Math 40510, Algebraic Geometry

Problem Set 1 Solutions, due February 14, 2020

1. Inside the affine space R? we have the subset Z? consisting of all the points (a,b) where a,b € Z.
Let f € R[z,y] and assume that f(a,b) = 0 for all (a,b) € Z?. Prove that f must be the zero
polynomial. (Note that we're assuming f(a,b) = 0 for all (a,b) € Z2, not all (a,b) € R%))

Solution.
Suppose f is not the zero polynomial. As in class, write f in ascending powers of y:

fl@y) =g0(@) + g1(@) -y + g2(2)y° + -+ + gm(z)y"

where m is the highest power of y occurring in f. Choose any a € Z and plug x = a into f, and call
the result F(y):

F(y) = go(a) + g1(a)y + g2(a)y® + - + gm(a)y™ € R[y].

Our assumption says that F'(y) vanishes at all integer points of R (of which there are infinitely
many), whereas F' has degree m. Thus F' must be the zero polynomial. This means that g;(a) =0
for all a € Z, since a was chosen arbitrarily. But g;(z) is a polynomial in just one variable, z, so
again, this forces g; to be the zero polynomial, for all i, so by (1), f(x,y) is the zero polynomial.

2. Informally, we often “identify” the complex plane C with the plane R?. In algebraic geometry we
have to be a bit more careful.
Consider the affine spaces, C' and R2. Consider the unit circle C' inside both of them. In C this
is defined by |z| = 1, and in R? it’s defined by x? 4+ y? = 1. Prove that as a subset of C', C is not
a variety, while in R? it 4s a variety. (Note that for the former, it is not enough to just say that it’s
not a variety because |z| is not a polynomial.)

Solution.

If C were a variety in C!, it would be of the form C = V(f1,..., fm) where f1,..., f € Clz].
But a polynomial in one variable has a finite number of roots, so even V(f;) alone must be finite,
and then V(fi,..., fim) € V(f1) has to be finite too. But C is not finite, so we have a contradiction.
This proves the first part.

On the other hand, in R? we already said C' = V(22 4+ y? — 1), so it is an affine variety.

3. An ideal I is said to be radical if the condition f™ € I necessarily implies f € I.
a) Prove that a prime ideal is always radical.

Solution.

Let R be the ring in which [ is an ideal. Let f € R and assume that f™ € I. We will prove that
f € I by induction on m. If m = 1 this means f = f! € I, so we are done. Otherwise we have
f-fm 1 eI Since I is prime, this means either f € I or f™~! € I. In the former case we are
done. In the latter case, f € I follows by induction.

b) Is the converse true (i.e. is a radical ideal always prime?)? If so, prove it. If not, give a
counterexample and justify your claim that it’s a counterexample.

Solution 1.

No, the converse is not true. Let R = Clz,y] and let I = (xy). This is clearly not prime since

xy € I but neither x nor y is in I. We claim that [ is a radical ideal. Let f € R satisfy f™ € I
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for some m > 1. This means
foof=fM=ay-g

for some g € R. Since x is a factor on the right and R is a UFD, z is a factor on the left. Since
x is irreducible, it divides f. Similarly for y. Thus f € (xy).

Solution 2.

Let X C R? be the set of points {(0,1),(0,2)}. We know from part (c) below that I(X) is a
radical ideal. On the other hand, the polynomial (y — 1)(y — 2) is clearly in I(X'), while neither
y — 1 nor y — 2 contains both points so neither is in I(X). Thus I(X) is not prime.

Prove that if S is a set in an affine space k™ then I(.S) is a radical ideal.

Solution.

Let f € k[z1,...,2,] = R such that f™ € I(S), i.e. (f™)(P) =0 for all P € S. This means
f(P)™ =0 for all P € S. But k is a field, hence also is an integral domain, so f(P) = 0 for all
Pe S, and f €I(S).

4. Define a function ¢ : C* — C3 by ¢(a,b) = (a?, ab,b?), where a,b € C.

2)

Is ¢ surjective? Give a proof or disprove with a counterexample.

Solution.
No. The point (0,1,0) is clearly not in the image.

Is ¢ injective? Give a proof or disprove with a counterexample.

Solution.

No. ¢(1,1) = ¢(—1,—1).

Find a point of C? that has exactly one preimage point, and justify your answer.

Solution.
Consider the point (0,0,0) = ¢(0,0). If (a?, ab,b*) = (0,0, 0) then clearly a = b = 0, so (0,0) is
the only preimage point of (0,0, 0).

