
Math 40510, Algebraic Geometry

Problem Set 3, due Friday, May 7, 2021

Note: Answers that are sloppy, either from a mathematical point of view or because they are hard to
read, will result in points being deducted even if they are technically correct.

Solutions

1. Find V(yz−x2, yz− 4z2 +x2) as a subvariety of P2
R by hand. Explain your work. [Hint: the answer

is a finite set of points in P2
R.]

Solution:
If yz − x2 = 0 and yz − 4z2 + x2 = 0 then also their sum 2yz − 4z2 = 0, i.e.

z(y − 2z) = 0.

So any solution must satisfy either z = 0 or y − 2z = 0. Consider the former.
Since yz−x2 = 0, if z = 0 then we must have x = 0. Then y can be anything (check both defining

polynomials!) so up to scalar multiple we get the (single) point [0, 1, 0].
Now suppose y − 2z = 0. This gives us V(2z2 − x2,−2z2 + x2) = V(2z2 − x2). That means

2z2 = x2, so x = ±
√

2z. Since up to scalar multiple we can choose z = 1 (as long as z 6= 0, which
we took care of above), this gives y = 2 and x = ±

√
2. So our solution is

V(yz − x2, yz − 4z2 + x2) = {[0, 1, 0], [
√

2, 2, 1], [−
√

2, 2, 1]}.

2. The classical theorem of Pappus says the following. Assume that we have two lines, namely `1
(containing the points A′, B′, C ′) and `2 (containing the points A,B,C) in R2 – see the picture
below. Note that `1 and `2 are not assumed to be parallel. Let

• P be the intersection of AB′ and A′B;

• Q be the intersection of AC ′ and A′C;

• R be the intersection of BC ′ and B′C.

Then the conclusion of Pappus’s theorem is that P,Q,R must be collinear. This is just background
and you don’t have to prove this.

Now suppose the picture is a little bit different. We again start with lines `1 and `2, (black in
the picture below) which are not necessarily parallel. We have three points, A,B,C on one line and
A′, B′, C ′ on the other. (You’ll have to label the points as part of this problem.) Assume that
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• the red lines are parallel,

• the green lines are parallel.

(See the picture below.) 

el

l z

Prove that the blue lines are parallel (viewed in R2 of course). To do this, assume that Pappus’s
theorem is a theorem about points in P2

R rather than R2 (you don’t have to justify this part), and
make a careful study of what happens at infinity.

Note:
• you could answer this with one sentence in a way that would be technically correct, but I

want your answer to really reflect the fact that you understand the geometry going on and the
difference between the affine geometry and the projective geometry. So please put some thought
and detail into your answer!
• Please answer this using Pappus’s theorem. No argument with similar triangles or such!!
• Make sure your answer includes a labelled picture! The black dots need to be labelled A,A′, B,B′,
C,C ′ in some suitable order, and you should refer to this labelled picture in your proof.
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Solution:
Here’s one way. Label the points as follows:

 

el

l z

 

I
C

B

A

A

q
B

The statement that the red lines are parallel in R2 means that A′B and AB′ meet at a point P
at infinity in P2

R. The statement that the green lines are parallel means A′C and AC ′ also meet in

a point, Q, at infinity. The line PQ spanned by P and Q is the line at infinity. Then Pappus says
that the intersection point, R, of the blue lines, B′C and BC ′, has to lie on the same line, namely
PQ. This means that R also has to lie on the line at infinity. This precisely means that these two
lines are parallel in R2.

3. Let f(x, y) ∈ k[x, y] be a non-zero homogeneous polynomial. Show that there are finitely many points
P of P1

k (possibly none) where f(P ) = 0 (in the sense discussed in class, meaning that f vanishes at
P no matter which choice of coordinates we choose for P , which is ok since f is homogeneous).

Solution:
The fact that f is homogeneous allows us to talk about whether the vanishing of f at a point

is well-defined or not. We have seen that we can identify P1\{[1, 0]} (where [1, 0] is the point at
infinity) with k1. If f(x, y) vanishes at the point at infinity, this means f(1, 0) = 0. But [1, 0] is
just one point, so to see at how many points P = [a, b] ∈ P1 our polynomial f vanishes, we might as
well assume b 6= 0. This means we can further assume (by scaling) that b = 1 (since [a, b] = [ab , 1]).

