choose Technology 1 is irrelevant to the 4rm.
Fig. 2(b) shows that the resulting value function V (w) (shaded) is therefore identical

to the single technology case and w∗ = w∗;2. At wages below w∗, Technology 2 is
always preferred to Technology 1. In the inaction region above w∗, the investment
option value for Technology 2 exceeds both the investment value and the investment
option value of Technology 1. Hence, the 4rm waits to invest in Technology 2. The
resulting value function is the shaded line and coincides with V2(w) to the left of w∗,
and with F(w) = F2(w) to the right. 7

The case in Fig. 3, where C2;1¿C2;2 and the 4rm waits to invest in Technology 1, is
slightly more complicated. Fig. 3(a) again presents an overlay of the single-technology
value functions. Since C2;1¿C2;2, at high wages the investment option value is now
higher for Technology 1. Thus, for wages above w+, the value of having only an option
to invest in Technology 1 dominates, while for wages below w+ the value function
for Technology 2 dominates.
The value function for a choice to invest in either of the two technologies, how-

ever, is not just the upper envelope of these two value functions. This upper envelope
would produce a kink in the value function at w+, which can be ruled out for the
same reason that smooth-pasting at w∗ is assured. That is, the 4rm does not make
a 4nal decision to invest in Technology 1 for wages above w+, or wait for only
Technology 2 at wages below w+. Instead, at the kink at w+, it pays for the 4rm to
keep open the option to wait for either technology because the discounted expectation
of weighting a small amount of time is positive (i.e., the discounted weighted average
of the values on either side of the kink exceeds the value of investing at the kink).
The 4rm therefore waits for more extreme di5erences in the values of Technology 2
and Technology 1, before making a decision to either invest in Technology 1 or invest
in Technology 2. Thus, a second region of inaction must exist between some w∗

2 , a
lower bound where the 4rm decides to invest in Technology 2, and some w∗

1 , an upper
bound where the 4rm invests in Technology 1. Within this region of inaction, the 4rm
hesitates between two pro4table investments in order to simply delay the irreversible
choice of technology. (Note that the thresholds w∗

1 and w∗
2 bound the inaction region

of a 4rm deciding between two technologies. They are distinct from w∗;1 and w∗;2,

7 The addition of any technology j, as long as it were more capital intensive than Technology 2 and
yielded a C2; j ¡C2;2, would not change the value function or the 4rm’s optimal behavior.
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Fig. 2. (a) Labor-intensive investment option value dominates: overlay of single-technology value functions.
(b) Labor-intensive investment option value dominates: resulting value function with choice of technologies.

the thresholds to invest in the single-technology problem where the sole technology is
Technology 1 and Technology 2, respectively.)
Within this second region of inaction, the option value (denoted F12(w) and here-

after referred to as the technology choice option value) again satis4es the di5erential
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Fig. 3. (a) Capital-intensive investment option value dominates: overlay of single-technology value functions.
(b) Capital-intensive investment option value dominates: resulting value function with choice of technologies.

equation in (2) and has the form

F12(w) = D1w�1 + D2w�2 for w∈ [w∗
2 ; w

∗
1 ]: (10)
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Since this inaction region is bounded by 4nite threshold wages, the earlier argument
cannot be used to set either D1 or D2 to zero. In fact, both terms will be non-zero; the
second term is decreasing in w and represents the decreasing value of the option of
Technology 2 as wages rise. It is tempered by the 4rst term, which re?ects the value
of the option to choose Technology 1 over Technology 2 at higher wages. The four
constants w∗

1 , w
∗
2 , D1 and D2 are again determined by the value matching and smooth

pasting conditions:

D1(w∗
1 )

�1 + D2(w∗
1 )

�2 =
pq
�

− w∗
1L1

�− �
− K1;

D1(w∗
2 )

�1 + D2(w∗
2 )

�2 =
pq
�

− w∗
2L2

�− �
− K2 (11)

and

�1D1(w∗
1 )

�1−1 + �2D2(w∗
1 )

�2−1 =
−L1
�− �

;

�1D1(w∗
2 )

�1−1 + �2D2(w∗
2 )

�2−1 =
−L2
�− �

: (12)

Hence, the 4rm’s problem involves two inaction regions. In the 4rst inaction re-
gion, characterized by its lower bound w∗, the 4rm waits to invest until the fore-
gone pro4ts from not investing outweigh the uncertainty risk of the wage rising. In
the second inaction region, between w∗

1 and w∗
2 , both technologies are pro4table.

