
Math 40510, Algebraic Geometry

Problem Set 1 Solutions, due February 14, 2020

1. Inside the affine space R2 we have the subset Z2 consisting of all the points (a, b) where a, b ∈ Z.
Let f ∈ R[x, y] and assume that f(a, b) = 0 for all (a, b) ∈ Z2. Prove that f must be the zero
polynomial. (Note that we’re assuming f(a, b) = 0 for all (a, b) ∈ Z2, not all (a, b) ∈ R2.)

Solution.
Suppose f is not the zero polynomial. As in class, write f in ascending powers of y:

(1) f(x, y) = g0(x) + g1(x) · y + g2(x)y2 + · · ·+ gm(x)ym

where m is the highest power of y occurring in f . Choose any a ∈ Z and plug x = a into f , and call
the result F (y):

F (y) = g0(a) + g1(a)y + g2(a)y2 + · · ·+ gm(a)ym ∈ R[y].

Our assumption says that F (y) vanishes at all integer points of R (of which there are infinitely
many), whereas F has degree m. Thus F must be the zero polynomial. This means that gi(a) = 0
for all a ∈ Z, since a was chosen arbitrarily. But gi(x) is a polynomial in just one variable, x, so
again, this forces gi to be the zero polynomial, for all i, so by (1), f(x, y) is the zero polynomial.

2. Informally, we often “identify” the complex plane C with the plane R2. In algebraic geometry we
have to be a bit more careful.

Consider the affine spaces, C1 and R2. Consider the unit circle C inside both of them. In C this
is defined by |z| = 1, and in R2 it’s defined by x2 + y2 = 1. Prove that as a subset of C1, C is not
a variety, while in R2 it is a variety. (Note that for the former, it is not enough to just say that it’s
not a variety because |z| is not a polynomial.)

Solution.
If C were a variety in C1, it would be of the form C = V(f1, . . . , fm) where f1, . . . , fm ∈ C[x].

But a polynomial in one variable has a finite number of roots, so even V(f1) alone must be finite,
and then V(f1, . . . , fm) ⊆ V(f1) has to be finite too. But C is not finite, so we have a contradiction.
This proves the first part.

On the other hand, in R2 we already said C = V(x2 + y2 − 1), so it is an affine variety.

3. An ideal I is said to be radical if the condition fm ∈ I necessarily implies f ∈ I.
a) Prove that a prime ideal is always radical.

Solution.
Let R be the ring in which I is an ideal. Let f ∈ R and assume that fm ∈ I. We will prove that
f ∈ I by induction on m. If m = 1 this means f = f1 ∈ I, so we are done. Otherwise we have
f · fm−1 ∈ I. Since I is prime, this means either f ∈ I or fm−1 ∈ I. In the former case we are
done. In the latter case, f ∈ I follows by induction.

b) Is the converse true (i.e. is a radical ideal always prime?)? If so, prove it. If not, give a
counterexample and justify your claim that it’s a counterexample.

Solution 1.
No, the converse is not true. Let R = C[x, y] and let I = 〈xy〉. This is clearly not prime since
xy ∈ I but neither x nor y is in I. We claim that I is a radical ideal. Let f ∈ R satisfy fm ∈ I
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for some m ≥ 1. This means

f · · · · · f = fm = xy · g

for some g ∈ R. Since x is a factor on the right and R is a UFD, x is a factor on the left. Since
x is irreducible, it divides f . Similarly for y. Thus f ∈ 〈xy〉.

Solution 2.
Let X ⊂ R2 be the set of points {(0, 1), (0, 2)}. We know from part (c) below that I(X) is a
radical ideal. On the other hand, the polynomial (y − 1)(y − 2) is clearly in I(X), while neither
y − 1 nor y − 2 contains both points so neither is in I(X). Thus I(X) is not prime.

c) Prove that if S is a set in an affine space kn then I(S) is a radical ideal.

Solution.
Let f ∈ k[x1, . . . , xn] = R such that fm ∈ I(S), i.e. (fm)(P ) = 0 for all P ∈ S. This means
f(P )m = 0 for all P ∈ S. But k is a field, hence also is an integral domain, so f(P ) = 0 for all
P ∈ S, and f ∈ I(S).

4. Define a function φ : C2 → C3 by φ(a, b) = (a2, ab, b2), where a, b ∈ C.

a) Is φ surjective? Give a proof or disprove with a counterexample.

Solution.
No. The point (0, 1, 0) is clearly not in the image.

b) Is φ injective? Give a proof or disprove with a counterexample.

Solution.
No. φ(1, 1) = φ(−1,−1).

c) Find a point of C3 that has exactly one preimage point, and justify your answer.

Solution.
Consider the point (0, 0, 0) = φ(0, 0). If (a2, ab, b2) = (0, 0, 0) then clearly a = b = 0, so (0, 0) is
the only preimage point of (0, 0, 0).

d) Let R = C[z1, z2, z3]. Prove that the image of φ is an affine variety in C3 by giving the defining
polynomial(s) in R. Be sure to prove that the variety they define is exactly the image of φ.

