Math 40510, Algebraic Geometry

Problem Set 1, due February 14, 2020

<u>Note</u>: This is not the entire problem set. It is just the first set of problems I've assigned for Problem Set 1, last modified January 28, 2020.

- 1. Inside the affine space \mathbb{R}^2 we have the subset \mathbb{Z}^2 consisting of all the points (a, b) where $a, b \in \mathbb{Z}$. Let $f \in \mathbb{R}[x, y]$ and assume that f(a, b) = 0 for all $(a, b) \in \mathbb{Z}^2$. Prove that f must be the zero polynomial. (Note that we're assuming f(a, b) = 0 for all $(a, b) \in \mathbb{Z}^2$, not all $(a, b) \in \mathbb{R}^2$.)
- 2. Informally, we often "identify" the complex plane \mathbb{C} with the plane \mathbb{R}^2 . In algebraic geometry we have to be a bit more careful.

Consider the affine spaces, \mathbb{C}^1 and \mathbb{R}^2 . Consider the unit circle C inside both of them. In \mathbb{C} this is defined by |z| = 1, and in \mathbb{R}^2 it's defined by $x^2 + y^2 = 1$. Prove that as a subset of \mathbb{C}^1 , C is not a variety, while in \mathbb{R}^2 it *is* a variety. (Note that for the former, it is not enough to just say that it's not a variety because |z| is not a polynomial.)

- 3. An ideal I is said to be *radical* if the condition $f^m \in I$ necessarily implies $f \in I$.
 - a) Prove that a prime ideal is always radical.
 - b) Is the converse true (i.e. is a radical ideal always prime?)? If so, prove it. If not, give a counterexample and justify your claim that it's a counterexample.
 - c) Prove that if S is a set in an affine space k^n then $\mathbb{I}(S)$ is a radical ideal.
- 4. Define a function $\phi : \mathbb{C}^2 \to \mathbb{C}^3$ by $\phi(a, b) = (a^2, ab, b^2)$, where $a, b \in \mathbb{C}$.
 - a) Is ϕ surjective? Give a proof or disprove with a counterexample.
 - b) Is ϕ injective? Give a proof or disprove with a counterexample.
 - c) Find a point of \mathbb{C}^3 that has exactly one preimage point, and justify your answer.
 - d) Let $R = \mathbb{C}[z_1, z_2, z_3]$. Prove that the image of ϕ is an affine variety in \mathbb{C}^3 by giving the defining polynomial(s) in R. Be sure to prove that the variety they define is *exactly* the image of ϕ .
 - e) Let $S = \mathbb{C}[x, y]$. Let $V = \mathbb{V}(x y)$ inside \mathbb{C}^2 . Prove that $\phi(V)$ is a subvariety of \mathbb{C}^3 by giving its defining polynomial(s). [It's not enough to just give the polynomial(s). You have to justify your claim that the polynomial(s) really do define $\phi(V)$.]
- 5. a) Explain why Problem #1 shows that \mathbb{Z}^2 is not an affine variety in \mathbb{R}^2 . (This should only take a few lines.)
 - b) If X is a set in \mathbb{R}^2 (it may or may not be an affine variety), and W is an affine variety that contains X, we'll say that "W is the smallest variety containing X" if there is no variety V such that

$$X \subseteq V \subsetneq W.$$

Referring again to Problem #1, what is the smallest affine variety in \mathbb{R}^2 that contains \mathbb{Z}^2 ? Carefully explain your answer.

c) Recall that the twisted cubic curve in \mathbb{R}^3 is

$$C = \{(t, t^2, t^3) \mid t \in \mathbb{R}\} = \mathbb{V}(y - x^2, z - x^3).$$

Let

$$X = \{ (t, t^2, t^3) \mid t \in \mathbb{Z} \}.$$

Find the smallest affine variety in \mathbb{R}^3 that contains X. Carefully explain your answer.

d) Let

$$X = \{(t, t^2, t^3) \mid 1 \le t \le 10 \ (t \in \mathbb{Z})\}$$

Find the smallest affine variety in \mathbb{R}^3 that contains X. Carefully explain your answer.

Remark. The smallest variety containing a set X is usually called the *Zariski closure* of X. We'll see why when we talk about the Zariski topology for affine space.

6. Assume that $\langle f_1, \ldots, f_s \rangle = \langle g_1, \ldots, g_t \rangle$ for some polynomials $f_1, \ldots, f_s, g_1, \ldots, g_t$.

Prove that $\mathbb{V}(f_1, \ldots, f_s) = \mathbb{V}(g_1, \ldots, g_t)$. [Hint: in class we talked about what it means to say that $\langle f_1, \ldots, f_s \rangle = \langle g_1, \ldots, g_t \rangle$. You can use that.]

- 7. (Continuing problem #3.)
 - a) Let I be an ideal in $R = k[x_1, \ldots, x_n]$. (We are not assuming that I is a radical ideal in the language of problem #3.) Define

 $\sqrt{I} = \{ f \in R \mid f^r \in I \text{ for some integer } r \ge 0 \}.$

Prove that \sqrt{I} is again an ideal. (Note that if $f, g \in \sqrt{I}$ it means that $f^r \in I$ and $g^s \in I$ but not necessarily that r = s.)

[If you weren't able to get part a), you can assume the statement in order to do parts b) and c).]

- b) Prove that \sqrt{I} is a radical ideal in the sense of problem #3.
- c) Let $I = \langle x^2, y^3 \rangle \subset \mathbb{R}[x, y]$. Show that $\sqrt{I} = \langle x, y \rangle$. Be sure to prove your answer.