Given wage uncertainty, however, the 4rm waits for the investment value of one
technology to be signi4cantly higher than the value of the other before choosing a
technology.
The resulting value function V (w) for the choice of technologies and relevant option

values are depicted in Fig. 3(b). Again, for illustration, the functions F12(w) (dotted
line), F1(w) (dashed line), V1(w) (thin solid line), and V2(w) (double solid line) have
been extended beyond their relevant regions of the value function. Note that V (w)
coincides with

• the investment value for Technology 2, V2(w), for wages below w∗
2 ;

• the technology choice option value, F12(w), in the investment choice inaction region
for intermediate wages between w∗

2 and w∗
1 ;

• the investment value for Technology 1, V1(w), for wages between w∗
1 and w∗; and

• the investment option value, F(w) = F1(w), for wages above w∗.

Note that the value function is nowhere equal to the investment option value for
Technology 2 (i.e., F2(w), shown in Fig. 3(a), but omitted in Fig. 3(b)), since at high
wages the 4rm waits to invest in Technology 1.
How would the problem change if there were no uncertainty? Without uncertainty

the only bene4t of waiting comes from the drift component of the wage process. If
wages are falling (�¡ 0), it is possible that the 4rm might delay and wait for lower
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wages before investing. The value function F
=0(w) satis4es

�F
=0(w) = �wF ′

=0(w):

Integration yields

F
=0(w) = Ew�=�;

where E, the constant of integration, can be found by the value matching condition at
the upper bound wage of investment, w∗. The point of investment is the break-even
contemporaneous wage. We 4nd this wage for both technologies:

w∗; i =
�Ki − pq

Li
:

The technology with the largest constant of integration is the technology that is even-
tually chosen:

E =max
i
Ei =max

i

((pq=�) − ((�Ki − pq)=(�− �)) − Ki)
((�Ki − pq)=Li)�=�

:

If �¿ 0, the situation can be easily described by returning to the graphical analysis in
Figs. 2 and 3. In a world without uncertainty and with a non-negative drift in the wage,
the exponential option value curves do not exist and the 4rm’s problem is completely
described by the two linear technology value functions in Fig. 3(b). At wages below
the intersection w++, the 4rm chooses Technology 2 and makes the smaller capital
investment. At higher wages, the 4rm invests in more capital and chooses Technology
1. At wages above the break even wage, wB, for Technology 1, the value of investing
in either technology is negative and the 4rm chooses not to invest at all. Thus, the
only inaction region lies above this break even wage.
In summary, regardless of the value of �, without uncertainty there exists only one

inaction region and it lies above a critical wage w∗.
What e5ect does uncertainty have on the 4rm’s investment decision? Since uncer-

tainty raises the option value of waiting (functions F(w) and F12(w), higher uncertainty
can only reduce the range of wages at which investment is made. The following claims
are made regarding the level of uncertainty.

Claim 1. An positive upper bound w∗ for investing exists, and is decreasing in 
.
Hence, the investment inaction region expands with uncertainty.

Claim 2. w2 is decreasing in 
, and w1 is increasing in 
. So, if the technology choice
inaction region exists (i.e., C2;1¿C2;2), it expands with uncertainty.

Claim 1 is shown formally in the appendix. Analytical expressions of 9w2=9
 and
@w1=@
 produced using the implicit functions de4ned Eqs. (11) and (12) cannot be
signed because their non-linearity in 
 (through �1 and �2) complicates the expres-
sions. This is typical in this (see Dixit and Pindyck, 1994) Brownian motion literature.
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Claim 2 is quite intuitive and has been veri4ed numerically 8 for a range of parameter
values, however. This numerical appendix is available upon request.
The e5ects of uncertainty in Claims 1 and 2 can be easily explained graphically.

When a small amount of uncertainty is introduced 9 (i.e. 
 is increased), the 4rm’s
problem will resemble the scenario in Fig. 3(b). The high wage waiting region expands
to the left of w∗ and a small second waiting region appears around the kink. Again,
the intuition is simple. When the expected wage path is stochastic, it always pays
for a 4rm at these critical points of indi5erence to wait for more information before
investing.
As 
 continues to increase, the two investment option value curves F1(w) and F2(w)

– characterized by C2;1 and C2;2, respectively, and shown in Fig. 3(a) – increase and
begin converging. These investment option values increase because uncertainty raises
the chance of the wage falling dramatically while waiting to invest. Convergence comes
from the fact that a decline in wages increases the value of the labor-intensive technol-
ogy disproportionately. Thus, w∗ is decreasing in 
, and the high-wage inaction region
expands.
Following a similar reasoning, the technology choice option value F12(w) in Fig.