Let R = C[z1, 22, 23]. Prove that the image of ¢ is an affine variety in C3 by giving the defining
polynomial(s) in R. Be sure to prove that the variety they define is ezactly the image of ¢.

Solution.

Let (a2, ab,b?) be any point in the image, ¢(C?), of ¢. Clearly this point satisfies the equation
22 — z123 = 0 since (ab)? — (a?)(b?) = 0. Thus ¢(C?) C V(22 — z23). We claim that the reverse
inclusion is true, i.e. V(23 — 2123) C ¢(C?). This will give us equality, so ¢(C?) is an affine
variety.

To see the claim, let (d, e, f) € V(23 — 2123), where d, e, f € C. This means e? = df. We want to
show that (d, e, f) = ¢(P) for some P € C2.

Case 1. (d,e, f) = (0,0,0). We have already seen that ¢(0,0) = (0,0,0).

Case 2. e = 0. This means df = 0. We have already taken care of d = f = 0, so assume that
one of the two is not zero, say d # 0 (then we necessarily have f = 0 since 0 = e? = df). We
want to find P so that ¢(P) = (d,0,0). Since d is a non-zero complex number, it has two square



roots, say a and —«. Then for example
¢(a,0) = (a?, - 0,0%) = (d,0,0)
so we can take P = (a,0).

Case 3. e # 0. Then since e? = df, we also have d, f # 0. Now the complex number df has two
square roots, namely e and —e. The complex number d has two square roots, call them o and
—q. Similarly, the complex number f has two square roots, 5 and —f. In particular, we have

a? = ()2 =dand 2 = (-f)? = .

Note (af)? = a?B? = df. This means either a3 = e or aff = —e. If a3 = e then (d,e, f) =
d(a, B). If a3 = —e then (d,e, f) = ¢(a, —3). Either way, (d,e, f) € ¢(C?), so we have proved

our inclusion and we are done.

Let S = Clx,y]. Let V = V(2 — %) inside C?. Prove that ¢(V) is a subvariety of C? by giving
its defining polynomial(s).

Solution.
The points of V are exactly the points (o, ) € C2, where a € C. Hence the points of ¢(V) are
exactly the points of the form (a?,a - a,a?) = (a?,a?,a?). Since every complex number has a

square root, the points of the form o? span all of C. Thus
¢(V) = {()‘7)‘7 )\) | Ae C} = V(zl — 22,21 — Z3)'
Thus we have the defining polynomials for the variety ¢(V).

Explain why Problem #1 shows that Z? is not an affine variety in R2. (This should only take a
few lines.)

Solution.

If Z? were an affine variety in R?, it would be of the form Z2 = V(fi, ..., fs) for some polynomials
fi,-.., fs. In particular, these polynomials have to vanish on Z2. By Problem #1, all of these
polynomials must be the zero polynomial. But the vanishing locus of the zero polynomial is R?,
not Z2. Contradiction.

If X is a set in R? (it may or may not be an affine variety), and W is an affine variety that
contains X, we’ll say that “W is the smallest variety containing X7 if there is no variety V such
that

XCVCW.

Referring again to Problem #1, what is the smallest affine variety in R? that contains Z2?
Carefully explain your answer.

Solution.
If V.= V(fi,...,fs) is a variety containing Z?, in particular all the f; have to vanish on Z2.
Then by Problem #1, again all the f; are the zero polynomial. Thus W must be R2.

Recall that the twisted cubic curve in R? is

C={ttt) | teR} =V(y— 2% z— 3.

Let
X ={(t,t* %) | t € Z}.

Find the smallest affine variety in R? that contains X. Carefully explain your answer.



Solution.

We’ll show that the smallest affine variety W in R? that contains X is W = C. First notice that

C obviously contains X, and C' is a variety since it’s V(y — 22, z — 23). We’ll be done once we

show that any variety V that contains X also has to contain C.

Solet V =V(f1,..., fs) be avariety containing X, where f; € Rz, y, z]. This means f;(¢,t%,t3) =
0 for all t € Z. But if we plug in x = t, y = t?, z = t3 into f;, we convert f; into a polynomial in
the real variable ¢ that vanishes at all ¢ € Z. Thus this polynomial in one variable has infinitely
many roots, and so it has to be the zero polynomial. This means that f;(¢,t? t3) = 0 for all
t € R, so f; vanishes on all of C. This means that C C V(f1,..., fs) =V, and we are done.

d) Let
X={tt)[1<t<10 (tcZ)}.
Find the smallest affine variety in R? that contains X. Carefully explain your answer.
Solution.
A single point (a, b, ¢) is always an affine variety, since it is V(z —a,y — b, 2 — ¢). We saw in class
that any finite union of affine varieties is again an affine variety. Thus X is an affine variety.

