Math 40510, Algebraic Geometry

Problem Set 2, due March 20, 2020

1. Throughout this problem, we will let $R=\mathbb{R}[x, y, z]$ and let C be the twisted cubic curve in \mathbb{R}^{3} :

$$
C=\mathbb{V}\left(y-x^{2}, z-x^{3}\right)=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid t \in \mathbb{R}\right\} .
$$

Using the parametrization should be helpful in this problem, as will thinking geometrically.
a) Let ℓ be a linear polynomial: $\ell=a x+b y+c z+d$ where $a, b, c, d \in \mathbb{R}$. Recall that as long as ℓ is not a constant, i.e. as long as at least one of a, b, c is non-zero, $\mathbb{V}(\ell)$ is a plane in \mathbb{R}^{3}, and $\mathbb{V}\left(y-x^{2}, z-x^{3}, \ell\right)$ represents the intersection of C with this plane (you don't have to prove either of these facts).
In this problem be sure to explain each answer. Find specific values of a, b, c, d (with at least one of a, b, c non-zero) so that
(i) (3 points) $\mathbb{V}\left(y-x^{2}, z-x^{3}, \ell\right)$ is empty (remember at least one of a, b, c has to be non-zero);

Solution:

Take $\ell=y+1$. Then

$$
C \cap \mathbb{V}(\ell)=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid t^{2}+1=0\right\}=\emptyset
$$

(ii) (3 points) $\mathbb{V}\left(y-x^{2}, z-x^{3}, \ell\right)$ consists of one point;

Solution:

Take $\ell=x$. Then

$$
C \cap \mathbb{V}(\ell)=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid t=0\right\}=\{(0,0,0)\} .
$$

(iii) (3 points) $\mathbb{V}\left(y-x^{2}, z-x^{3}, \ell\right)$ consists of two distinct points;

Solution:

Take $\ell=y-1$. Then

$$
C \cap \mathbb{V}(\ell)=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid t^{2}-1=0\right\}=\{(1,1,1),(-1,1,-1)\}
$$

(iv) (3 points) $\mathbb{V}\left(y-x^{2}, z-x^{3}, \ell\right)$ consists of three distinct points.

Solution:

Take $\ell=2 x-3 y+z$. Then

$$
\begin{aligned}
C \cap \mathbb{V}(\ell) & =\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid 2 t-3 t^{2}+t^{3}=0\right\} \\
& =\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid t(t-1)(t-2)=0\right\} \\
& =\{(0,0,0),(1,1,1),(2,4,8)\} .
\end{aligned}
$$

b) (5 points) Prove that $\mathbb{V}\left(y-x^{2}, z-x^{3}, \ell\right)$ cannot consist of four or more distinct points.

Solution:

Let $\ell=a x+b y+c z+d$, so

$$
C \cap \mathbb{V}(\ell)=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid a t+b t^{2}+c t^{3}+d=0\right\}
$$

Remember that a, b, c, d are just real numbers, not polynomials. Then $a t+b t^{2}+c t^{3}+d$ is a polynomial of degree at most 3 in the variable t, no matter what a, b, c, d are, so it can have at most three roots. That is, there are at most three such points.
c) (5 points) Recall that in \mathbb{R}^{3}, if P and Q are two distinct points then there is a unique line, $\overline{P Q}$, joining P and Q. (You don't have to prove this fact.) If P, Q both happen to be points on C, $\overline{Q P}$ is called a secant line of C.

Prove that a secant line to C can't meet C in a third point (i.e. it can't be a trisecant line).

Solution:

This follows from b). If three points of C lie on a line λ, let P be another point of C not on λ. Then λ and P span a plane, and this plane contains those four points of C, which we saw is impossible.
d) (5 points) Let the lines $\overline{A B}$ and $\overline{P Q}$ be distinct secant lines to the twisted cubic curve C (in particular, A, B, P, Q are points of C). Prove that if the lines $\overline{A B}$ and $\overline{P Q}$ meet in one point, then one of A, B has to be equal to one of P, Q. You can use standard facts from high school geometry without proof.