Solution.
Let (a2, ab, b2) be any point in the image, φ(C2), of φ. Clearly this point satisfies the equation
z22 − z1z3 = 0 since (ab)2 − (a2)(b2) = 0. Thus φ(C2) ⊆ V(z22 − z1z3). We claim that the reverse
inclusion is true, i.e. V(z22 − z1z3) ⊆ φ(C2). This will give us equality, so φ(C2) is an affine
variety.

To see the claim, let (d, e, f) ∈ V(z22 − z1z3), where d, e, f ∈ C. This means e2 = df . We want to
show that (d, e, f) = φ(P ) for some P ∈ C2.

Case 1. (d, e, f) = (0, 0, 0). We have already seen that φ(0, 0) = (0, 0, 0).

Case 2. e = 0. This means df = 0. We have already taken care of d = f = 0, so assume that
one of the two is not zero, say d 6= 0 (then we necessarily have f = 0 since 0 = e2 = df). We
want to find P so that φ(P ) = (d, 0, 0). Since d is a non-zero complex number, it has two square
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roots, say α and −α. Then for example

φ(α, 0) = (α2, α · 0, 02) = (d, 0, 0)

so we can take P = (α, 0).

Case 3. e 6= 0. Then since e2 = df , we also have d, f 6= 0. Now the complex number df has two
square roots, namely e and −e. The complex number d has two square roots, call them α and
−α. Similarly, the complex number f has two square roots, β and −β. In particular, we have
α2 = (−α)2 = d and β2 = (−β)2 = f .

Note (αβ)2 = α2β2 = df . This means either αβ = e or αβ = −e. If αβ = e then (d, e, f) =
φ(α, β). If αβ = −e then (d, e, f) = φ(α,−β). Either way, (d, e, f) ∈ φ(C2), so we have proved
our inclusion and we are done.

e) Let S = C[x, y]. Let V = V(x − y) inside C2. Prove that φ(V ) is a subvariety of C3 by giving
its defining polynomial(s).

Solution.
The points of V are exactly the points (α, α) ∈ C2, where α ∈ C. Hence the points of φ(V ) are
exactly the points of the form (α2, α · α, α2) = (α2, α2, α2). Since every complex number has a
square root, the points of the form α2 span all of C. Thus

φ(V ) = {(λ, λ, λ) | λ ∈ C} = V(z1 − z2, z1 − z3).

Thus we have the defining polynomials for the variety φ(V ).

5. a) Explain why Problem #1 shows that Z2 is not an affine variety in R2. (This should only take a
few lines.)

Solution.
If Z2 were an affine variety in R2, it would be of the form Z2 = V (f1, . . . , fs) for some polynomials
f1, . . . , fs. In particular, these polynomials have to vanish on Z2. By Problem #1, all of these
polynomials must be the zero polynomial. But the vanishing locus of the zero polynomial is R2,
not Z2. Contradiction.

b) If X is a set in R2 (it may or may not be an affine variety), and W is an affine variety that
contains X, we’ll say that “W is the smallest variety containing X” if there is no variety V such
that

X ⊆ V (W.

Referring again to Problem #1, what is the smallest affine variety in R2 that contains Z2?
Carefully explain your answer.

Solution.
If V = V(f1, . . . , fs) is a variety containing Z2, in particular all the fi have to vanish on Z2.
Then by Problem #1, again all the fi are the zero polynomial. Thus W must be R2.

c) Recall that the twisted cubic curve in R3 is

C = {(t, t2, t3) | t ∈ R} = V(y − x2, z − x3).

Let

X = {(t, t2, t3) | t ∈ Z}.
Find the smallest affine variety in R3 that contains X. Carefully explain your answer.



4

Solution.
We’ll show that the smallest affine variety W in R2 that contains X is W = C. First notice that
C obviously contains X, and C is a variety since it’s V(y − x2, z − x3). We’ll be done once we
show that any variety V that contains X also has to contain C.

So let V = V(f1, . . . , fs) be a variety containingX, where fi ∈ R[x, y, z]. This means fi(t, t
2, t3) =

0 for all t ∈ Z. But if we plug in x = t, y = t2, z = t3 into fi, we convert fi into a polynomial in
the real variable t that vanishes at all t ∈ Z. Thus this polynomial in one variable has infinitely
many roots, and so it has to be the zero polynomial. This means that fi(t, t

2, t3) = 0 for all
t ∈ R, so fi vanishes on all of C. This means that C ⊂ V(f1, . . . , fs) = V , and we are done.

d) Let

X = {(t, t2, t3) | 1 ≤ t ≤ 10 (t ∈ Z)}.
Find the smallest affine variety in R3 that contains X. Carefully explain your answer.

