Math 30710 Practice Exam 1-1 October 3, 2018

Name _

This is a 50-minute exam. Books and notes are not allowed. Make sure that your work is legible, and make sure that it is clearly marked where your answers are.

Show all work!

If a problem calls for a proof or explanation, you will not get full credit for a correct answer if you don't supply the proof or explanation. If you have some ideas for solving a problem but can't figure out how to finish it, be sure to show me what you do know!! If something isn't clear, ask me! If you need more space, there is a blank sheet at the back.

The Honor Code is in effect for this examination, including keeping your own exam under cover. Good luck!!

1. (5 points) Let D be a Cayley digraph, consisting of some number of vertices (corresponding to the elements of a given finite group G) and some number of different kinds of arrows (arcs) (corresponding to a given set of generators for G). Let g_1 and g_2 be vertices of D. Prove that at most one arrow (i.e. either one arrow or zero arrows) can go from g_1 to g_2 . (Hint: find an equation.)

2. (5 points) Let G be a group of order pq, where p and q are distinct prime numbers. Prove that every proper subgroup of G is cyclic.

3. Consider the permutation

(a) (5 points) Find σ^{-1} and write it in the space below:

4. (10 points) The following is the group table for an **abelian** group of order 8 with identity element e. Fill in the blanks. No justification needed, but don't forget that G is **abelian**.

	e	a_1	a_2	a_3	a_4	a_5	a_6	a_7
e					a_4	a_5	a_6	a_7
a_1		e		a_7	a_2	a_6	a_5	a_3
a_2		a_4		e	a_5	a_7		a_1
a_3		a_7		a_6		a_4	a_2	a_5
a_4	a_4	a_2		a_1		a_3	a_7	e
a_5	a_5	a_6		a_4			a_1	a_2
a_6	a_6	a_5		a_2	$\overline{a_7}$	a_1	e	a_4
a_7	a_7	a_3		a_5	e	a_2	a_4	

- 5. Provide the following examples. You do not have to justify your answers.
 - (a) (5 points) An infinite cyclic group other than Z. (It's OK that your answer will be isomorphic to Z.)
 - (b) (5 points) A finite, non-cyclic abelian group.
 - (c) (5 points) An infinite, non-abelian group.
 - (d) (5 points) A non-abelian group G of order 8 and a subgroup H of G such that the index is (G:H) = 2.
- 6. (10 points) Let G be a group. Prove that if G has only finitely many subgroups then G must be a finite group. (Hint: think about why \mathbb{Z} has infinitely many subgroups.)

7. (5 points) Prove that if G is a finite group of order n with identity element e then $a^n = e$ for all $a \in G$.

8. (5 points) Consider the relation

$$z_1 \mathcal{R} z_2$$
 in \mathbb{C} if $|z_1| = |z_2|$.

You can assume without proof that this is an equivalence relation. Find the equivalence classes (i.e. the partition) arising from this equivalence relation and describe them geometrically. (Remember that this is in \mathbb{C} , not in \mathbb{R} .) Explain your answer.

- 9. (5 points) Prove that the Klein 4-group and $\langle Z_4, + \rangle$ are not isomorphic.
- 10. (5 points) How many *different* subgroups does \mathbb{Z}_{19} have? Explain your answer.
- 11. (10 points) Let G be a finite group with identity element e, and assume that $g^2 = e$ for all $g \in G$. Prove that G is abelian.

(Extra sheet.)