So P = [a, 1] is in the copy of k1 in the identification just mentioned. The vanishing of f(x, y)
at P = [a, 1] corresponds to the vanishing of f(x, 1) at x = a. But f(x, 1) is a polynomial in one
variable, and we have seen that it can have only finitely many roots. So even taking into account
the possible vanishing at the point at infinity, f ∈ k[x, y] has finitely many zeroes in P1

k.

4. We saw in class that if f ∈ k[x0, . . . , xn] then we can’t view f as a function on Pn because for the
same point P = [a0, . . . , an], different representations of this point give different values when plugged
into f . Let’s explore what happens if we use rational functions instead of polynomials.

Throughout this problem, assume that k is an infinite field. You can freely use the fact that over
an infinite field, a non-constant polynomial (even in several variables) is never identically 0 at all
points of Pn

k . You don’t have to prove this fact.
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a) Let f, g ∈ k[x0, . . . , xn]. Prove that if f and g are homogeneous of the same degree then f/g
gives a well-defined function on Pn\V(g). Be sure to mention why we have to restrict to Pn\V(g)
instead of all of Pn.

Solution:
Let P = [a0, a1, . . . , an] ∈ Pn\V(g). We want to show that

f

g
(ta0, . . . , tan)

is the same value no matter what t is, as long as t 6= 0. Assume deg(f) = deg(g) = d and that
both are homogeneous. We know from class that

f(ta0, . . . , tan) = tdf(a0, . . . , an) and g(ta0, . . . , tan) = tdg(a0, . . . , an).

Hence
f

g
(ta0, . . . , tan) =

tdf(a0, . . . , an)

tdg(a0, . . . , an)
=

f(a0, . . . , an)

g(a0, . . . , an)

and this value is achieved no matter what t is, as long as t 6= 0. Since the denominator is not
zero because P /∈ V(g), we are done.

b) For simplicity, now assume that we have only two variables, x, y. Give an example to show that
if f and g are homogeneous of different degrees then f/g is not well-defined as a function on
P1\V(g). (Make sure you explain why it’s not well-defined – it’s enough to exhibit one point
where you show it’s not well-defined.)

Solution:
Let

f(x, y) = x2 + y2 and g(x, y) = x3 + y3.

Note f is homogeneous of degree 2 and g is homogeneous of degree 3. Let P = [1, 1] = [2, 2] ∈ P1.
Since

f

g
(1, 1) =

1 + 1

1 + 1
= 1 while

f

g
(2, 2) =

4 + 4

8 + 8
=

1

2
,

we are done: we get different values for the same point, so it is not well-defined.

c) Again assuming that f, g ∈ k[x, y], give an example of polynomials f, g that are not homogeneous
but have the same degree, such that f/g is again not well-defined as a function on P1\V(g). (Make
sure you explain why it’s not well-defined – it’s enough to exhibit one point where you show it’s
not well-defined.)

Solution:
Let f(x, y) = x+y+1 and g(x, y) = 2x+y+1. Neither is homogeneous, but both have degree 1.
Let P = [1, 1] = [2, 2] ∈ P1. Then

f

g
(1, 1) =

1 + 1 + 1

2 + 1 + 1
=

3

4
while

f

g
(2, 2) =

2 + 2 + 1

4 + 2 + 1
=

5

7
,

so as in 4b we are done.

d) Let f ∈ k[x0, . . . , xn] be a non-constant polynomial (which may or may not be homogeneous).
In this part of the problem we’ll explore in a bit more detail what we discussed in class.

(i) Prove that there exists a point P = (a0, . . . , an) ∈ kn+1 such that f(ta0, . . . , tan) is not
constant as a function of t. [Warning: it’s not enough to just say that this is immediate
since we assumed that f is not constant at the start of the problem. For example, suppose
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f(x, y) = x2 − 4y2. This is not constant as a polynomial in x, y, but if P = (2, 1) then
f(2t, t) = 0 no matter what t is, and this a constant.]