3(b) increases as well. That is, just as F2(w) (the investment option value of waiting
for Technology 2) increases relative to F1(w) (the investment option value of waiting
for Technology 1), the value of the option to choose Technology 2 over Technology
1 increases 10 with uncertainty. Of course, as the value of waiting for Technology 2
(i.e. F2(w) in Fig. 3(a)) increases, the relative value of investing in Technology 1 over
waiting for Technology 2 decreases. 11 Overall, however, the increasing option value
of Technology 2 dominates and F12(w) is increasing in 
. As this technology choice
option value increases, w∗

2 decreases, w∗
1 increases, and the technology choice inaction

regions expands.
At some knife-edge 
, the three option value curves coincide (i.e. F1(w) =F2(w) =

F12(w)). 12 For 
 greater than this value, C2;2¿C2;1 and Fig. 2 describes the situation.
The chance of wages dropping in the near future are now high enough that it never
pays to invest in the capital-intensive technology.

8 For numerical solutions, the system of four non-linear equations in four unknowns is 4rst simpli4ed by
noticing the linearity in D1 and D2. One can eliminate these constant terms and greatly simplify the problem
to a system of two non-linear equations in two unknowns. Nevertheless, the option value functions in the
equations involve both positive and negative exponential terms that explode toward in4nity as w decreases
toward zero or increases toward in4nity. Hence, iterative convergence to numerical solutions requires good
initial values.

9 This is a comparative static analysis, not a dynamic one.
10 This is captured by the second element of F12(w) in Eq. (10). The constant D2 decreases, but the

exponent �2 is increasing in 
. The overall e5ect on D2w�2 over the range (w∗
2 ; w

∗
1 ) is positive.

11 This is captured by the 4rst element of F12(w) in Eq. (10). The exponent �1 is decreasing in 
. In
addition, the constant D1 is eventually decreasing in 
. The overall e5ect is for D1w�1 to decrease in 
 over
the relevant range (w∗

2 , w
∗
1 ):

12 At this point, the value of investing in Technology 1 never exceeds the option value of investing in
Technology 2. Hence, D1 = 0. For higher values of 
 beyond this point, the value of the option to not
invest exceeds the value of the option to invest in Technology 1. Hence, F12(w) becomes irrelevant to the
problem.
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To summarize, wage uncertainty can only enlarge the range (or ranges) of inaction.
Uncertainty causes 4rms to delay investment in otherwise pro4table projects for two
reasons: (1) so that the pro4tability of the project can be reasonably assured and (2) to
try to assure that the most pro4table technology is chosen. The 4rst type of investment
delay is present in an ordinary optimal stopping problem, while the second is introduced
by the presence of competing technologies. 13

2. Option of switching technologies

The model above assumed that 4rms make a one-time choice of technology and they
cannot switch technologies. This section considers a 4rm that has already paid initial
capital costs, but has the option of switching technologies. Again, for simplicity, we
assume the 4rm has no shut-down option and only the two-technology case is modeled.
Technology 1 is again capital-intensive, while Technology 2 is labor-intensive. That is,
K1¿K2 and L2¿L1. It is assumed that, perhaps because of adverse selection problems
or thin markets for specialized capital, capital investment is not fully reversible. That
is, a 4rm selling used capital, K , can only recover �K , where �∈ (0; 1). Let K21 denote
the cost of switching from Technology 2 to Technology 1, and K12 denote its analog.
Then

K21 = K1 − �K2¿K2 − �K1 = K12: (13)

Consider a 4rm with Technology 2 and the option of switching to Technology 1.
The value of the 4rm optimally continuing with its current technology (i.e. within the
inaction region) satis4es

�V2(w) = pq− wL2 + �wV ′
2 (w) +

1
2


2w2V ′′
2 (w):

The solution to this di5erential equation is

V2(w) =
pq
�

− wL2
�− �

+ G2;1w�1 + G2;2w�2

with �1 and �2 again de4ned by Eq. (4). A 4rm using Technology 2 and paying no
labor costs (w = 0) will remain using Technology 2 forever, since labor costs will
remain at zero and the cost of switching to Technology 1, K21, is positive. Thus, at
w = 0, the option of switching to Technology 1 has no value and, therefore, G2;2 = 0.

