
Math 40510, Algebraic Geometry

Problem Set 2, due Wednesday, April 7, 2021

Note: Answers that are sloppy, either from a mathematical point of view or because they are hard to
read, will result in points being deducted even if they are technically correct.

Solutions

1. In this problem, k is a field but it is not necessarily algebraically closed. Let R = k[x, y].

a) (6 points) Let I = 〈x3, y5〉. Prove the following fact about the radical of I.√
〈x3, y5〉 = 〈x, y〉.

(Please prove both inclusions.)

Solution:
⊆:
Let f ∈

√
〈x3, y5〉, so fm ∈ 〈x3, y5〉 for some m ≥ 1. We want to show that f ∈ 〈x, y〉. Suppose

this were not true. Then f has a non-zero constant term: f = a + xh1(x, y) + yh2(x, y) where
0 6= a ∈ k. It follows that fm has am as a non-zero constant term. Since no element of 〈x3, y5〉
has a non-zero constant term, this is a contradiction of the fact that fm ∈ 〈x3, y5〉.

⊇:
Let f ∈ 〈x, y〉. So

f = a1,0x + a0,1y + a2,0x
2 + a1,1xy + a0,2y

2 + . . . .

(Notice that the constant term is zero.) Then every term in f8 has either a power of x that is

at least 3, or a power of y that is at least 5 (or both). So f8 ∈ 〈x3, y5〉 and f ∈
√
〈x3, y5〉.

b) (6 points) Give an example of polynomials f and g in R so that√
〈f3, g5〉 6= 〈f, g〉.

Be sure to justify your answer.

Solution:
If we take f = x2 and g = y2 then

√
〈f3, g5〉 is a radical ideal (by definition, since the radical of

any ideal is always a radical ideal) while 〈f, g〉 is not (e.g. x belongs to the radical but is not in
〈f, g〉). Hence they cannot be equal.

c) (5 points) Let J = 〈x2, xy, y2〉. Find V(J).

Solution:
Let’s show that V(J) = {(0, 0)}.
⊆:
If P = (a, b) ∈ V(J) then in particular we must have that x2 vanishes at P , so a = 0. Similarly
looking at y2, we must have b = 0. So (a, b) = (0, 0) and we have ⊆.

⊇:
All three polynomials, x2, xy, y2 vanish at (0, 0).

d) (8 points) Let I and J be ideals. In Problem Set 1 we defined what’s called the ideal quotient (I
didn’t mention this name at the time) to be

I : J = {f ∈ R | f · J ⊆ I} = {f ∈ R | fg ∈ I for all g ∈ J}
1
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and you showed that this is an ideal. You don’t have to re-prove that. Find I : J where
I = 〈x2, y2〉 and J is the ideal given in part 1c. Specifically, find generators for this ideal. Be
sure to explain your answer, proving both sides of your equality if necessary (i.e. you should
start your answer with the assertion I : J = 〈f1, f2, . . . , fs〉 for specific f1, f2, . . . , fs and prove
both inclusions of this equality).

Solution:
We claim that I : J = 〈x, y〉. We’ll prove both inclusions.

⊆:
Let f ∈ I : J = 〈x2, y2〉 : 〈x2, xy, y2〉. If f were not in 〈x, y〉 then it would have a non-zero
constant term: f = a + xh1(x, y) + yh2(x, y) where 0 6= a ∈ k. Since f ∈ I : J , in particular
f · xy ∈ I. But f · xy is a sum of terms that includes axy, and all other terms of f · xy have
powers of either x or y (or both) that are at least two, so all such terms are in 〈x2, y2〉. Since
an ideal is closed under addition and subtraction, this forces axy to be in I = 〈x2, y2〉, which is
not true. Contradiction.

⊇:
It’s enough to notice that

x · x2 = x3 ∈ I
x · xy = x2y ∈ I
x · y2 = xy2 ∈ I
y · x2 = x2y ∈ I
y · xy = xy2 ∈ I
y · y2 = y3 ∈ I.

