
Math 40510, Algebraic Geometry

Problem Set 2, due March 20, 2020

1. Throughout this problem, we will let R = R[x, y, z] and let C be the twisted cubic curve in R3:

C = V(y − x2, z − x3) = {(t, t2, t3) ∈ R3 | t ∈ R}.
Using the parametrization should be helpful in this problem, as will thinking geometrically.

a) Let ` be a linear polynomial: ` = ax + by + cz + d where a, b, c, d ∈ R. Recall that as long as
` is not a constant, i.e. as long as at least one of a, b, c is non-zero, V(`) is a plane in R3, and
V(y − x2, z − x3, `) represents the intersection of C with this plane (you don’t have to prove
either of these facts).

In this problem be sure to explain each answer. Find specific values of a, b, c, d (with at least
one of a, b, c non-zero) so that

(i) (3 points) V(y − x2, z − x3, `) is empty (remember at least one of a, b, c has to be
non-zero);

Solution:
Take ` = y + 1. Then

C ∩ V(`) = {(t, t2, t3) ∈ R3 | t2 + 1 = 0} = ∅.

(ii) (3 points) V(y − x2, z − x3, `) consists of one point;

Solution:
Take ` = x. Then

C ∩ V(`) = {(t, t2, t3) ∈ R3 | t = 0} = {(0, 0, 0)}.

(iii) (3 points) V(y − x2, z − x3, `) consists of two distinct points;

Solution:
Take ` = y − 1. Then

C ∩ V(`) = {(t, t2, t3) ∈ R3 | t2 − 1 = 0} = {(1, 1, 1), (−1, 1,−1)}.

(iv) (3 points) V(y − x2, z − x3, `) consists of three distinct points.

Solution:
Take ` = 2x− 3y + z. Then

C ∩ V(`) = {(t, t2, t3) ∈ R3 | 2t− 3t2 + t3 = 0}
= {(t, t2, t3) ∈ R3 | t(t− 1)(t− 2) = 0}
= {(0, 0, 0), (1, 1, 1), (2, 4, 8)}.

b) (5 points) Prove that V(y − x2, z − x3, `) cannot consist of four or more distinct points.

Solution:
Let ` = ax+ by + cz + d, so

C ∩ V(`) = {(t, t2, t3) ∈ R3 | at+ bt2 + ct3 + d = 0}.
Remember that a, b, c, d are just real numbers, not polynomials. Then at + bt2 + ct3 + d is a
polynomial of degree at most 3 in the variable t, no matter what a, b, c, d are, so it can have at
most three roots. That is, there are at most three such points.
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c) (5 points) Recall that in R3, if P and Q are two distinct points then there is a unique line, PQ,
joining P and Q. (You don’t have to prove this fact.) If P,Q both happen to be points on C,
QP is called a secant line of C.

Prove that a secant line to C can’t meet C in a third point (i.e. it can’t be a trisecant line).

Solution:
This follows from b). If three points of C lie on a line λ, let P be another point of C not on
λ. Then λ and P span a plane, and this plane contains those four points of C, which we saw is
impossible.

d) (5 points) Let the lines AB and PQ be distinct secant lines to the twisted cubic curve C (in
particular, A,B, P,Q are points of C). Prove that if the lines AB and PQ meet in one point,
then one of A,B has to be equal to one of P,Q. You can use standard facts from high school
geometry without proof.

Solution:
If A,B, P,Q are not all distinct, we know that A 6= B and P 6= Q so one of A,B has to be equal
to one of P,Q and we are done. So assume they are all distinct, and we’ll get a contradiction.

Since the lines meet in some point E, then those lines span a plane, say Λ. By b), the plane Λ
meets C in at most 3 points. We first claim that E has to lie on C. If E does not lie on C, and
if A,B, P,Q are all distinct points as we’ve assumed, then Λ meets C in four points, which is
impossible by b).

So E lies on C. We saw in part c) that C has no trisecant lines, so we have to have E is equal
to one of A,B and one of P,Q, giving the conclusion.

