SOLUTIONS TO PRACTICE FINAL EXAM MATH 10250, FALL 2022

1. Find the equation of the tangent line to the curve $y=x^{3}$ at the point where $x=2$.

Solution:

We have $y^{\prime}=3 x^{2}$ so the slope of the tangent line will be $y^{\prime}(2)=12$. The line passes through the point $(2, y(2))=(2,8)$ so, by the point-slope formula, the equation is $y-8=12(x-2)$ or $y=12 x-16$.
2. Find the slope of the tangent line to the curve

$$
y^{2}+x e^{y}=1
$$

at the point $(1,0)$.

Solution:

Using implicit differentiation, we find that $2 y \frac{d y}{d x}+e^{y}+x e^{y} \frac{d y}{d x}=0$, so $\frac{d y}{d x}=-\frac{e^{y}}{2 y+x e^{y}}$. Plugging in $x=1$ and $y=0$ gives $\frac{d y}{d x}=-\frac{e^{0}}{0+1 \cdot e^{0}}=-1$.
3. A snowball in the shape of a perfect sphere is melting in such a way that its volume is decreasing at a rate of $36 \pi \mathrm{in}^{3}$ per minute. How fast is the radius decreasing when the radius is 3 in? Remember that the volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.

Solution:

Let $V=\frac{4}{3} \pi r^{3}$ denote the volume of the ball. Since the ball is melting, we regard both V and r as functions of time. Taking $\frac{d}{d t}$ on both sides of the equation relating V and r, we have

$$
\frac{d V}{d t}=\frac{4}{3} \pi \cdot 3 r^{2} \cdot \frac{d r}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t}
$$

In addition, $\frac{d V}{d t}=-36 \pi$ (remember that volume is decreasing), so $4 \pi r^{2} \cdot \frac{d r}{d t}=-36 \pi$, which gives $\frac{d r}{d t}=-\frac{36}{4 r^{2}}$. Therefore, when $r=3, \frac{d r}{d t}=-1$. The question already asks at what rate the radius is decreasing, so the minus us understood and the answer is $1 \mathrm{in} / \mathrm{min}$.
4. A company that sells canned tuna needs to design a cylindrical can whose volume is $16 \pi \mathrm{in}^{3}$. The top and bottom of the can are made from aluminum, which costs $\$.01$ per in^{2}. However, for structural reasons the side of the can needs to be made from a different metal, which costs $\$.08$ per in ${ }^{2}$. What are the radius and height (in inches) of the can which will minimize the total cost of the material needed to construct a can? [Hint: for a cylinder of radius r and height h, the volume is $\pi r^{2} h$, the area of the side is $2 \pi r h$ and the area of the top and bottom is each πr^{2}.]

Solution:

The cost of making a can with radius r and height h will be: $2 \pi r h \cdot 0.08+2 \pi r^{2} \cdot 0.01$. Since the volume of the can is $16 \pi=\pi r^{2} h$, we find that $h=\frac{16}{r^{2}}$, so we can rewrite the cost as $C(r)=\frac{2.56 \pi}{r}+0.02 \pi r^{2}$. We then have $C^{\prime}(r)=-\frac{2.56 \pi}{r^{2}}+0.04 \pi r$. Setting $C^{\prime}(r)=0$ gives $0.04 r^{3}=2.56$ or $r^{3}=64$, so $r=4$ and $h=\frac{16}{r^{2}}=1$.
5. Solve the initial value problem

$$
\begin{aligned}
y^{\prime} & =\frac{2 x+3}{x^{2}+3 x+2} \\
y(0) & =1+\ln 2
\end{aligned}
$$

Assume that $x>0$.