2. Let R = R[x, y]. In this problem you can use the fact that R is a Unique Factorization Domain
(UFD): this means that it is an integral domain, and it has the property that every non-zero element
f can be written as a product of irreducible polynomials in a unique way, except for scalar multiples
(e.g. (2x3+4y)(x+5y) is not considered to be different from (x3+2y)(2x+10y) or 2(x3+2y)(x+5y)).

a) (8 points) Prove that 〈x2 + y2〉 is a radical ideal.

Solution:
Notice that x2 + y2 is irreducible: indeed, we’ve seen that the vanishing locus of x2 + y2 is
{(0, 0)}, while if x2 + y2 were to factor as a product of linear polynomials then the vanishing
locus would be a union of two lines.

Let f ∈
√
〈x2 + y2〉, so fm ∈ 〈x2 + y2〉 for some m ≥ 1. We want to show that f is already in

〈x2 + y2〉. We know that 〈x2 + y2〉 is generated by x2 + y2, so

fm = f · f · · · · · f︸ ︷︷ ︸
m times

= (x2 + y2)G

for some G ∈ R[x, y]. By unique factorization, (x2 + y2) divides fm. (Since it is a factor on the
right, it must be a factor on the left.) Since it is irreducible, it must divide f (you can’t divide
parts of x2 + y2 into different copies of f in the product). Since f is thus divisible by x2 + y2,
we get f ∈ 〈x2 + y2〉.

Note: we could have done this without using irreducibility of x2 + y2. For example, if it had
been x2 − y2 = (x + y)(x− y), we’d have

fm = f · f · · · · · f︸ ︷︷ ︸
m times

= (x + y)(x− y)G
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and we’d have that (x + y) divides one copy of f on the left and (x − y) does too. But on the
left it’s just a product of copies of the same f , so both (x + y) and (x − y) divide f , so their
product does too.

b) (6 points) Prove that 〈x2 + 2xy + y2〉 is not a radical ideal.

Solution:
x2 + 2xy + y2 = (x + y)2 so (x + y) ∈

√
〈x2 + 2xy + y2〉, while (x + y) /∈ 〈x2 + 2xy + y2〉 (its

degree is too small).

3. In this problem we’ll work over the field R. Let V be the parabola defined by y = x2 in R2 and let
W be the tangent line to V at the point (1, 1).

a) (5 points) Of course V = V(y − x2). Find a polynomial ` of degree 1 so that W = V(`).

Solution:
Since d

dx(x2) = 2x, the line we’re looking for has slope 2 and passes through (1, 1). So its
equation is

y − 1 = 2(x− 1), i.e. y = 2x− 1.

Hence W = V(y − 2x + 1).

b) (6 points) Let I = 〈y − x2, `〉 (where ` is your answer to (3a)). Prove that I is not a radical
ideal.

Solution:
We have

I = 〈y − x2, y − 2x + 1〉 = 〈y − x2,−x2 + 2x− 1〉 = 〈y − x2, x2 − 2x + 1〉 = 〈y − x2, (x− 1)2〉.

(For the second equality, keep the first generator and replace the second by subtracting the

second from the first.) This shows that x − 1 ∈
√
I. Looking at the last choice of generators,

it’s clear that x− 1 /∈ I.

c) (8 points) Let V be the circle of radius 1 centered at (0, 1) and let W be the circle of radius 2
centered at (0, 2). Let

J = I(V ) + I(W ).

Prove that J is not a radical ideal, and find the radical of J . [Hint: you can use without proof
the fact that both I(V ) and I(W ) are principal, i.e. are generated by a single polynomial.]

Solution:
We have

I(V ) = 〈x2 + (y − 1)2 − 1〉, I(W ) = 〈x2 + (y − 2)2 − 4)〉
so

J = I(V ) + I(W )
= 〈x2 + (y − 1)2 − 1, x2 + (y − 2)2 − 4〉
= 〈x2 + y2 − 2y, x2 + y2 − 4y〉
= 〈x2 + y2 − 2y, (x2 + y2 − 2y)− (x2 + y2 − 4y)〉
= 〈x2 + y2 − 2y, 2y〉
= 〈x2 + y2 − 2y, y〉
= 〈x2, y〉.