2. (6 points) In R2, let V = V(y − x2) (a parabola). Mimic the proof of the example in section 4 of
chapter 1 of Cox-Little-O’Shea (page 33 in the 4th edition, pages 33–34 of the 3rd edition) to show
that I(V ) = 〈y − x2〉.

Solution:
It’s clear that I(V ) ⊇ 〈y−x2〉 so we just have to prove the reverse inclusion. Notice that we have

a parametrization

V = {(t, t2) | t ∈ R}.

Claim: Every polynomial f ∈ R[x, y] can be written as

f = h(y − x2) + r

where h ∈ R[x, y] and r is a polynomial in the variable x alone.

To prove this we follow CLO. First prove it for a monomial xαyβ.

xαyβ = xα(x2 + (y − x2))β
= xα(x2β + terms that involve y − x2)
= h · (y − x2) + xα+2β

for some polynomial h. But an arbitrary polynomial is an R-linear combination of monomials, so
we are done with the claim.

Now let f ∈ I(V ). We want to show that f = (y − x2) · h for some h ∈ R[x, y]. By the claim, we
can write

f = h · (y − x2) + r
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where h ∈ R[x, y] and r is a polynomial in the variable x alone. Of course f vanishes at every point
of V by definition of I(V ). Thanks to the parametrization above, we get

0 = f(t, t2) = 0 + r(t)

for all t ∈ R. Hence r is the zero polynomial so f = h · (y − x2) and we are done.

3. (5 points) Let V and W be varieties in Cn such that V ∩W = ∅. Prove that there exist f ∈ I(V )
and g ∈ I(W ) such that f + g = 1.

Solution:
We know that V(I(V )) = V , V(I(W )) = W and V(I(V ) + I(W )) = V ∩ W = ∅. Since C is
algebraically closed, the Weak Nullstellensatz says that I(V ) + I(W ) = 〈1〉 = R. The result follows
immediately

4. For this problem let k be a field, which we do not necessarily assume is algebraically closed. In part
c) we will further assume that k = R.

a) (5 points) Let I and J be ideals in k[x1, . . . , xn]. Suppose we happen to know that there exist
f ∈ I and g ∈ J such that f + g = 1. Prove that

V(I) ∩ V(J) = ∅;

Solution:
We know that

V(I) ∩ V(J) = V(I + J) = V(〈1〉) = ∅.

b) (5 points) Let I and J be ideals in k[x1, . . . , xn]. Suppose we happen to know that there exist
f ∈ I and g ∈ J such that f + g = 1. Prove that

IJ = I ∩ J.

Solution:
We saw in class that it’s always true that IJ ⊆ I ∩ J so we only have to prove the reverse
inclusion. Let h ∈ I ∩ J . Then we have

f + g = 1 =⇒ fh+ gh = h.

But since h ∈ I ∩ J , h is in each of I and J . Then fh ∈ IJ and gh ∈ IJ so their sum is in IJ
since IJ is an ideal, i.e. h ∈ IJ .

c) (5 points) Give (with proof) an example of two varieties V,W in R2 such that V ∩W = ∅ but
there is no f ∈ I(V ) and g ∈ I(W ) such that f + g = 1. [Hint: this wouldn’t be true over
C thanks to problem #3, so you should take advantage of some property of R. One solution
involves the result of problem 2, which you can use whether or not you were able to solve it.]

Solution:
Let V = V(y − x2) (parabola) and let W = V(y + 1) (the horizontal line defined by y = −1).
Then V ∩W = V(y − x2, y + 1). To find the common zeros, if y + 1 = 0 we have y = −1, so
then we need the vanishing of −1− x2 = −(1 + x2), which over R is empty.

