
Math 40510, Algebraic Geometry

Problem Set 2, due March 20, 2020

Note: At this point this is the entire problem set.

1. Throughout this problem, we will let R = R[x, y, z] and let C be the twisted cubic curve in R3:

C = V(y − x2, z − x3) = {(t, t2, t3) ∈ R3 | t ∈ R}.
Using the parametrization should be helpful in this problem, as will thinking geometrically.

a) Let ` be a linear polynomial: ` = ax + by + cz + d where a, b, c, d ∈ R. Recall that as long as
` is not a constant, i.e. as long as at least one of a, b, c is non-zero, V(`) is a plane in R3, and
V(y − x2, z − x3, `) represents the intersection of C with this plane (you don’t have to prove
either of these facts).

In this problem be sure to explain each answer. Find specific values of a, b, c, d (with at least
one of a, b, c non-zero) so that

(i) V(y − x2, z − x3, `) is empty (remember at least one of a, b, c has to be non-zero);
(ii) V(y − x2, z − x3, `) consists of one point;
(iii) V(y − x2, z − x3, `) consists of two distinct points;
(iv) V(y − x2, z − x3, `) consists of three distinct points.

b) Prove that V(y − x2, z − x3, `) cannot consist of four or more distinct points.

c) Recall that in R3, if P and Q are two distinct points then there is a unique line, PQ, joining
P and Q. (You don’t have to prove this fact.) If P,Q both happen to be points on C, QP is
called a secant line of C.

Prove that a secant line to C can’t meet C in a third point (i.e. it can’t be a trisecant line).

d) Let the lines AB and PQ be distinct secant lines to the twisted cubic curve C (in particular,
A,B, P,Q are points of C). Prove that if the lines AB and PQ meet in one point, then one
of A,B has to be equal to one of P,Q. You can use standard facts from high school geometry
without proof.

2. In R2, let V = V(y − x2) (a parabola). Mimic the proof of the example in section 4 of chapter 1
of Cox-Little-O’Shea (page 33 in the 4th edition, pages 33–34 of the 3rd edition) to show that
I(V ) = 〈y − x2〉.

3. Let V and W be varieties in Cn such that V ∩W = ∅. Prove that there exist f ∈ I(V ) and g ∈ I(W )
such that f + g = 1.

4. For this problem let k be a field, which we do not necessarily assume is algebraically closed. In part
c) we will further assume that k = R.

a) Let I and J be ideals in k[x1, . . . , xn]. Suppose we happen to know that there exist f ∈ I and
g ∈ J such that f + g = 1. Prove that

V(I) ∩ V(J) = ∅;
b) Let I and J be ideals in k[x1, . . . , xn]. Suppose we happen to know that there exist f ∈ I and

g ∈ J such that f + g = 1. Prove that

IJ = I ∩ J.
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c) Give (with proof) an example of two varieties V,W in R2 such that V ∩W = ∅ but there is no
f ∈ I(V ) and g ∈ I(W ) such that f + g = 1. [Hint: this wouldn’t be true over C, so you should
take advantage of some property of R. One solution involves the result of problem 2, which you
can use whether or not you were able to solve it.]

5. Fun with colon ideals. In this problem, all ideals are in R = k[x1, . . . , xn] where k is some field.
Prove the following facts.

a) If J ⊆ K then I : J ⊇ I : K.

b) If I is radical then I : J is also radical.

c) J ⊆
√
I if and only if I : J∞ = k[x1, . . . , xn].

d) Let I ⊆ k[x1, . . . , xn] be any ideal. Let J = I2. Find

I : J∞

and explain your answer. [Hint: look at the other parts of this problem.]

e) (I ∩ J) : K = (I : K) ∩ (J : K).

f) (I ∩ J) : K∞ = (I : K∞) ∩ (J : K∞).

g) I : (J + K) = (I : J) ∩ (I : K).

6. In this problem, let R = k[x, y, z, w], where k is a field. Let

I = 〈x, y〉3 ∩ 〈z, w〉3

and let
J = 〈x, y〉2.

You can use results from previous problems. (Recall 〈x, y〉2 = 〈x2, xy, y2〉.)

a) Find I : J and explain your answer.

b) Assume that k is algebraically closed, and find V(I : J∞). [Hint: you’ll find it much easier to
use a theorem from class or from the book than to compute I : J∞ directly.]