13 Extending this analysis to the case of any 4nite number of possible (Ki; Li) technologies is straightfor-
ward using the following approach. First, any technology whose investment value Vi is dominated by other
available technologies may be eliminated from the analysis. The second step is to determine the investment
option value curve and upper bound wage w∗ by choosing the maximum value of C2; i (and correspond-
ing w∗; i) as done in the two technology example. Any technology that is more capital-intensive than the
one chosen at w∗ can also be ignored (see footnote 7). Finally, the technology choice option values (i.e.
the options of choosing between two technologies) should then be determined for every combination of the
remaining technologies. The upper envelope of all of these option value curves and corresponding investment
values lines constitutes the value function.
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Similarly, for a 4rm using Technology 1, the value function within the continuation
region is of the form

V1(w) =
pq
�

− wL1
�− �

+ G1;1w�1 + G1;2w�2 :

Since a 4rm will continue with the capital-intensive technology as wages increase,
and the value of having this technology must be bounded, G1;1 = 0.
The two value functions are therefore

V1(w) =
pq
�

− wL1
�− �

+ G1;2w�2 ; (14)

V2(w) =
pq
�

− wL2
�− �

+ G2;1w�1 : (15)

There will exist two wages w∗
12 and w∗

21 (w∗
12 �= w∗

21 because of the irreversible 4xed
cost) at which the 4rm will switch from Technology 1 to Technology 2 and from
Technology 2 to Technology 1, respectively. After canceling out the revenue terms
(i.e., pq=�), the value matching conditions simplify to

− w∗
12L1

�− �
+ G1;2(w∗

12)
�2 = − w∗

12L2
�− �

+ G2;1(w∗
12)

�1 − K12; (16)

− w∗
21L1

�− �
+ G1;2(w∗

21)
�2 − K21 = −w∗

21L2
�− �

+ G2;1(w∗
21)

�1 : (17)

In other words, at the value matching wage, the cost of continuing with the present
technology equals the cost of the alternative technology including the capital switching
cost.
The two smooth pasting conditions for the switches simplify to the same expression,

which I write in terms of w∗
ij ∈ {w∗

12; w
∗
21}:

(L2 − L1)
�− �

+ �2G1;2(w∗
ij)

�2−1 − �1G2;1(w∗
ij)

�1−1 = 0: (18)

Positive solutions to these conditions exist as stated below. Hence, regions of switch-
ing and investment exist together with regions of inaction. These inaction regions for
Technology 1 and Technology 2 overlap, and as we saw in the one-time decision
case, the presence of wage uncertainty here can only increase the chance of delaying
investment and the size of the inaction ranges.

Claim 3. w∗
21¿w∗

12¿ 0, if and only if K12¡ 0. That is, if the net capital cost of
switching to Technology 2 is negative, switching regions exist for #rms with either
technology and they overlap.

Claim 4. w∗
21 is increasing in 
 and w

∗
12 is decreasing in 
. Thus, the switching regions

compress and the regions of inaction, and the amount of overlap of these regions,
expand with uncertainty.

Claim 3 is shown formally in the Appendix. Again, analytical representations of
9w∗

21=9
 and 9w∗
12=9
 are extremely complicated expressions that cannot be signed, but

Claim 4 has been veri4ed numerically.
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Fig. 4. (a) Value functions for two technologies with 4xed wage and switching option. (b) Value functions
for two technologies with wage uncertainty and switching option.

The e5ects of uncertainty are demonstrated graphically in Fig. 4. (For presentation
purposes, the drift in the wage process is assumed to be zero.) Fig. 4(a) shows the value
functions for 4rms with either technology when wages are constant. The solid lines
indicate the value of producing with a technology already possessed. These values meet
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at w=0, since operating costs are zero for both technologies at this point. The dashed
lines indicate the value of the alternative technology after paying net capital investment
costs to switch. Thus, a 4rm producing with Technology 1 compares the value of
continuing with its technology (solid shaded line), with the value of Technology 2
net of the (negative) net cost K12 that must be paid (dashed line) to switch. If the
value of the alternative technology net of switching costs is greater, the 4rm changes
technologies. Because of the irreversible costs to switch technologies, the ranges of
inaction of the two technologies overlap (i.e., w∗

21¿w∗
12), even when the wage is

4xed.
Fig. 4(b) shows how this overlap grows with uncertainty, 
. The value functions are

now curved lines, due to the option value that comes from the wage uncertainty. The
arrows in Fig. 4(b) show that these value functions are curved toward each other at
extreme wages, relative to the no uncertainty value functions (redrawn from Fig. 4(a)
for illustration). Again, the 4rm switches technologies when the di5erence between
the two value functions (shaded curved lines) lie below the value of the alternative
technologies net of switching costs (dashed lines). As 
 rises, the option value to
holding onto a given technology increases, the value functions curve even farther away
from the no uncertainty lines, and the 4rm waits for a larger di5erential in technology
values before making the irreversible investment.

