Practice Final Exam 2

December, 2017

Name

This is a 2 -hour exam. Books and notes are not allowed. Make sure that your work is legible, and make sure that it is clearly marked where your answers are. ShOW all WOrk! if a problem calls for a proof or explanation, you will not get full credit for a correct answer if you don't supply the proof or explanation. If you have some ideas for solving a problem but can't figure out how to finish it, be sure to show me what you do know!! If something is not clear, ASK ME!! Good luck!

1. Let φ be the Euler phi-function, namely $\varphi(n)$ is the number of positive integers less than or equal to n that are relatively prime to n.
(a) (5 points) Compute $\varphi(18)$ and put your answer in the provided space.

(b) (10 points) If p is a prime, compute $\varphi\left(p^{2}\right)$ and carefully explain your answer. [Note that this is asking for $\varphi\left(p^{2}\right)$, not $\varphi(p)$. A correct answer with no explanation will not get full credit.]

$$
\begin{aligned}
& \text { The numbers not rebatively prime to } p^{2} \text { are } p,{ }^{2} p, \ldots, p^{2} \text {. There ane } p \text { of } \\
& \text { them. So } \varphi(p)=p^{2}-p=p(p-1) \text {. }
\end{aligned}
$$

(c) (5 points) State Euler's theorem (the generalization of Fermat's Little Theorem). Be sure to include all the hypotheses.

$$
\begin{aligned}
& \text { Let } n \text { be a positive integer. Let } a \in \mathbb{Z} \text { be relatively prime to a. } \\
& \text { Then } a^{G(n)} \equiv 1(\bmod n) \text {. Equivalenth, } a^{G(n)}-1 \text { is divisible by } n \text {. }
\end{aligned}
$$

(d) (10 points) Find the remainder of $7^{123,322}$ when divided by 11 and put your answer in the provided space.

Answer:

$$
\text { Since } 11 \text { 's prime we can use Fermat', litthe thorem (or Eulercrorks too). }
$$

$$
\text { we have } 7^{10} \equiv 1(\bmod 11) \text {. So }
$$

$$
7^{123322}=\left(7^{10}\right)^{12332}-7^{2} \equiv 49 \equiv 5(\bmod 11)
$$

$$
\text { So the remainder is } 5 \text {. }
$$

2. Consider the symmetric group S_{6} and its subgroup, the alternating group A_{6}. Let

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 2 & 4 & 3 & 1
\end{array}\right)
$$

(a) (5 points) Give the orders of S_{6} and of A_{6} and put your answers in the provided space.

$$
\left|S_{6}\right|=6!=720
$$

$$
\left|A_{6}\right|=360
$$

(b) (5 points) Write σ as a product of disjoint cycles.

$$
(1,6)(2,5,3)
$$

(c) (5 points) Write σ as a product of transpositions.

$$
(1,6)(2,3)(2,5)
$$

(d) (5 points) Is $\sigma \in A_{6}$? Explain why or why not.
No because it is the preduct of an odd number of transpositions
(e) (10 points) Find the order of σ and put your answer in the provided space.

$$
\begin{aligned}
\text { Answer: } 6 & \text { since } \sigma
\end{aligned}=((, 6)(25,3) \quad(\text { disjoint })
$$

3. YOU CAN DISREGARD THIS PROBLEM! Consider the polynomial $f(x)=2 x^{2}+x+1$ in $\mathbb{Z}_{7}[x]$.
(a) (10 points) How do you know that $f(x)$ is not irreducible over \mathbb{Z}_{7} before you even try to factor it?

(b) (10 points) Factor $f(x)$. (Remember that the field is \mathbb{Z}_{7}. Your work in (a) should help.)

