Math 30710
Practice Final Exam 2

December, 2017 Name

This is a 2-hour exam. Books and notes are not allowed. Make sure that your work is legible, and make

sure that it is clearly marked where your answers are. S hOW a.].]. WOI'k! If a problem
calls for a proof or explanation, you will not get full credit for a correct answer if you don’t supply the

proof or explanation. If you have some ideas for solving a problem but can’t figure out how to finish it, be
sure to show me what you do know!! If something is not clear, ASK ME!! Good luck!

1. Let ¢ be the Euler phi-function, namely ¢(n) is the number of positive integers less than or equal
to n that are relatively prime to n.

(a) (5 points) Compute ¢(18) and put your answer in the provided space.
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(b) (10 points) If p is a prime, compute ¢(p?) and carefully explain your answer. [Note that this is
asking for (p?), not ¢(p). A correct answer with no explanation will not get full credit.]
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(c) (5 points) State Euler’s theorem (the generalization of Fermat’s Little Theorem). Be sure to
include all the hypotheses.
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(d) (10 points) Find the remainder of 7123322 when divided by 11 and put your answer in the
provided space.

Answer:

gz‘vu ?{ rzo dXFJW\L W Can YR FQQFMD\*\S L,ﬂC %sr\eb"\ [ap E;\,Qy‘usrgff #N)

e bave 7 =0 (mod ) G

(133t w133 - 49 = § (eod ((}
; = C? > '?

1

Ca ”ﬂx /‘QVV\DL(;W < 5.



2. Consider the symmetric group Sg and its subgroup, the alternating group Ag. Let
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(a) (5 points) Give the orders of Sg and of Ag and put your answers in the provided space.
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(b) (5 points) Write o as a product of disjoint cycles.
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(c) (b points) Write o as a product of transpositions.
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(d) (5 points) Is 0 € Ag? Explain why or why not.
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(e) (10 points) Find the order of o and put your answer in the provided space.
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3. YOU CAN DISREGARD THIS PROBLEM! Consider the polynomial f(x) = 22% + x + 1 in Z[z].

(a) (10 points) How do you know that f(x) is not irreducible over Z7 before you even try to factor
it?

(b) (10 points) Factor f(z). (Remember that the field is Z;. Your work in (a) should help.)

4. (10 points) We know that a factor group of a cyclic group is cyclic. Is it also true that a factor group
of a non-cyclic group is non-cyclic? If it’s true, give a proof. If it’s not true, give a counterexample.
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5. Let I be the additive group of all continuous functions mapping R to R. Let R be the additive
group of real numbers. Let ¢ : FF — R be given by

1
o(f) :/_1 f(x)dx.

(a) (10 points) Prove that ¢ is a group homomorphism.
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(b) (5 points) Give an example of a non-zero element in ker ¢.
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(c) (5 points) To what familiar group is F/ ker ¢ isomorphic? Justify your answer.
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6. (10 points) Let G be a group of finite order n and let g € G. Prove that g" = e, where e is the
identity element of G. [Hint: use Lagrange’s theorem. |

(ot H= {‘j> (/Cf‘ m:oroA(jg,m«« [ = = %I<‘;"‘£€§ [6‘(:”. —C‘%j'\ing,

n o owd -
\(/&AM% <9§:€1€<

n
[S))
rl



7. Let ¢ : R[z] — R be defined by ¢(f) = f(3).
(a) (10 points) Prove that ¢ is a ring homomorphism. (You can take for granted that R[x] and R

are rings.)
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(b) (10 points) Give a geometric interpretation of ker ¢ in terms of the graphs of the elements of
R[z] (i.e. how can you tell from the graph of a polynomial y = f(z) that f € ker ¢7).
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. (10 points) Let G be a group and let H be a subgroup of G (not necessarily normal). Let a,b be
elements of ¢ such that aH = bH. Prove that Ha~' = Hb~!,
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