3. Conclusion

This paper used standard continuous-time stochastic models to analyze the problem
of a 4rm choosing a ‘putty-clay’ technology in the face of uncertain input prices.
The framework demonstrates how the presence of uncertainty and the irreversibility
of technology investment creates an option value to both a potential entrant making a
monopolistic one-time decision or a 4rm already producing under one technology but
considering changing technologies.
The models also has similar implications about investment delay. For a 4rm with

a monopoly option to invest, the presence of uncertainty and 4xed costs causes the
4rm to delay investment under ranges of input prices. With the option to switch tech-
nologies, 4rms may change their technology in response to changes in relative wages,
but the presence of investment irreversibility causes these switches to be less frequent.
Furthermore, uncertainty causes the 4rms to wait for more extreme operating cost dif-
ferentials before switching. These e5ects are present even without considering the e5ect
of decisions on plant scale.
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Appendix A

Proof of Claim 1. The existence of a positive w∗ is obvious since (1) and (9) are
positive as w → 0 and negative as w → ∞.
I show now that w∗ is increasing in 
. Note that (7) and (8) can be generalized for

two technologies i = 1; 2:

C2; i =
1

1 − �2

(
pq
�

− Ki

) [
�2(�− �)
Li(1 − �2)

(
Ki − pq

�

)]�2
; (A.1)

w∗; i =
�2

1 − �2

(
�− �
Li

) (
Ki − pq

�

)
: (A.2)

The argument then consists 4rst of showing that w∗; i is decreasing in 
 for i=1; 2.
We must also eliminate the possibility that the relevant w∗ switches from i to j, where
w∗; j ¿w∗; i. More speci4cally, w∗;2¿w∗;1, so we must rule out the case where both
w∗;1 and w∗;2 decrease, but w∗ increases if the relevant stopping technology switches
from Technology 1 to 2. This is done by showing that C2;1 increases faster in 
 than
C2;2.
The e5ect of 
 on (A.1) and (A.2) is through its presence in the expression for �2.

Di5erentiating the implicit function Q de4ned by (4) with respect to 
 yields

dQ
d


=
9Q
9�2

d�2
d


+
9Q
9
 = 0: (A.3)

Since, for �=�2, 9Q=9�¡ 0 and 9Q=9
=
�(�− 1)¿ 0 by Eq. (A.3) d�2=d
¿ 0.
Hence

9w∗; i

9
 =
9w∗; i

9�2
9�2
9
 ¡ 0:

Since �2 is negative and increasing in 
. Taking derivatives of (A.1), it can also be
shown that C2;1 and C2;2 are increasing in 
.

What remains to be shown is that C2;1 increases faster in 
 than C2;2. Denoting the
ratio C2;2=C2;1 as CR and di5erentiating yields

@CR
@


=
[
((pq=�) − K2)
((pq=�) − K1)

L1
L2

]�2
:

This expression is greater than one since K1¿K2, L2¿L1 and �2 is negative. Thus
CR is decreasing in 
 and the proof is complete.

Proof of Claim 3. We proceed by showing contradictions in the assumptions of no
switching wages, only a w∗

21 switching wage, or only a w∗
12 switching wage.
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(A) Ruling out no switching wages: Assume w∗
12 and w∗

21 do not exist. Then G1;2 =
G2;1 = 0, since this term represents the value of the option to switch from Technology
1 to 2. We then have switching from Technology 1 to 2 has negative value at all
wages, and vice versa. These expressions are

pq
�

− wL1
�− �

¿
pq
�

− wL2
�− �

− K12;

pq
�

− wL2
�− �

¿
pq
�

− wL1
�− �

− K21:

This creates a contradiction if and only if K12¡ 0. This also veri4es the no uncertainty
case.
(B) Ruling out no w∗

12: Assume w∗
21 exists, but not w∗

12, then G1;2 =0 and G2;1¿ 0.
We again have switching from Technology 1 to 2 has negative value at all wages. The
new expression

pq
�

− wL1
�− �

¿
pq
�

− wL2
�− �

+ G2;1w�1 − K12:

This creates a contradiction since the left-hand side goes to in4nity as w → ∞,
while the right-hand side goes to negative in4nity.
(C) Ruling out no w∗

21: Assume w∗
12 exists, but not w∗

21, then G1;2¿ 0 and G2;1 =0.
We then have switching from Technology 2 to 1 has negative value at all wages. The
expression

pq
�

− wL2
�− �

¿
pq
�

− wL1
�− �

+ G1;2w�2 − K21;

−w(L2 − L1)
�− �

− G1;2w�2 ¿− K21

creates a contradiction as w → ∞, since K21 is 4nite.
Hence, two positive roots exist and (17) ensure w∗

21¿w∗
12, if w

∗
12 exists, so we can

rule out w∗
21 = w∗

12.
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