4. (10 points) We know that a factor group of a cyclic group is cyclic. Is it also true that a factor group of a non-cyclic group is non-cyclic? If it's true, give a proof. If it's not true, give a counterexample.

$$
\begin{aligned}
& \text { No. } G=S_{5}, H=A_{5} \\
& \text { Since } \left.H\left|=\frac{1}{2}\right| G \right\rvert\,, A_{5} \text { is a normal subgroup and }|G / H|=2 . \\
& \text { So } G / H \cong \mathbb{Z}_{2} \text {, which is cyclic. But } G \text { is not cyclic. }
\end{aligned}
$$

5. Let F be the additive group of all continuous functions mapping \mathbb{R} to \mathbb{R}. Let \mathbb{R} be the additive group of real numbers. Let $\phi: F \rightarrow \mathbb{R}$ be given by

$$
\phi(f)=\int_{-1}^{1} f(x) d x
$$

(a) (10 points) Prove that ϕ is a group homomorphism.

$$
\phi(f+g)=\int_{-1}^{1}(f+g)(x) d x=\int_{-1}^{1} f(x) d x+\int_{-1}^{1} g(x) d x=\phi(f)+\phi(g)
$$

(b) (5 points) Give an example of a non-zero element in $\operatorname{ker} \phi$.

$$
\begin{aligned}
& \phi(f)=0 \text { if } \int_{-1}^{1} f(x) d x=0 \text {. The easiest example is } f(x)=x \\
& \text { VIII } \\
& \text { but you can find plenty of other. }
\end{aligned}
$$

(c) (5 points) To what familiar group is $F / \operatorname{ker} \phi$ isomorphic? Justify your answer.

$$
\text { We know } \phi: F \rightarrow \mathbb{R} \text { and } F / \operatorname{ker}(\phi) \cong \phi[F] \subseteq \mathbb{R} \text {. So we need to }
$$

find $\phi[F]$. For which real numbers r is it true that the ne exists $f \in F$ with $\int_{-1}^{1} f(x) d x=r$? Clearly any real number works. So $F /$ wee $\phi \approx \mathbb{R}$.
6. (10 points) Let G be a group of finite order n and let $g \in G$. Prove that $g^{n}=e$, where e is the identity element of G. [Hint: use Lagrange's theorem.]

$$
\begin{aligned}
& \text { let } H=\langle g\rangle \text {. Let } m=\operatorname{ord}(g) \text {. Then }|H|=m \text { divides }|G|=n \text {. Say } n=m l \text {. } \\
& \text { Then } g^{n}=s^{m l}=\left(g^{m}\right)^{l}=e^{l}=e \text {. }
\end{aligned}
$$

7. Let $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}$ be defined by $\phi(f)=f(3)$.
(a) (10 points) Prove that ϕ is a ring homomorphism. (You can take for granted that $\mathbb{R}[x]$ and \mathbb{R} are rings.)

$$
\begin{aligned}
& \phi(f+g)=(f+g)(3)=f(3)+g(3)=\phi(f)+\phi(g) \\
& \phi(f g)=(f g)(3)=f(3) g(3)=\phi(f) \phi(g)
\end{aligned}
$$

(b) (10 points) Give a geometric interpretation of $\operatorname{ker} \phi$ in terms of the graphs of the elements of $\mathbb{R}[x]$ (i.e. how can you tell from the graph of a polynomial $y=f(x)$ that $f \in \operatorname{ker} \phi$?).

$$
\begin{aligned}
\operatorname{Ker} \phi & =\{f \in \mathbb{R}[x] \mid \phi(f)=0\} \\
& =\{f \in \mathbb{R}[x] \mid f(3)=0\} \\
& =\left\{f \in \mathbb{R}[x] \mid \text { Thu graph y } f \text { in } \mathbb{R}^{2} \text { passes though Mu point }(3,0)\right\}
\end{aligned}
$$

8. (10 points) Let G be a group and let H be a subgroup of G (not necessarily normal). Let a, b be elements of g such that $a H=b H$. Prove that $H a^{-1}=H b^{-1}$.

We are assuming that aH $=6 H$, ie that $a^{-1} b \in H$.
Claim $1 H_{a}^{-1} \subseteq H b^{-1}$
let $x \in H a^{-1}$. WT S $x \in H b^{-1}$. ie WTS $x b \in H$.
By assumption $\exists h_{1} \in H$ such that $x=h_{1}{ }_{1}^{-1}$
Then $x b=\left(h_{1} a^{-1}\right) b=h_{1}\left(a^{-1} b\right)$
We know $h, \in H$ and $a^{-1} b \in H$ so the product is in ty since A
is a subgroup. That is, $x b \in H$ as desired.