We have I(V ) = 〈y−x2〉 from problem 2. Now claim that I(W ) = 〈y+ 1〉. As before, ⊇ is clear.
If f ∈ I(W ), write

f = gm(x)ym + gm−1(x)ym−1 + · · ·+ g1(x)y + g0(x)
= gm(x)((y + 1)− 1)m + gm−1(x)((y + 1)− 1)m−1 + · · ·+ g1(x)((y + 1)− 1) + g0(x)
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In this way, as before, we can write f as

f = (y + 1)h+ r

where h ∈ R[x, y] and r ∈ R[x]. Since f(t,−1) = 0 for all t ∈ R (because f ∈ I(W ) and W is
the horizontal line y = −1), again we get r is the zero polynomial so I(W ) = 〈y + 1〉.

Now we can verify that there is no f ∈ I(V ) and g ∈ I(W ) such that f + g = 1. Suppose there
were (looking for a contradiction). This would mean that

1 = h1 · (y − x2) + h2 · (y + 1)

for some h1, h2 ∈ R[x, y]. Write the first as h1(x, y) to stress that it is a polynomial in x and y.
If this equation is true as polynmomials, it remains true if we set y = −1. Thus

1 = −h1(x,−1)(1 + x2).

But the degree of the product of two polynomials in R[x] is the sum of the degrees of the
individual polynomials (look at the leading terms), so this is impossible since the polynomial on
the left is a constant (degree = 0) and the one on the right has degree at least 2.

5. Fun with colon ideals. In this problem, all ideals are in R = k[x1, . . . , xn] where k is some field.
Prove the following facts. (All of these are relatively short proofs, no more than 10 lines.)

a) (5 points) If J ⊆ K then I : J ⊇ I : K.

Solution:
Let f ∈ I : K. We want to show that f ∈ I : J . Let g ∈ J . We want to show that fg ∈ I. Since
J ⊆ K, we also have g ∈ K, so since f ∈ I : K we get fg ∈ I as desired.

b) (5 points) If I is radical then I : J is also radical.

Solution:
Let f ∈ R be a polynomial such that fm ∈ I : J for some integer m ≥ 1. We want to show that
f ∈ I : J . That is, we want to show that fg ∈ I for each g ∈ J .

So let g ∈ J . Since fm ∈ I : J , we know fmg ∈ I. Hence we also have fmgm = (fg)m ∈ I. But
I is a radical ideal, so fg ∈ I, which was what we wanted to show.

c) (5 points) J ⊆
√
I if and only if I : J∞ = k[x1, . . . , xn].

Solution:
For any ideal K, the statement that K = k[x1, . . . , xn] is equivalent to the statement that 1 ∈ K.
So apply this to the ideal K = I : J∞.

I : J∞ = k[x1, . . . , xn] ⇐⇒ 1 ∈ I : J∞

⇐⇒ for each g ∈ J, 1 · gm ∈ I for some m ≥ 1
⇐⇒ for each g ∈ J, gm ∈ I for some m ≥ 1

⇐⇒ for each g ∈ J, g ∈
√
I

⇐⇒ J ⊆
√
I.

d) (5 points) Let I⊆ k[x1, . . . , xn] be any ideal. Let J = I2 . Find

I : J∞

and explain your answer. [Hint: look at the other parts of this problem. There is a one-line
answer.]

Solution:
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We have J = I2 ⊆ I ⊆
√
I so by the previous problem, I : J∞ = k[x1, . . . , cn].

e) (5 points) (I ∩ J) : K = (I : K) ∩ (J : K).

Solution:
We’ll prove both inclusions at the same time.

f ∈ (I ∩ J) : K ⇐⇒ for each g ∈ K, fg ∈ I ∩ J
⇐⇒ for each g ∈ K, fg ∈ I and fg ∈ J
⇐⇒ f ∈ I : K and f ∈ J : K
⇐⇒ f ∈ (I : K) ∩ (J : K).

f) (5 points) (I ∩ J) : K∞ = (I : K∞) ∩ (J : K∞).

Solution:
You have to be a little careful with this one. It’s not easy to prove both directions at once so
we’ll prove both inclusions separately.
⊆:
Let f ∈ (I ∩J) : K∞. Let g ∈ K. So we know that fgm ∈ I ∩J for some m ≥ 1. Hence fgm ∈ I
and fgm ∈ J , so f ∈ (I : K∞) ∩ (J : K∞).

