
Math 40510, Algebraic Geometry

Problem Set 1, due March 5, 2021

Note: Answers that are sloppy, either from a mathematical point of view or because they are hard to
read, will result in points being deducted even if they are technically correct.

Solutions

1. Let k be a field and let R = k[x1, . . . , xn], the polynomial ring in n variables over k.

a) Prove that for any positive integer n ≥ 1, R = k[x1, . . . , xn] has the property that if f, g ∈ R and
f 6= 0, g 6= 0, then fg 6= 0. (Recall that this is the main step in showing that R is an integral
domain.) [Hint: In class we showed this for n = 1, and you can use this fact without proving it
again. Now use induction on n. Notice that we can lump together the terms according to the
power of one variable, for example

y2+z3+xy5z4+xy4+x2y3z4+x2yz5+x2z7+x3y2z = x0(y2+z3)+x(y5z+y4)+x2(y3z4+yz5+z7)+x3(y2z).]

Solution:

We know from class that the result is true for n = 1, so assume n > 1 and use induction.

f and g are non-zero polynomials in n variables, so each of them has at least one non-zero term.
Note that there is no guarantee that a non-zero term that you pick for f will have any variables
in common with a non-zero term you pick for g. To simplify notation, without loss of generality
let x1 be a variable that exists in at least one term of f . For the sake of this argument, we don’t
care if g has any terms with x1 in it, as long as g 6= 0.

As in the hint, separate f according to the powers of x1 in the terms (lump together the terms
without x1, then the terms with exactly x11, then the terms with exactly x21, etc), and similarly
separate g according to the powers of x1 in the terms.

f = H0 + x1H1 + x21H2 + · · ·+ xm1 Hm

g = K0 + x1K1 + x21K2 + · · ·+ x`1K`

where Hi,Kj ∈ k[x2, . . . , xn] for all i j (i.e. none of the Hi or the Kj involve x1 in any way).
Our assumptions give that m ≥ 1 and ` ≥ 0, and Hm 6= 0, K` 6= 0. (If ` = 0 that just means
that g has no term with an x1 in it, but it doesn’t mean K` = 0.)

Now look at fg:

fg = H0K0 + · · ·+ xi+j
1 (HiKj +HjKi) + · · ·+ xm+`

1 HmK`.

The first thing to note is that no term of xm+`
1 HmK` can cancel with any earlier term, by looking

at powers of x1. So it’s enough to show that xm+`
1 HmK` 6= 0. But certainly xm+`

1 6= 0, and since
Hm and K` are non-zero polynomials in < n variables, namely x2, . . . , xn, by induction their
product is not zero so we are done. �

b) If f, g ∈ R, prove that deg(fg) = deg(f) + deg(g). (We know it for monomials, but you have
to show that things don’t get messed up when you use polynomials even though cancelation of
terms can occur in a product.) [Hint: collect terms of the same degree together. For example,

y2 + z2 + xy5z4 + xy4 + x2y3z5 + x2yz2 + x3z7 + x3yz

= (y2 + z2) + (xy4 + x2yz2 + x3yz) + (xy5z4 + x2y3z5 + x3z7).]
1
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Solution:

Assume deg(f) = m and deg(g) = p. This time we’ll decompose f and g in a different way. Let
fi be the sum of all the terms of degree i in f , 0 ≤ i ≤ m and let gi be the sum of all the terms of
degree i in g, 0 ≤ i ≤ p. So

f = f0 + f1 + · · ·+ fm and g = g0 + g1 + · · ·+ gp,

so

fg = f0g0 + f1g0 + f0g1 + · · ·+ fmgp.

Since deg(f) = m and fm consists of all the terms of degree m, we get fm 6= 0. Similarly gp 6= 0. In
the product, no term can have higher degree than m+ p (since m is the highest degree of a term in
f and p is the highest degree in g). Also, the terms of degree exactly m+ p have to occur in fmgp.
We just have to show that fmgp 6= 0 so fg has at least one term of degree m + p. But by part a),
since fm 6= 0 and gp 6= 0 we have fmgp 6= 0 and we’re done. �

2. In class we proved that if k is an infinite field and f ∈ k[x1, . . . , xn] then the following are equivalent:

• f is the zero polynomial.