Solution:

We have $y=\int\left(\frac{2 x+3}{x^{2}+3 x+2}\right) d x$, which we can solve using the substitution $u=x^{2}+3 x+2$ and $\frac{d u}{d x}=2 x+3$, so $d u=(2 x+3) d x$ and $y=\int \frac{1}{u} d u=\ln |u|+C=\ln \left(x^{2}+3 x+2\right)+C$ since $x>0$. In addition, $y(0)=\ln (2)+C=1+\ln (2)$, so $C=1$ and $y=\ln \left(x^{2}+3 x+2\right)+1$.
6. Evaluate the definite integral

$$
\int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x
$$

Solution:

Setting $u=\ln (x)$ gives $\frac{d u}{d x}=\frac{1}{x}$ and $\int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x=\int_{\ln (1)}^{\ln (e)} \sqrt{u} d u=\int_{0}^{1} u^{\frac{1}{2}} d u=\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{0} ^{1}=\frac{2}{3}$.
7. Compute

$$
\lim _{x \rightarrow \infty}\left(\frac{x+1}{3+4 x}\right)
$$

Solution:

$$
\lim _{x \rightarrow \infty}\left(\frac{x+1}{3+4 x}\right)=\lim _{x \rightarrow \infty}\left(\frac{x+1}{3+4 x}\right) \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty}\left(\frac{1+\frac{1}{x}}{4+\frac{3}{x}}\right)=\frac{1+0}{4+0}=\frac{1}{4}
$$

8. Which of the following graphs could represent the function $a x^{4}+b x^{3}+c x^{2}+d x+e$ where a, b, c, d, e are constants and $a<0$? [Hint: pay attention to the condition $a<0$, and think about what happens as x approaches ∞ or $-\infty$.]

Solution:

We have that $\lim _{x \rightarrow \infty}\left(a x^{4}+b x^{3}+c x^{2}+d x+e\right)=\lim _{x \rightarrow \infty}\left(a x^{4}\right)=-\infty$ since $a<0$. Addtionally, since the polynomial has degree 4 (which is even), we know that the limits as $x \rightarrow \infty$ and $x \rightarrow-\infty$ will be the same. This leaves (a) as the only possibility.
9. The half-life of carbon-14 is approximately 5730 years. This means that if the initial amount is A_{0} then the amount present after t years is

$$
A_{0}\left(\frac{1}{2}\right)^{t / 5730}
$$

How long does it take an initial amount of carbon-14 to decrease to one fifth of the original amount?

Solution:

We want to solve the equation: $A_{0}\left(\frac{1}{2}\right)^{t / 5730}=\frac{1}{5} A_{0}$. After cancellation, $\left(\frac{1}{2}\right)^{t / 5730}=\frac{1}{5}$ or, equivalently, $e^{\ln \left(\frac{1}{2}\right) \cdot \frac{t}{5730}}=\frac{1}{5}$. Taking the natural \log of both sides gives $\ln \left(\frac{1}{2}\right) \cdot \frac{t}{5730}=\ln \left(\frac{1}{5}\right)$ or $t=5730 \cdot \frac{\ln \left(\frac{1}{5}\right)}{\ln \left(\frac{1}{2}\right)}=5730 \cdot \frac{-\ln (5)}{-\ln (2)}=5730 \cdot \frac{\ln (5)}{\ln (2)}$.
10. Which equation below describes the tangent line to the graph of $f(x)=\ln (\ln x)$ at the point $(e, 0)$?

Solution:

To find the equation of the line we need to find the slope, which is given by the derivative. By the chain rule,

$$
f^{\prime}(x)=\frac{\left(\frac{1}{x}\right)}{\ln x}
$$

The derivative at $x=e$ is $f^{\prime}(e)=\frac{1}{e}$. Plugging this slope and the point $(e, 0)$ into the point-slope equation for a line, we get $y=\frac{1}{e}(x-e)$.
11. John invests some money into an account, and learns that the amount in the account after t years is given by the formula

$$
A(t)=1,000 e^{0.05 t}
$$

What is the average amount in the account over the first three years?

Solution:

The average value of $A(t)$ from $t=0$ to $t=3$ is given by the formula

$$
\begin{gathered}
\frac{1}{3-0} \int_{0}^{3} 1000 e^{0.05 t} d t=\frac{1}{3}(1000) \int_{0}^{3} e^{0.05 t} d t=\frac{1}{3}(1000)\left(\left.\frac{1}{0.05} e^{0.05 t}\right|_{0} ^{3}\right) \\
=\frac{1}{3}(1000)\left(\frac{1}{0.05}\right)\left(e^{1.5}-e^{0}\right)=\frac{1}{3}(20000)\left(e^{1.5}-1\right)
\end{gathered}
$$

12. Find the total area between the x-axis and the graph of $y=x^{2}-1$ from $x=0$ to $x=3$. [Hint: this function is not non-negative, so treat areas below the x-axis separately.]

