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Multiple Choice

1. (5 pts.) Find the absolute minimum (y-value) of f(x) = x3 − 12x + 13 on the interval [−3, 1].

(a) 2 (b) −3

(c) 0 (d) 29

(e) There is no absolute minimum value on [−3, 1].

Solution:
f ′(x) = 3x2 − 12, which is defined for all x. Setting f ′(x) = 0 we get 3x2 = 12, so x = ±2. Of

these, only −2 is in the interval [−3, 1]. We compute f(−3) = 22, f(−2) = 29, f(1) = 2 so the
latter is the minimum.

2. (5 pts.) Let f(x) = ln(e3x). Find the values of x where the tangent to the graph of f(x) is
horizontal.

(a) Only at x = 1.

(b) Only at x = e.

(c) Only at x = 0.

(d) All numbers x.

(e) No numbers x.

Solution: We have f(x) = ln(e3x) = 3x, so f ′(x) = 3. The tangent is horizontal when f ′(x) = 0.
No number x satisfies this equation.
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3. (5 pts.) Evaluate the limit:

lim
t→∞

(72− 27e−72.27t)

(a) 45

(b) 72

(c) 71

(d) ∞

(e) −∞

Solution: The key observation is that when t approaches infinity, −72.27t approaches negative
infinity. Therefore, e−72.27t approaches 0. Further applying the rules of limits, we have:

lim
t→∞

(72− 27e−72.27t) = lim
t→∞

(72)− lim
t→∞

(27e−72.27t) = 72− 27 lim
t→∞

(e−72.27t) = 72− 27 · 0 = 72.

4. (5 pts.) Solve the equation ln(x + 2) = ln(x2 + 2x). (Hint: be careful about the domain of the
natural log.)

(a) x = 1

(b) x = 0

(c) x = 1 and x = e

(d) x = −2

(e) There are no solutions.

Solution: We have that eln(x+2) = eln(x
2+2x), so x+ 2 = x(x+ 2) or (x+ 2)(x− 1) = 0. Since x = −2

is not in the domain of ln(x + 2), the only solution is x = 1.
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5. (5 pts.) Find the derivative of the function f(x) = xln(x2).

(a) 2

(b) ln(x2) +
1

x

(c)
2

x

(d) 2ln(x) + 2

(e) 2ln(x) + 2x

Solution: Using the product rule and then the chain rule, we get:

f ′(x) = (x)′ · ln(x2) + x · (ln(x2))′ = ln(x2) + x
2x

x2
= ln(x2) + 2 = 2 ln(x) + 2.

6. (5 pts.) Suppose that an investment grows at a rate of 4% compounded twice a year. If the
initial investment is P0 = 900, which of the following expressions gives the accumulated amount of
the investment after 4 years?

(a) 900 · (1.04)4

(b) 900 · (1.04)8

(c) 900 · (1.02)4

(d) 900 · (1.02)8

(e) 900 · (1.02)2

Solution: According the formula P (t) = P0(1 + r
n
)nt, we have P (4) = 900 · (1.02)8.
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7. (5 pts.) If h(t) = Aekt and if h(0) = 3 and h(1) = 6, which of the functions below is equal to
h(t)?

(a) h(t) = 2 · 3t

(b) h(t) = 2 · et

(c) h(t) = 3 · 2t

(d) h(t) = 3 · et

(e) The function can not be determined from the given information.

Solution: We have 3 = h(0) = Ae0·t = A, so A = 3. In addition, 6 = h(1) = Ae1·k = 3ek, so ek = 2
and Aekt = A(ek)t = 3 · 2t.

8. (5 pts.) For x > 0, which of the following functions F (x) is an antiderivative of

f(x) = ln(x)?

(In other words, for which of the following is it true that F ′(x) = f(x)?)

(a) F (x) = xln(x)− x

(b) F (x) =
1

x

(c) F (x) =
ln(x)

x

(d) F (x) = ln(x) + C (C is a constant)

(e) F (x) = C − ln(x2) (C is a constant).

Solution: Taking the derivatives of the proposed functions, we find that

(xln(x)− x)′ = 1 · ln(x) + x · (ln(x))′ − 1 = ln(x) +
x

x
− 1 = ln(x).
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Partial Credit
You must show your work on the partial credit problems to receive credit!