⊇:
Let f ∈ (I : K∞) ∩ (J : K∞). Let g ∈ K. So fg`1 ∈ I for some `1 ≥ 1 and fg`2 ∈ J for
some `2 ≥ 1. Let m = max{`1, `2}. Then fgm ∈ I and fgm ∈ J , so fgm ∈ I ∩ J and hence
f ∈ (I ∩ J) : K∞.

g) (5 points) I : (J +K) = (I : J) ∩ (I : K).

Solution:
⊆:
Let f ∈ I : (J + K). This means that for each g ∈ J + K we have fg ∈ I. Since J ⊆ J + K
and K ⊆ J + K, in particular if g ∈ J then fg ∈ I, and if g ∈ K then fg ∈ I. This means
f ∈ (I : J) ∩ (I : K).

⊇:
Let f ∈ (I : J) ∩ (I : K). Let g + h ∈ J +K, where g ∈ J and h ∈ K. Then

f(g + h) = fg + fh ∈ I

so f ∈ I : (J +K).

6. In this problem, let R = k[x, y, z, w], where k is a field. Let

I = 〈x, y〉3 ∩ 〈z, w〉3

and let

J = 〈x, y〉2.
You can use results from previous problems. (Recall 〈x, y〉2 = 〈x2, xy, y2〉.)

a) (6 points) Find I : J and explain your answer.

Solution:
By problem 5 e),

(1) I : J = [〈x, y〉3 ∩ 〈z, w〉3] : 〈x, y〉2 = [〈x, y〉3 : 〈x, y〉2] ∩ [〈z, w〉3 : 〈z, w〉2]

Claim 1: 〈x, y〉3 : 〈x, y〉2 = 〈x, y〉.
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We are claiming that

〈x2, x2y, xy2, y3〉 : 〈x2, xy, y2〉 = 〈x, y〉.
⊇:
It’s clear that x and y individually are in this ideal quotient, so the ideal that they generate is
too.

⊆:
Let f ∈ 〈x, y〉3 : 〈x, y〉2. Write

f = a(x, y, z, w) · x+ b(x, y, z, w) · y + c(z, w).

We want to show that c(z, w) is the zero polynomial, so f ∈ 〈x, y〉.

Since we know that x, y ∈ 〈x, y〉3 : 〈x, y〉2 and f ∈ 〈x, y〉3 : 〈x, y〉2 by assumption, we get

f − (ax+ by) = c(z, w) ∈ 〈x, y〉3 : 〈x, y〉2

by basic properties of an ideal. But it’s clear that c(z, w) · x2 is not in 〈x3, x2y, xy2, y3〉, except
when c(z, w) is the zero polynomial, so we are done with Claim 1.

Claim 2: 〈z, w〉3 : 〈x, y〉2 = 〈z, w〉3.

⊇:
As before, this inclusion is clear.

⊆:
Use part g) of problem #5 (generalized to the sum of three ideals, with the same argument).
You can check that

〈z, y〉3 : 〈x2〉 = 〈z, w〉3
〈z, y〉3 : 〈xy〉 = 〈z, w〉3
〈z, y〉3 : 〈y2〉 = 〈z, w〉3

so since the intersection of the three ideals on the right is clearly 〈z, w〉3, this proves Claim 2.

From equation (1) and the two claims, we get

I : J = 〈x, y〉 ∩ 〈z, w〉3.

b) (6 points) Assume that k is algebraically closed, and find V(I : J∞). [Hint: you’ll find it much
easier to use a theorem from class or from the book than to compute I : J∞ directly.]

Solution:
In class we proved that

V(I : J∞) = V(I)\V(J).

Since intersections of ideals correspond to unions of varieties, we have

V(I) = V(x, y) ∪ V(z, w) and V(J) = V(x, y).

Thus V(I : J∞) = V(z, w).