Then clearly x ∈
√
J and x /∈ J , and equally clearly

√
J = 〈x, y〉 (this is like problem 1a but a

bit easier).
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4. For some ideals it happens to be the case that ideal quotients have a nice property. Let’s look at an
example, and then prove something a bit more general. Throughout this problem assume that k is
an infinite field. (The choice of the field shouldn’t enter into your arguments.)

a) (8 points) If I is an ideal and F ∈ R (a polynomial ring), show that

I : 〈F 〉 = {G ∈ R | FG ∈ I}.
In other words, 〈F 〉 contains infinitely many elements, but to see if the set G · 〈F 〉 is contained
in I, it’s enough to check if the single element GF is in I. This can be used in the remaining
parts of this problem.

Solution:
⊆:
Let G ∈ I : 〈F 〉. So G · 〈F 〉 ⊆ I, i.e. G(AF ) ∈ I for all A ∈ R. In particular, take A = 1. Then
GF ∈ I, and we are done.

⊇:
Let G be a polynomial such that FG ∈ I. We want to show G · 〈F 〉 ⊆ I. Every element of 〈F 〉
is of the form FA for some A ∈ R, so we want to show that G(FA) ∈ I for all A ∈ R. But since
we already know that FG ∈ I, and I is an ideal, we also get A(FG) = G(FA) ∈ I and we are
done.

We will use this fact for all the remaining parts of this problem without further comment.

b) (6 points) Let R = k[x, y, z]. Let I = 〈x2, y2〉. Prove that

I : 〈z〉 = I.

This should be approached purely algebraically. Don’t use the geometry-algebra dictionary.

Solution:
⊇:
If F ∈ I then Fz ∈ I (since I is an ideal) so F ∈ I : 〈z〉.

⊆:
Assume F ∈ I : 〈z〉, so Fz ∈ I. Since Fz ∈ I we get

Fz = Ax2 + By2

for some A,B ∈ R.

We want to show F ∈ I. Let’s break up F . Without loss of generality there exist C,D ∈ R such
that

(1) F = Cx2 + Dy2 + M

where

M = (sum of terms none of which is divisible by either x2 or y2).

We’d like to show M = 0. When we multiply any term in M by z, it still is not divisible by
either x2 or y2. We have

(2) Fz = Cx2z + Dy2z + Mz.

Combining the two expressions for Fz we get

Ax2 + By2 = Cx2z + Dy2z + Mz.

Hence

(3) (A− Cz)x2 + (B −Dz)y2 = Mz.
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Case 1: Assume A = Cz and B = Dz.

Then from (3) we see Mz = 0, so M = 0 since R is an integral domain. Done.

Case 2: Assume the lefthand side of (3) is zero for some other reason (e.g. A−Cz = −y2, B−
Dz = x2).

So the righthand side of (3) is also zero, i.e. Mz = 0. But R is an integral domain, and z is a
variable, so M = 0.

Case 3: Assume the lefthand side of (3) is not zero.

This means also Mz 6= 0. And remember that no term of Mz is divisible by either x2 or y2. But
then no linear combination (over k) of terms of Mz can pick up an x2 or a y2 as factors, which
means that Mz /∈ I. Now going back to (2), we get

Fz − Cx2z −Dy2z = Mz.

From what we’ve seen, the lefthand side is in I but the righthand side is not, which is impossible.

c) (6 points) Again let R = k[x, y, z] and let I = 〈x2, y2〉. Find

I : 〈x〉.
Specifically, note that this is not equal to I. [Again, this should be approached purely alge-
braically. Don’t use the geometry-algebra dictionary. Be sure to explain your work; just giving
the answer isn’t enough.]

Solution:
We’ll claim that I : 〈x〉 = 〈x, y2〉.
⊇:
This direction is clear.

⊆:
Set F ∈ I : 〈x〉. So xF ∈ I = 〈x2, y2〉. Write

(4) F = A + xB + x2C + yD + y2E

where A,B,C,D,E ∈ R. Assume that these are chosen so that (in this order)
• any term of F divisible by x2 is included in x2C,
• any term divisible by x but not x2 is included in xB,
• any term not divisible by x but divisible by y2 is included in y2E, and
• any term not divisible by x, divisible by y, but not divisible by y2 is included in yD.