• The evaluation function f : kn → k, defined by f(P ) = f(b1, . . . , bn) for P = (b1, . . . , bn) ∈ kn,
is the zero function. (I.e. f , evaluated at any point of kn, vanishes.)

Now instead we consider a finite field. Let p be a prime and consider the field Zp. Give an
example of a polynomial f ∈ Zp[x, y] for which f : Z2

p → Zp vanishes at all but one point of Z2
p.

(Specifically, it has to fail to vanish at one and only one point of Z2
p.) Be sure to prove why your

example works – it’s not enough to just give the polynomial. [Hint: Fermat’s Little Theorem.]

Solution:

For our purposes (there are different ways to phrase it), Fermat’s theorem says that for all a ∈
Zp\{0}, ap−1 = 1. So the roots of the polynomial xp−1 − 1 in Zp are 1, 2, . . . , p− 1.

Now let f(x, y) = (xp−1 − 1)(yp−1 − 1). For any (a, b) ∈ Z2
p we have

f(a, b) = (ap−1 − 1)(bp−1 − 1).

From what we have said, this is equal to 0 in Zp as long as either a or b is not 0. The only point
missing is (0, 0), and clearly f(0, 0) = (0− 1)(0− 1) = 1 6= 0 so we are done. �

3. If k is an infinite field, prove that the phenomenon in Problem 2 can’t happen. That is, prove that
if f ∈ k[x, y] and f(x, y) = 0 when evaluated at every point of k2 except one specific point (a, b)
then we must also have f(a, b) = 0. (Make sure to indicate the relevance of the assumption that k
is infinite.)

Solution:

f(x, b) is a polynomial in one variable with infinitely many roots (namely x can be any value other
than x = a). But the degree of f is finite, so f must be the zero polynomial and so f(a, b) = 0 as
well. �

4. Let D ⊂ R3 be the set of points

D = {(t2, t3, t5) | t ∈ R}.

For instance, the point (22, 23, 25) = (4, 8, 32) ∈ R3 is a point of D.
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a) Prove that D is an affine variety. Specifically, find polynomials f1, . . . , fs (you get to decide what
s is) so that D = V(f1, . . . , fs). Make sure you prove both inclusions, ⊆ and ⊇.

Solution:

We claim D = V(x3−y2, x5−z2, y5−z3). First prove ⊆. If P ∈ D then P has the form (t2, t3, t5)
for some t, so

(x3 − y2)(P ) = t6 − t6 = 0
(x5 − z2)(P ) = t10 − t10 = 0
(y5 − z3)(P ) = t15 − t15 = 0

so ⊆ holds.

Now prove ⊇. Let P ∈ V(x3 − y2, x5 − z2, y5 − z3) and say P = (a, b, c). If P = (0, 0, 0) then
clearly P is on D (take t = 0), so assume a 6= 0. If a < 0 then since x3 − y2 vanishes on P we
get b2 = a3; but a3 is also negative so this is impossible. So we can assume a > 0.

Let t be a real number satisfying
t2 = a

(so t is either the positive or the negative square root of a). Since (x3 − y2)(a, b, c) = 0 we have

b2 = a3 = t6 so b is either t3 or − t3.
Similarly, we get

c2 = a5 = t10 so c is either t5 or − t5.
So far we have shown that one of the following holds:

(a, b, c) = (t2, t3, t5)
(a, b, c) = (t2, t3,−t5)
(a, b, c) = (t2,−t3, t5)

(a, b, c) = (t2,−t3,−t5).