Solution:
Write f as a sum of its homogeneous components:

f = fd + fd−1 + · · ·+ f1 + f0.

Let P = (a0, . . . , an) be a point of kn+1 (which we have not yet shown can be found with
the desired property). Then

f(ta0, ta1, . . . , tan) = tdfd(a0, . . . , an) + td−1fd−1(a0, . . . , an) + · · ·+ tf1(a0, . . . , an) + f0.

Since k is infinite, as mentioned at the beginning of this problem there exist a0, . . . , an
such that fd(a0, . . . , an) 6= 0, since fd is a non-zero polynomial so it can’t vanish at all
points of kn+1. With this specific choice of a0, , . . . , an, f(ta0, . . . , tan) is thus a non-zero
polynomial in the variable t that is not a constant since at least the coefficient of td is not
zero.

(ii) Explain in a few words why this means that f does not give a well-defined function on Pn

even if f is homogeneous.

Solution:
Suppose f did give a well-defined function on Pn. Let P = [a0, . . . , an] be the point you
found in part (i). Then since [a0, . . . , an] = [ta0, . . . , tan] for all t 6= 0, f(ta0, . . . , tan)
would have to have the same value no matter what t is (to make it well-defined), and so
f(ta0, . . . , tan) would be constant as a function of t, contradicting what we proved in (i).

5. For this problem recall that the twisted cubic, C, in R3 was determined, as an affine variety, by

C = {(t, t2, t3) | t ∈ R} and I(C) = 〈x2 − x21 , x3 − x31〉.

We also saw that to extend this to P3
R we need to add just one point at infinity. Let’s elaborate on

this a bit.
Let

I = 〈x0x2 − x21, x20x3 − x31, x0x3 − x1x2, x1x3 − x22, 〉 ⊆ R[x0, x1, x2, x3] = R.

This is a homogeneous ideal, so V(I) defines a subvariety of P3
R. For convenience, let

f1 = x0x2 − x21, f2 = x20x3 − x31, f3 = x0x3 − x1x2, f4 = x1x3 − x22.

a) One of the generators f1, f2, f3, f4 of I is already a linear combination of the others, so it is
redundant (i.e. it can be removed without changing the ideal). Find which one is redundant,
and show how it is a linear combination of the other three (with coefficients in R).

Solution:
Notice that f2 has degree 3 while the rest have degree 2, so you would expect that f2 is the
redundant one. And in fact,

x20x3 − x31 = x0(x0x3 − x1x2) + x1(x0x2 − x21), i.e. f2 = x0 · f3 + x1 · f1.

b) Once you remove the redundant generator in part 5a), you’re left with three generators. Give
the dehomogenizations of these three with respect to x0, and show how one of the three deho-
mogenizations is again a linear combination of the other two (with coefficients in R).

Solution:
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The dehomogenizations are

g1 = x2 − x21, g2 = x3 − x31, g4 = x1x3 − x22.

Then we compute

x1x3 − x22 = x1(x3 − x31)− (x2 + x21)(x2 − x21), i.e. g4 = x1 · g2 − (x2 + x21) · g1.

c) Let V = V(I) (where again, I is the ideal given above). Using the ideas from class, show that
V ∩ U0 = C and use the equations to find the single point at infinity (remembering that the
plane at infinity is given by x0 = 0). Show your work to find the point at infinity, but for the
whole problem feel free to quote anything from class.

Solution:
We saw that for a variety V = V(f1, . . . , fs) ⊂ Pn, we have

V ∩ U0 = V(f1(1, x1, . . . , xn), . . . , fs(1, x1, . . . , xn))

so the above dehomogenizations in 5b) give that

V ∩ U0 = V(g1, g2, g4) = V(g1, g2) = C.

(We can ignore g4 because it is a linear combination of g1 and g2.)
To find what’s going on at infinity, we look at

I + 〈x0〉 = 〈x0x2 − x21, x0x3 − x1x2, x1x3 − x22, x0〉 = 〈x21, x1x2, x1x3 − x22, x0〉.