Solution:

The function is negative (below the x-axis) on $[0,1$), and is non-negative on $[1,3]$. Thus, the total area is given by

$$
\begin{gathered}
\int_{1}^{3} x^{2}-1 d x-\int_{0}^{1} x^{2}-1 d x=\left.\left(\frac{1}{3} x^{3}-x\right)\right|_{1} ^{3}-\left.\left(\frac{1}{3} x^{3}-x\right)\right|_{0} ^{1} \\
\quad=\left([9-3]-\left[\frac{1}{3}-1\right]\right)-\left(\left[\frac{1}{3}-1\right]-[0-0]\right)=\frac{22}{3}
\end{gathered}
$$

13. A ball is thrown into the air and its height in feet after t seconds is given by $h(t)=-16 t^{2}+32 t+48$. After how many seconds does the ball reach its peak?

Solution:

The ball's peak is its absolute maximum. Searching for a local max, we compute the derivative $h^{\prime}(t)=-32 t+32$. Now $h^{\prime}(t)=0$ when $t=1$, so $t=1$ is a critical point. $h^{\prime \prime}(t)=-32$ which is always negative, so $h(t)$ is always concave down. In particular, $t=1$ gives the absolute maximum of $h(t)$.
14. What are the critical points of

$$
f(x)=\frac{x}{x^{2}+1}
$$

Solution:

Critical points occur when the derivative is 0 or does not exist. By the quotient rule,

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}
$$

Now the denominator of $f^{\prime}(x)$ is always positive, so $f^{\prime}(x)$ always exists. $f^{\prime}(x)=0$ when the numerator is 0 , that is when $x=1$ or $x=-1$. Thus, $x=1$ and $x=-1$ are the only critical points.
15. Let $f(x)$ be a function whose derivative is $f^{\prime}(x)=x(x-1)^{2}(x+1)$. Where are the local extrema of $f(x)$?

Solution:

The local extrema occur when the derivative $f^{\prime}(x)$ changes sign. Now $f^{\prime}(x)=0$ for $x=0, x=1$ and $x=-1$. These points define intervals where we will test the sign of $f^{\prime}(x)$. We find $f^{\prime}(x)$ is positive on $(-\infty,-1),(0,1),(1, \infty)$ and negative on $(-1,0)$. Thus $x=-1$ is a local max and $x=0$ is a local min.
16. An automobile company finds that their marginal profit is given by the function $P^{\prime}=x^{2}+3 x$, where x is the number of cars produced per week (in units of one thousand) and $P(x)$ is given in dollars. What is the total change in profit (in dollars) as they raise production from $x=0$ to $x=6$ thousand cars per week?

Solution:

The total change in profit from $x=0$ to $x=6$ is $P(6)-P(0)$ which, by the fundamental theorem of calculus, is the same as $\int_{0}^{6} P^{\prime}(x) d x$. We evaluate the integral:

$$
\begin{gathered}
\int_{0}^{6} P^{\prime}(x) d x=\int_{0}^{6} x^{2}+3 x d x=\left.\left(\frac{1}{3} x^{3}+\frac{3}{2} x^{2}\right)\right|_{0} ^{6} \\
=(72+54)-(0+0)=126
\end{gathered}
$$

17. How many inflection points does $\frac{1}{2} x^{4}-\frac{1}{5} x^{6}$ have?

Solution:
If we call the function $f(x)$ then $f^{\prime}(x)=2 x^{3}-\frac{6}{5} x^{5}$ and

$$
f^{\prime \prime}(x)=6 x^{2}-6 x^{4}=6 x^{2}\left(1-x^{2}\right)=6 x^{2}(1+x)(1-x)
$$

$f^{\prime \prime}(x)$ is zero at $x=-1,0,1$, but it does not change sign at $x=0$. It does change sign at $x= \pm 1$. So only the latter two give inflection points.
18. Using logarithmic differentiation, find $\frac{d y}{d x}$ for

$$
y=(2 x+1)^{4}(3 x+1)^{5}(4 x+1)^{6} .
$$

[Hint: don't forget the chain rule!]