Remark. The smallest variety containing a set X is usually called the Zariski closure of X. We’ll
see why when we talk about the Zariski topology for affine space.

6. Assume that (f1,..., fs) = (g1,...,9:) for some polynomials fi,..., fs,91,..., Gt
Prove that V(fi,..., fs) = V(g1,...,9¢). [Hint: in class we talked about what it means to say that
(fi,---, fs) ={g1,---,9t). You can use that.]

Solution.

The fact that (fi,...,fs) = (91,...,9:) means that each f; is in (g1,...,¢:) and each g; is in
(f1,-..,fs). By symmetry it’s enough to prove that V(fi,..., fs) € V(g1,...,q:); the proof of the
reverse inclusion is identical, reversing the roles of the f; and the g;.

So let P € V(f1,...,fs). We want to show that P € V(g1,...,9¢), i.e. we want to show that
gj(P) =0 for all j. But as noted, each g; is in (f1,..., fs), so write

95 =Y hifi.
=1

s

g9;(P) = Zhi(P>'fi(P)'

But the latter is zero since P € V(f1,..., fs), i.e. P isin the common vanishing locus of the f;.

Then

7. (Continuing problem #3.)
a) Let I be an ideal in R = k[z1,...,x,]. (We are not assuming that I is a radical ideal in the
language of problem #3.) Define

VI={feR|f el for some integer r > 0}.

Prove that /T is again an ideal. (Note that if f,g € v/I it means that f” € I and ¢° € T but
not necessarily that r = s.)

Solution.
We have to prove three things to establish that v/T is an ideal.



b)

e 0 ¢ /I since 0' =0 € I (all ideals contain 0).

o If f,g € VI then f + g € V/I. Indeed, suppose f7 € I and ¢° € I. This also means that
any higher power of either f or g is also in I, by the multiplicative property of an ideal.
Then consider

r+s

Each term in this expansion contains either a power of f that’s larger than r or a power
of g that’s larger than s, since any term Af%g® in this expansion must have a +b = r + s.
For example,

(f+9)' =1 +4f°g+6f°g" +4fg° + g*;
in each term, the sum of the exponents is 4. Clearly we can’t have a < r,b < s but

a+b=r+s. So each term in the expansion is in I, and hence (f + ¢)"** € I.

e If f € V/Tand h € R then hf € VI. Indeed, since f € VI we have f7 € I for some r.
Then (hf) = h"f" €1, s0 hf € VI.

Prove that v/T is a radical ideal in the sense of problem #3.

Solution.
We have to show that if f is a polynomial for which f™ € v/T for some m then f itself must be
in v/I. The condition that f™ € v/I means that for some 7, (f™)" € I. That is, f™™ € I. So we

have shown that some power of f is in I. By definition, this means f € v/T.

Let I = (22,9°) C Rlz,y]. Show that VT = (x,y).

Solution.

We have to show that vT = /(x2,y3) = (z,y).

First we look at the inclusion D. Notice that 2% € (22,43), so z € /(22,y3) = VI. Similarly
y? e (z2, %), so y € \/(x2,y3) = VI. But we saw in a) that /(22,33) = V/T is an ideal, so any
linear combination of z and y is also in v/T, i.e. we have the desired inclusion D.

So now we have to show C.

Let f € \/(x2,3), so f € (22, y3) for some r. We want to show that f € (z,y). Let’s make

some observations.

e The statement f € (z,y) that we want to show means exactly that if you write out f,
the constant term is 0. Every other term contains either a power of x or a power of y (or
both), so every other term is automatically in (x,y). But a non-zero constant is not in
(x,y). So we want to show that the constant term of f is 0.

e The condition that f7 € (2%, y3) means that if you write out f" as a polynomial, every
term contains either z to a power > 2 or y to a power > 3 (or both). In particular, f” has
0 as its constant term.

e If f = a + (terms involving x and y), with a a non-zero constant, then f" has a” as a
non-zero constant.

These bullets show that if f~ € (x2,4?) then f can’t have a non-zero constant term, so f € (z,y)
as claimed.