Solution.
A single point (a, b, c) is always an affine variety, since it is V(x−a, y− b, z− c). We saw in class
that any finite union of affine varieties is again an affine variety. Thus X is an affine variety.

Remark. The smallest variety containing a set X is usually called the Zariski closure of X. We’ll
see why when we talk about the Zariski topology for affine space.

6. Assume that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 for some polynomials f1, . . . , fs, g1, . . . , gt.

Prove that V(f1, . . . , fs) = V(g1, . . . , gt). [Hint: in class we talked about what it means to say that
〈f1, . . . , fs〉 = 〈g1, . . . , gt〉. You can use that.]

Solution.
The fact that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 means that each fi is in 〈g1, . . . , gt〉 and each gj is in

〈f1, . . . , fs〉. By symmetry it’s enough to prove that V(f1, . . . , fs) ⊆ V(g1, . . . , gt); the proof of the
reverse inclusion is identical, reversing the roles of the fi and the gj .

So let P ∈ V(f1, . . . , fs). We want to show that P ∈ V(g1, . . . , gt), i.e. we want to show that
gj(P ) = 0 for all j. But as noted, each gj is in 〈f1, . . . , fs〉, so write

gj =

s∑
i=1

hifi.

Then

gj(P ) =

s∑
i=1

hi(P ) · fi(P ).

But the latter is zero since P ∈ V(f1, . . . , fs), i.e. P is in the common vanishing locus of the fi.

7. (Continuing problem #3.)
a) Let I be an ideal in R = k[x1, . . . , xn]. (We are not assuming that I is a radical ideal in the

language of problem #3.) Define
√
I = {f ∈ R | f r ∈ I for some integer r ≥ 0}.

Prove that
√
I is again an ideal. (Note that if f, g ∈

√
I it means that f r ∈ I and gs ∈ I but

not necessarily that r = s.)

Solution.
We have to prove three things to establish that

√
I is an ideal.
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• 0 ∈
√
I since 01 = 0 ∈ I (all ideals contain 0).

• If f, g ∈
√
I then f + g ∈

√
I. Indeed, suppose f r ∈ I and gs ∈ I. This also means that

any higher power of either f or g is also in I, by the multiplicative property of an ideal.
Then consider

(f + g)r+s = f r+s +

(
r + s

1

)
f r+s−1g + · · ·+ gr+s.

Each term in this expansion contains either a power of f that’s larger than r or a power
of g that’s larger than s, since any term Afagb in this expansion must have a+ b = r+ s.
For example,

(f + g)4 = f4 + 4f3g + 6f2g2 + 4fg3 + g4;

in each term, the sum of the exponents is 4. Clearly we can’t have a < r, b < s but
a+ b = r + s. So each term in the expansion is in I, and hence (f + g)r+s ∈ I.

• If f ∈
√
I and h ∈ R then hf ∈

√
I. Indeed, since f ∈

√
I we have f r ∈ I for some r.

Then (hf)r = hrf r ∈ I, so hf ∈
√
I.

b) Prove that
√
I is a radical ideal in the sense of problem #3.

Solution.
We have to show that if f is a polynomial for which fm ∈

√
I for some m then f itself must be

in
√
I. The condition that fm ∈

√
I means that for some r, (fm)r ∈ I. That is, f rm ∈ I. So we

have shown that some power of f is in I. By definition, this means f ∈
√
I.

c) Let I = 〈x2, y3〉 ⊂ R[x, y]. Show that
√
I = 〈x, y〉.

Solution.
We have to show that

√
I =

√
〈x2, y3〉 = 〈x, y〉.

First we look at the inclusion ⊇. Notice that x2 ∈ 〈x2, y3〉, so x ∈
√
〈x2, y3〉 =

√
I. Similarly

y3 ∈ 〈x2, y3〉, so y ∈
√
〈x2, y3〉 =

√
I. But we saw in a) that

√
〈x2, y3〉 =

√
I is an ideal, so any

linear combination of x and y is also in
√
I, i.e. we have the desired inclusion ⊇.

So now we have to show ⊆.

Let f ∈
√
〈x2, y3〉, so f r ∈ 〈x2, y3〉 for some r. We want to show that f ∈ 〈x, y〉. Let’s make

some observations.

• The statement f ∈ 〈x, y〉 that we want to show means exactly that if you write out f ,
the constant term is 0. Every other term contains either a power of x or a power of y (or
both), so every other term is automatically in 〈x, y〉. But a non-zero constant is not in
〈x, y〉. So we want to show that the constant term of f is 0.

• The condition that f r ∈ 〈x2, y3〉 means that if you write out f r as a polynomial, every
term contains either x to a power ≥ 2 or y to a power ≥ 3 (or both). In particular, f r has
0 as its constant term.

• If f = a + (terms involving x and y), with a a non-zero constant, then f r has ar as a
non-zero constant.

These bullets show that if f r ∈ 〈x2, y3〉 then f can’t have a non-zero constant term, so f ∈ 〈x, y〉
as claimed.