Solution:

If A, B, P, Q are not all distinct, we know that $A \neq B$ and $P \neq Q$ so one of A, B has to be equal to one of P, Q and we are done. So assume they are all distinct, and we'll get a contradiction.

Since the lines meet in some point E, then those lines span a plane, say Λ. By b), the plane Λ meets C in at most 3 points. We first claim that E has to lie on C. If E does not lie on C, and if A, B, P, Q are all distinct points as we've assumed, then Λ meets C in four points, which is impossible by b).
So E lies on C. We saw in part c) that C has no trisecant lines, so we have to have E is equal to one of A, B and one of P, Q, giving the conclusion.
2. (6 points) In \mathbb{R}^{2}, let $V=\mathbb{V}\left(y-x^{2}\right.$) (a parabola). Mimic the proof of the example in section 4 of chapter 1 of Cox-Little-O'Shea (page 33 in the 4th edition, pages $33-34$ of the 3rd edition) to show that $\mathbb{I}(V)=\left\langle y-x^{2}\right\rangle$.

Solution:

It's clear that $\mathbb{I}(V) \supseteq\left\langle y-x^{2}\right\rangle$ so we just have to prove the reverse inclusion. Notice that we have a parametrization

$$
V=\left\{\left(t, t^{2}\right) \mid t \in \mathbb{R}\right\} .
$$

Claim: Every polynomial $f \in \mathbb{R}[x, y]$ can be written as

$$
f=h\left(y-x^{2}\right)+r
$$

where $h \in \mathbb{R}[x, y]$ and r is a polynomial in the variable x alone.
To prove this we follow CLO. First prove it for a monomial $x^{\alpha} y^{\beta}$.

$$
\begin{aligned}
x^{\alpha} y^{\beta} & =x^{\alpha}\left(x^{2}+\left(y-x^{2}\right)\right)^{\beta} \\
& =x^{\alpha}\left(x^{2 \beta}+\text { terms that involve } y-x^{2}\right) \\
& =h \cdot\left(y-x^{2}\right)+x^{\alpha+2 \beta}
\end{aligned}
$$

for some polynomial h. But an arbitrary polynomial is an \mathbb{R}-linear combination of monomials, so we are done with the claim.

Now let $f \in \mathbb{I}(V)$. We want to show that $f=\left(y-x^{2}\right) \cdot h$ for some $h \in \mathbb{R}[x, y]$. By the claim, we can write

$$
f=h \cdot\left(y-x^{2}\right)+r
$$

where $h \in \mathbb{R}[x, y]$ and r is a polynomial in the variable x alone. Of course f vanishes at every point of V by definition of $\mathbb{I}(V)$. Thanks to the parametrization above, we get

$$
0=f\left(t, t^{2}\right)=0+r(t)
$$

for all $t \in \mathbb{R}$. Hence r is the zero polynomial so $f=h \cdot\left(y-x^{2}\right)$ and we are done.
3. (5 points) Let V and W be varieties in \mathbb{C}^{n} such that $V \cap W=\emptyset$. Prove that there exist $f \in \mathbb{I}(V)$ and $g \in \mathbb{I}(W)$ such that $f+g=1$.

Solution:

We know that $\mathbb{V}(\mathbb{I}(V))=V, \mathbb{V}(\mathbb{I}(W))=W$ and $\mathbb{V}(\mathbb{I}(V)+\mathbb{I}(W))=V \cap W=\emptyset$. Since \mathbb{C} is algebraically closed, the Weak Nullstellensatz says that $\mathbb{I}(V)+\mathbb{I}(W)=\langle 1\rangle=R$. The result follows immediately
4. For this problem let k be a field, which we do not necessarily assume is algebraically closed. In part c) we will further assume that $k=\mathbb{R}$.
a) (5 points) Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Suppose we happen to know that there exist $f \in I$ and $g \in J$ such that $f+g=1$. Prove that

$$
\mathbb{V}(I) \cap \mathbb{V}(J)=\emptyset ;
$$

Solution:

We know that

$$
\mathbb{V}(I) \cap \mathbb{V}(J)=\mathbb{V}(I+J)=\mathbb{V}(\langle 1\rangle)=\emptyset
$$

b) (5 points) Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Suppose we happen to know that there exist $f \in I$ and $g \in J$ such that $f+g=1$. Prove that

$$
I J=I \cap J .
$$

Solution:

We saw in class that it's always true that $I J \subseteq I \cap J$ so we only have to prove the reverse inclusion. Let $h \in I \cap J$. Then we have

$$
f+g=1 \Longrightarrow f h+g h=h .
$$

But since $h \in I \cap J, h$ is in each of I and J. Then $f h \in I J$ and $g h \in I J$ so their sum is in $I J$ since $I J$ is an ideal, i.e. $h \in I J$.
c) (5 points) Give (with proof) an example of two varieties V, W in \mathbb{R}^{2} such that $V \cap W=\emptyset$ but there is no $f \in \mathbb{I}(V)$ and $g \in \mathbb{I}(W)$ such that $f+g=1$. [Hint: this wouldn't be true over \mathbb{C} thanks to problem $\# 3$, so you should take advantage of some property of \mathbb{R}. One solution involves the result of problem 2, which you can use whether or not you were able to solve it.]

Solution:

Let $V=\mathbb{V}\left(y-x^{2}\right)$ (parabola) and let $W=\mathbb{V}(y+1)$ (the horizontal line defined by $y=-1$). Then $V \cap W=\mathbb{V}\left(y-x^{2}, y+1\right)$. To find the common zeros, if $y+1=0$ we have $y=-1$, so then we need the vanishing of $-1-x^{2}=-\left(1+x^{2}\right)$, which over \mathbb{R} is empty.
We have $\mathbb{I}(V)=\left\langle y-x^{2}\right\rangle$ from problem 2. Now claim that $\mathbb{I}(W)=\langle y+1\rangle$. As before, \supseteq is clear. If $f \in \mathbb{I}(W)$, write

$$
\begin{aligned}
f & =g_{m}(x) y^{m}+g_{m-1}(x) y^{m-1}+\cdots+g_{1}(x) y+g_{0}(x) \\
& =g_{m}(x)((y+1)-1)^{m}+g_{m-1}(x)((y+1)-1)^{m-1}+\cdots+g_{1}(x)((y+1)-1)+g_{0}(x)
\end{aligned}
$$

In this way, as before, we can write f as

$$
f=(y+1) h+r
$$

where $h \in \mathbb{R}[x, y]$ and $r \in \mathbb{R}[x]$. Since $f(t,-1)=0$ for all $t \in \mathbb{R}$ (because $f \in \mathbb{I}(W)$ and W is the horizontal line $y=-1$), again we get r is the zero polynomial so $\mathbb{I}(W)=\langle y+1\rangle$.

Now we can verify that there is no $f \in \mathbb{I}(V)$ and $g \in \mathbb{I}(W)$ such that $f+g=1$. Suppose there were (looking for a contradiction). This would mean that

$$
1=h_{1} \cdot\left(y-x^{2}\right)+h_{2} \cdot(y+1)
$$

for some $h_{1}, h_{2} \in \mathbb{R}[x, y]$. Write the first as $h_{1}(x, y)$ to stress that it is a polynomial in x and y. If this equation is true as polynmomials, it remains true if we set $y=-1$. Thus

$$
1=-h_{1}(x,-1)\left(1+x^{2}\right)
$$

But the degree of the product of two polynomials in $\mathbb{R}[x]$ is the sum of the degrees of the individual polynomials (look at the leading terms), so this is impossible since the polynomial on the left is a constant $($ degree $=0)$ and the one on the right has degree at least 2 .
5. Fun with colon ideals. In this problem, all ideals are in $R=k\left[x_{1}, \ldots, x_{n}\right]$ where k is some field. Prove the following facts. (All of these are relatively short proofs, no more than 10 lines.)
a) (5 points) If $J \subseteq K$ then $I: J \supseteq I: K$.

Solution:

Let $f \in I: K$. We want to show that $f \in I: J$. Let $g \in J$. We want to show that $f g \in I$. Since $J \subseteq K$, we also have $g \in K$, so since $f \in I: K$ we get $f g \in I$ as desired.
b) (5 points) If I is radical then $I: J$ is also radical.