Solution:

We get $\ln (y)=4 \ln (2 x+1)+5 \ln (3 x+1)+6 \ln (4 x+1)$. Differentiating both sides we get

$$
\frac{1}{y} \frac{d y}{d x}=\frac{4 \cdot 2}{2 x+1}+\frac{5 \cdot 3}{3 x+1}+\frac{6 \cdot 4}{4 x+1}
$$

Then

$$
\frac{d y}{d x}=y\left[\frac{8}{2 x+1}+\frac{15}{3 x+1}+\frac{24}{4 x+1}\right]=(2 x+1)^{4}(3 x+1)^{5}(4 x+1)^{6}\left[\frac{8}{2 x+1}+\frac{15}{3 x+1}+\frac{24}{4 x+1}\right]
$$

19. If $y=\ln \left(\frac{11}{x+5}\right)$, solve for x in terms of y.

Solution:

The given equation is equivalent to $e^{y}=\frac{11}{x+5}$ so $x+5=\frac{11}{e^{y}}$ and $x=\frac{11}{e^{y}}-5$.
20. What is the domain of the function $f(x)=\frac{\sqrt{x}}{x^{5}-32}$?

Solution:

In order for the numerator to be valid, we need $x \geq 0$ (in particular, 0 is included). But we also have to avoid the denominator being 0 , so we need $x \neq 2$ as well. So we get $[0,2) \cup(2, \infty)$.
21. Find the derivative of $x e^{x^{2}+1}$.

Solution:

Use the product rule and the chain rule.

$$
x\left(e^{x^{2}+1} \cdot(2 x)\right)+e^{x^{2}+1}(1)=e^{x^{2}+1}\left(2 x^{2}+1\right)
$$

22. To evaluate the definite integral

$$
\int_{0}^{4} \frac{d x}{1+\sqrt{x}}
$$

you decide to use the u-substitution $u=\sqrt{x}$. When you make this substitution, what does the definite integral become? [Hint: notice that $u^{2}=x$.]

Solution:

Since $u^{2}=x$ we get $(2 u) d u=d x$. When $x=0, u=0$. When $x=4, u=2$. So remembering to change the limits of integration we have

$$
\int_{0}^{2} \frac{2 u}{1+u} d u
$$

23. Bob invests a certain sum of money into an account giving interest at an annual rate of 5%, compounded continuously. How long will it take his investment to triple (all answers are in years)?

Solution:
The amount after t years is $A(t)=A_{0} e^{0.05 t}$, where A_{0} is the initial amount. We want to know for what t is it true that $A(t)=3 A_{0}$. So we get

$$
3 A_{0}=A_{0} e^{0.05 t}, \quad \text { or } \quad 3=e^{0.05 t}
$$

We take the natural \log on both sides and solve for t to get $t=\frac{\ln (3)}{0.05}$.
24. Bob's sister, Bobbie, invests a certain sum of money into an account giving interest at an annual rate of 5%, compounded annually (i.e. compounded just once a year). How long will it take her investment to triple (all answers are in years)?

Solution:

Now the formula is $A(t)=A_{0}\left(1+\frac{0.05}{1}\right)^{t}$ so we get $3 A_{0}=A_{0}(1.05)^{t}$ or $3=(1.05)^{t}$. Again using the natural log we get

$$
\ln (3)=t \ln (1.05) \quad \text { or } \quad t=\frac{\ln (3)}{\ln (1.05)}
$$

25. What are all the value(s) of x where the tangent line to $y=x^{3}+x$ has slope 13 ?

Solution:

$\frac{d y}{d x}=3 x^{2}+1$ so we solve $3 x^{2}+1=13$ and get $x^{2}=4$ or $x= \pm 2$.