The locus where x21 = 0 is the same as the locus where x1 = 0, so then V(I, x0) is obtained
setting x0 = 0, x1 = 0 and x2 = 0, so we get the point [0, 0, 0, 1] as we saw in class by a different
method.

6. In this problem you can use (without proof) the following facts to help you.

• if I is a homogeneous ideal, and if we define

[I]d = {homogeneous polynomials of degree d in I},

then [I]d is a vector space over the field k.

• the number of monomials of degree d in R is
(
d+2
2

)
. (So for example if d = 1 there are

(
1+2
2

)
= 3,

namely x, y, z while if d = 2 there are
(
2+2
2

)
= 6, namely x2, xy, xz, y2, yz, z2.)

• If I is an ideal generated by monomials, then I is a homogeneous ideal, and you can always find
a basis for [I]d consisting only of monomials.

For this problem let

I = 〈 x2, xy, y2 〉 ⊂ R = k[x, y, z].

(Note that the generators involve only x and y, but the ring has 3 variables.)

a) A basis for [I]2 is clearly given by x2, xy and y2, so [I]2 is a 3-dimensional vector space. (You
don’t have to prove this.) Find a basis for [I]3 and for [I]4. [Hint: don’t forget the third variable,
and remember that you have to remove repeated terms to find a basis!] As a result, what is the
dimension of [I]3 and of [I]4?

Solution:
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First look in degree 3. We multiply each generator by x, y and z, but then check for double-
counting.

x · x2 = x3 x · xy = x2y x · y2 = xy2

y · x2 = x2y y · xy = xy2 y · y2 = y3

z · x2 = x2z z · xy = xyz z · y2 = y2z

The double-counted elements are x2y and xy2. Thus the basis is

{x3, xy2, x2y, y3, x2z, xyz, y2z}

and

dim[I]3 = 3 · 3− 2 · 1 = 7.

Now look in degree 4. We multiply each generator by x2, xy, xz, y2, yz and z2, but then check
for double-counting.

x2 · x2 = x4 x2 · xy = x3y x2 · y2 = x2y2

xy · x2 = x3y xy · xy = x2y2 xy · y2 = xy3

xz · x2 = x3z xz · xy = x2yz xz · y2 = xy2z
y2 · x2 = x2y2 y2 · xy = xy3 y2 · y2 = y4

yz · x2 = x2yz yz · xy = xy2z yz · y2 = y3z
z2 · x2 = x2z2 z2 · xy = xyz2 z2 · y2 = y2z2

The double-counted elements are x3y, x2yz, xy3, xy2z, and x2y2 is triple counted. So a basis is
given by

{x4, x3y, x2y2, x2y2, xy3, x3z, x2yz, xy2z, y4, y3z, xyz2, y2z2}.

Thus

dim[I]4 = 3 · 6− 2 · 3 = 12.

b) Based on patterns you see in 6a), find a formula for dim[I]d for any d ≥ 2. Explain your answer.
As long as you see the right pattern, I won’t be too fussy about proving it. [Hint: you’ll need
some binomial coefficients. Focus on a pattern for how much you have to subtract because of
over-counting.]

Solution:

3 ·
(
d

2

)
− 2 ·

(
d− 1

2

)
.

c) We maintain the notation that I = 〈 x2, xy, y2 〉. For any degree d, define a function

h(d) =

(
d + 2

2

)
− dim[I]d.

(Fun fact: this function is named after our old buddy Hilbert.) Prove that h(d) = 3 for all d ≥ 2.
You’ll need your answer to part 6b).

Solution:
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(
d + 2

2

)
−
[
3 ·

(
d

2

)
− 2 ·

(
d− 1

2

)]
=

(d + 2)(d + 1)

2
−
[

3d(d− 1)

2
− 2(d− 1)(d− 2)

2

]

=
d2 + 3d + 2−

[
3d2 − 3d− 2d2 + 6d− 4

]
2

=
6

2

= 3.