Solution:

Let $f \in R$ be a polynomial such that $f^{m} \in I: J$ for some integer $m \geq 1$. We want to show that $f \in I: J$. That is, we want to show that $f g \in I$ for each $g \in J$.
So let $g \in J$. Since $f^{m} \in I: J$, we know $f^{m} g \in I$. Hence we also have $f^{m} g^{m}=(f g)^{m} \in I$. But I is a radical ideal, so $f g \in I$, which was what we wanted to show.
c) (5 points) $J \subseteq \sqrt{I}$ if and only if $I: J^{\infty}=k\left[x_{1}, \ldots, x_{n}\right]$.

Solution:

For any ideal K, the statement that $K=k\left[x_{1}, \ldots, x_{n}\right]$ is equivalent to the statement that $1 \in K$. So apply this to the ideal $K=I: J^{\infty}$.

$$
\begin{aligned}
I: J^{\infty}=k\left[x_{1}, \ldots, x_{n}\right] & \Longleftrightarrow 1 \in I: J^{\infty} \\
& \Longleftrightarrow \text { for each } g \in J, 1 \cdot g^{m} \in I \text { for some } m \geq 1 \\
& \Longleftrightarrow \text { for each } g \in J, g^{m} \in I \text { for some } m \geq 1 \\
& \Longleftrightarrow \text { for each } g \in J, g \in \sqrt{I} \\
& \Longleftrightarrow J \subseteq \sqrt{I} .
\end{aligned}
$$

d) (5 points) Let $\mathrm{I} \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be any ideal. Let $J=I^{2}$. Find

$$
I: J^{\infty}
$$

and explain your answer. [Hint: look at the other parts of this problem. There is a one-line answer.]

Solution:

We have $J=I^{2} \subseteq I \subseteq \sqrt{I}$ so by the previous problem, $I: J^{\infty}=k\left[x_{1}, \ldots, c_{n}\right]$.
e) (5 points) $(I \cap J): K=(I: K) \cap(J: K)$.

Solution:

We'll prove both inclusions at the same time.

$$
\begin{aligned}
f \in(I \cap J): K & \Longleftrightarrow \text { for each } g \in K, f g \in I \cap J \\
& \Longleftrightarrow \text { for each } g \in K, f g \in I \text { and } f g \in J \\
& \Longleftrightarrow f \in I: K \text { and } f \in J: K \\
& \Longleftrightarrow f \in(I: K) \cap(J: K) .
\end{aligned}
$$

f) (5 points) $(I \cap J): K^{\infty}=\left(I: K^{\infty}\right) \cap\left(J: K^{\infty}\right)$.

Solution:

You have to be a little careful with this one. It's not easy to prove both directions at once so we'll prove both inclusions separately.
\subseteq :
Let $f \in(I \cap J): K^{\infty}$. Let $g \in K$. So we know that $f g^{m} \in I \cap J$ for some $m \geq 1$. Hence $f g^{m} \in I$ and $f g^{m} \in J$, so $f \in\left(I: K^{\infty}\right) \cap\left(J: K^{\infty}\right)$.
〇:
Let $f \in\left(I: K^{\infty}\right) \cap\left(J: K^{\infty}\right)$. Let $g \in K$. So $f g^{\ell_{1}} \in I$ for some $\ell_{1} \geq 1$ and $f g^{\ell_{2}} \in J$ for some $\ell_{2} \geq 1$. Let $m=\max \left\{\ell_{1}, \ell_{2}\right\}$. Then $f g^{m} \in I$ and $f g^{m} \in J$, so $f g^{m} \in I \cap J$ and hence $f \in(I \cap J): K^{\infty}$.
g) (5 points) $I:(J+K)=(I: J) \cap(I: K)$.