9. (15 pts.) A peafowl rancher wants to build a rectangular pen which encloses 500 ft2. In order to
separate the peacocks from the peahens, he divides the pen into two equal sections with a barrier
that is parallel to one of the sides. The fencing around the perimeter of the pen costs $1 per foot,
and the barrier costs $8 per foot. Let x and y denote the side lengths of the pen, and assume the
barrier is parallel to the side of length x.

y

x

(a) Write an expression for y in terms of x.
Solution: The area of the pen is given by

Area = xy = 500

Solving for y gives y = 500
x

.

(b) Find the total cost function for building the pen C(x) as a function of x only.
Solution:
The cost is given by

Total cost = Cost of perimeter + Cost of barrier

= (2x + 2y) + (8x) = 10x + 2y

Replacing y with our expression from part (a) gives

C(x) = 10x +
1000

x

(c) Find the critical numbers in the domain of C(x).
Solution: Note that x can take any positive value, so C(x) has domain (0,∞).

C ′(x) = 10− 1000

x2

C ′(x) doesn’t exist at x = 0, and C ′(x) = 0 when

0 = 10x2 − 1000 = 10(x2 − 100)

i.e. x = ±10. The only critical number in the domain is x = 10.

(d) Find the dimensions (x and y) that achieve the minimum cost. (Be sure to justify that this
is the absolute minimum)

Solution:
C ′′(x) = 2000

x3 , which is always positive on our domain. In particular, C ′′(10) > 0 is a
relative min, and since the function is always concave up, it is an absolute min. When
x = 10, y = 500

10
= 50.
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10. (15 pts.) A rabbit population grows according to the equation

P (t) = A0e
kt,

where time is measured in weeks. Initially, there are 12 rabbits. After 2 weeks, the population has
grown to 15 rabbits.

(a) Find A0.
Solution: We know that P (0) = A0e

0·t = A0. In addition, P (0) = 12. Therefore, A0 = 12.

(b) Find the value of k.

Solution: Using part (a), we have that P (2) = 12e2k. Since P (2) = 15, we have e2k = 15
12

so

k = 1
2
ln(5

4
) ≈ 0.112.

(c) Write down a formula for P (t).

Solution: Using parts (a) and (b), we find that P (t) = 12(5
4
)
1
2
t ≈ 12e0.112t.

(d) How long does it take, in weeks, for the population of rabbits to reach 30?

Solution: We want to solve for t the equation 12(5
4
)
1
2
t = 30 or (5

4
)
1
2
t = 5

2
. Taking the natural

log of both sides, we have 1
2
t · ln(5

4
) = ln(5

2
) or t =

2ln(5
2
)

ln(5
4
)
≈ 8.21 weeks.
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11. (15 pts.)

(a) Let f(x) = (ln(x))7. Find f ′(x).

Solution: f ′(x) = 7(ln(x))6(ln(x))′ =
7(ln(x))6

x
.

(b) Let f(x) = x
√
ex. Find f ′(x).

Solution: We can rewrite the function as f(x) = xe0.5x. We now find its derivative:

f ′(x) = e0.5x + 0.5xe0.5x.

(c)

∫ (
1

x
−
√
x + 1

)
dx =

∫
1

x
dx−

∫
x

1
2dx +

∫
1dx = ln|x| − 2

3
x

3
2 + x + C

(d)

∫
8dz = 8z + C
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12. (15 pts.)
Let f(x) be a function with the property that

f ′(x) =
1√
x
.

(a) Find a general formula for f(x). (Your answer should involve an unknown constant C.)

Solution: We have that f(x) =

∫
1√
x
dx =

∫
x−

1
2dx = 2x

1
2 + C for some constant C.

(b) If f(4) = 2, find f(x).

Solution: From (a), f(4) = 2 ·
√

4 + C = 2 · 2 + C = 4 + C. Since f(4) = 2, we find that
C = −2 and f(x) = 2x0.5 − 2.

(c) Evaluate f(9).

Solution: From (a) and (b) we know that f(9) = 2
√

9− 2 = 2 · 3− 2 = 4.
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