Thus
A ∈ k[z], B ∈ k[y, z], C ∈ R, D ∈ k[z], E ∈ k[y, z].

Notice that
xF = xA + x2(B + xC) + xyD + y2(xE).

We have assumed that xF ∈ 〈x2, y2〉 = I. So

xA + xyD = xF − x2(B + xC)− y2(xE) ∈ I.

In order for xA + xyD to be in I, we must have A = D = 0 (since A,D ∈ k[z]). Thus from (4),
we get F = xB + x2C + y2E ∈ 〈x, y2〉.

d) (8 points) Now let R = k[x1, . . . , xn].

• Let I = 〈f2, . . . , ft〉 (for some t ≥ 2);

• Let J = 〈f1, f2, . . . , ft〉. [We’re just adding one more generator to I.]
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• Let F be some polynomial.

• ASSUME that I : 〈F 〉 = I. [Don’t mix up I and J here!]

[Part 4b) gives an example to show you that this can happen sometimes, and part 4c shows
that sometimes it doesn’t happen. Parts 4b) and 4c) are not otherwise connected to this
problem.]

Prove that 〈Ff1, f2, . . . , ft〉 : 〈F 〉 = J . Be sure to indicate where the assumption of the fourth
bullet is used.

Solution:
⊇:
Let G = a1f1 + a2f2 + · · ·+ atft ∈ J = 〈f1, f2, . . . , ft〉, where a1, . . . , at ∈ R. Then

FG = a1(Ff1) + (a2F )f2 + · · ·+ (atF )ft ∈ 〈Ff1, f2, . . . , ft〉.

⊆:
Let G ∈ 〈Ff1, f2, . . . , ft〉 : 〈F 〉, so FG ∈ 〈Ff1, f2, . . . , ft〉. We want to show that G ∈ J =

〈f1, f2, . . . , ft〉. We know that for some a1, a2, . . . , at ∈ R,

FG = a1(Ff1) + a2f2 + · · ·+ atft

so
F (G− a1f1) = a2f2 + · · ·+ atft ∈ I.

This means G− a1f1 ∈ I : 〈F 〉, and we assumed that this was equal to I. So G− a1f1 ∈ I and we
have

G− a1f1 = b2f2 + · · ·+ btft

i.e.
G = a1f1 + b2f2 + · · ·+ btft ∈ J

and we are done.

5. Assume that k is algebraically closed. Let R = k[x, y, z]. Also let

I = 〈x4, x2y2, y4〉 and J = 〈x, y2〉.
a) (6 points) Prove that V(I) = V(J) in k3 and find this variety explicitly; (very) briefly explain

your answer.

Solution:
Both V(I) and V(J) are equal to V(x, y), which is the z-axis.

b) (8 points) Notice the following facts:

• I : J = 〈x3, xy2, y4〉.
• V(I : J) = V(I) = V(J);

• V(I)\V(J) = ∅;
• I(∅) = 〈1〉 since k is algebraically closed.

You don’t have to prove any of the above bullet points, but they motivate the following:

Find the smallest integer N ≥ 1 so that I : JN = 〈1〉. Explain your answer: specifically, why
does your N work and why is it the smallest? [Hint: JN has N + 1 generators in this case.]

Solution:
Clearly I : JN ⊆ 〈1〉 = R for all N ≥ 1, so we only have to worry about ⊇. That is, for what N
is it true that 1 · JN ⊂ I? That is, for what N is JN ⊆ I? Let’s check each N until it is true.
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• N = 1. J1 = J = 〈x, y2〉 and neither generator is in I. So N = 1 doesn’t work.

• N = 2. J2 = 〈x2, xy2, y4〉 and x2 /∈ I.

• N = 3. J3 = 〈x3, x2y2, xy4, y6〉 and x3 /∈ I.

• N = 4. J4 = 〈x4, x3y2, x2y4, xy6, y8〉. All the generators are in I, so the answer is N = 4.