Solution:

\subseteq :
Let $f \in I:(J+K)$. This means that for each $g \in J+K$ we have $f g \in I$. Since $J \subseteq J+K$ and $K \subseteq J+K$, in particular if $g \in J$ then $f g \in I$, and if $g \in K$ then $f g \in I$. This means $f \in(I: J) \cap(I: K)$.
?:
Let $f \in(I: J) \cap(I: K)$. Let $g+h \in J+K$, where $g \in J$ and $h \in K$. Then

$$
f(g+h)=f g+f h \in I
$$

so $f \in I:(J+K)$.
6. In this problem, let $R=k[x, y, z, w]$, where k is a field. Let

$$
I=\langle x, y\rangle^{3} \cap\langle z, w\rangle^{3}
$$

and let

$$
J=\langle x, y\rangle^{2} .
$$

You can use results from previous problems. (Recall $\langle x, y\rangle^{2}=\left\langle x^{2}, x y, y^{2}\right\rangle$.)
a) (6 points) Find $I: J$ and explain your answer.

Solution:

By problem 5 e),

$$
\begin{equation*}
I: J=\left[\langle x, y\rangle^{3} \cap\langle z, w\rangle^{3}\right]:\langle x, y\rangle^{2}=\left[\langle x, y\rangle^{3}:\langle x, y\rangle^{2}\right] \cap\left[\langle z, w\rangle^{3}:\langle z, w\rangle^{2}\right] \tag{1}
\end{equation*}
$$

Claim 1: $\langle x, y\rangle^{3}:\langle x, y\rangle^{2}=\langle x, y\rangle$.

We are claiming that

$$
\left\langle x^{2}, x^{2} y, x y^{2}, y^{3}\right\rangle:\left\langle x^{2}, x y, y^{2}\right\rangle=\langle x, y\rangle
$$

\supseteq :
It's clear that x and y individually are in this ideal quotient, so the ideal that they generate is too.
\subseteq :
Let $f \in\langle x, y\rangle^{3}:\langle x, y\rangle^{2}$. Write

$$
f=a(x, y, z, w) \cdot x+b(x, y, z, w) \cdot y+c(z, w)
$$

We want to show that $c(z, w)$ is the zero polynomial, so $f \in\langle x, y\rangle$.
Since we know that $x, y \in\langle x, y\rangle^{3}:\langle x, y\rangle^{2}$ and $f \in\langle x, y\rangle^{3}:\langle x, y\rangle^{2}$ by assumption, we get

$$
f-(a x+b y)=c(z, w) \in\langle x, y\rangle^{3}:\langle x, y\rangle^{2}
$$

by basic properties of an ideal. But it's clear that $c(z, w) \cdot x^{2}$ is not in $\left\langle x^{3}, x^{2} y, x y^{2}, y^{3}\right\rangle$, except when $c(z, w)$ is the zero polynomial, so we are done with Claim 1.

Claim 2: $\langle z, w\rangle^{3}:\langle x, y\rangle^{2}=\langle z, w\rangle^{3}$.
\supseteq :
As before, this inclusion is clear.
$\subseteq:$
Use part g) of problem $\# 5$ (generalized to the sum of three ideals, with the same argument).
You can check that

$$
\begin{aligned}
& \langle z, y\rangle^{3}:\left\langle x^{2}\right\rangle=\langle z, w\rangle^{3} \\
& \langle z, y\rangle^{3}:\langle x y\rangle=\langle z, w\rangle^{3} \\
& \langle z, y\rangle^{3}:\left\langle y^{2}\right\rangle=\langle z, w\rangle^{3}
\end{aligned}
$$

so since the intersection of the three ideals on the right is clearly $\langle z, w\rangle^{3}$, this proves Claim 2.
From equation (1) and the two claims, we get

$$
I: J=\langle x, y\rangle \cap\langle z, w\rangle^{3}
$$

b) (6 points) Assume that k is algebraically closed, and find $\mathbb{V}\left(I: J^{\infty}\right)$. [Hint: you'll find it much easier to use a theorem from class or from the book than to compute $I: J^{\infty}$ directly.]
Solution:
In class we proved that

$$
\mathbb{V}\left(I: J^{\infty}\right)=\overline{\mathbb{V}(I) \backslash \mathbb{V}(J)}
$$

Since intersections of ideals correspond to unions of varieties, we have

$$
\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}(z, w) \quad \text { and } \quad \mathbb{V}(J)=\mathbb{V}(x, y)
$$

Thus $\mathbb{V}\left(I: J^{\infty}\right)=\mathbb{V}(z, w)$.