But we also know that (y5 − z3)(a, b, c) = 0 so b5 = c3. This means that b and c are either both
positive or both negative. This rules out the second and third of these possibilities, so

(a, b, c) is either (t2, t3, t5) or (t2,−t3,−t5) = ((−t)2, (−t)3, (−t)5).
Either way, (a, b, c) ∈ D and we are done. �

b) If f ∈ R[x, y, z] and D 6⊂ V(f) (i.e. f does not vanish on all of D), show that V(f) ∩D consists
of at most 5 · deg(f) points.

Solution:

D consists of all the points in C3 of the form (t, t3, t5) for some t ∈ C. So D ∩ V(f) consists
of all points of the form (t, t3, t5) on which f vanishes, i.e. we’re looking for all values of t for
which f(t, t3, t5) = 0. Since f does not vanish on all of D by assumption, there are values of t
for which this equation does not hold, so now thinking of t as a variable, f(t, t3, t5) is a non-zero
polynomial, and its degree is 5 · deg(f). But the points of V(f) ∩D correspond to the roots of
f(t, t3, t5), and the number of roots of a polynomial in one variable is at most the degree of the
polynomial. �

c) Let φ : R→ R3 be the function defined by φ(t) = (t2, t3, t5). Prove that φ is one-to-one.

Solution:

Assume φ(s) = φ(t). We want to show that necessarily s = t. But our assumption says that
(s2, s3, s5) = (t2, t3, t5). But in particular we have s3 = t3, and this forces s = t. �
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d) We first make the following definition:

For any field k, if W is a set in kn and V is a variety in kn, we say that W is a
subvariety of V if W ⊆ V and W is itself a variety in kn. We say that W is a
proper subvariety of V if, in addition, W ( V .

In the context of the current problem, prove that a set W is a proper subvariety of D (the variety
defined in a)) if and only if W consists of a finite set of points on D. You can use anything we
talk about in class in your answer. (The implication ⇐ should only take a line or two but ⇒
will take a little more work.)

Solution:

Let’s prove⇐ first. Assume W is a finite set of points on D. By assumption W is a subset of D,
and since W is a finite set of points, we said in class that W is a variety in R3. So by definition,
W is a subvariety of D.

Now let’s prove ⇒. Assume that W is a subvariety of D but not equal to D. This means that
there exist polynomials f1, . . . , fs ∈ R[x, y, z] such that W = V(f1, . . . , fs). In particular, not all
of the fi can vanish on all of D. Let f be such a polynomial (we suppress the subscript). Then
we are in the situation of part b), so V(f) ∩D is a finite set. But

W = V(f1, . . . , fs) ⊂ V(f)

and W ⊂ D by hypothesis, so W ⊂ D ∩ V(f). Since D ∩ V(f) is a finite set, W must be finite
as well. �

5. Let a and b be positive real numbers and let

V = V(b2x2 + a2y2 − a2b2).

Notice that V is the solution set of the equation

x2

a2
+
y2

b2
= 1,

so V is an ellipse. (I’m not asking you to prove this; I’m just pointing out the fact.)

a

b

−b

−a

a) Mimicking what we did in class, find a rational parametrization of V . [Hint: try setting t to be
the slope of a line through the point (−a, 0) as we did in class.]

b) Check your answer by plugging in two specific choices of t to see if you get a point of V both
times.

Solution:

a) We’ll look at lines through the point (−a, 0) and having slope t.
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a

b

−b

−a

slope t

First we need to find the equation of this line, which is

y − 0 = t(x+ a) or y = t(x+ a).

This line meets the ellipse in two points, one of which is (−a, 0). We have to find the second
point. So we have the equations

b2x2 + a2y2 − a2b2 = 0
y = t(x+ a)

Substituting the second into the first, we get

b2x2 + a2t2(x+ a)2 − a2b2 = 0.

Thus
b2(x2 − a2) + a2t2(x+ a)2 = 0,

i.e.
b2(x+ a)(x− a) + a2t2(x+ a)2 = 0.

Factoring out (x+ a) we get

(x+ a)
[
b2(x− a) + a2t2(x+ a)

]
= 0.

The factor on the left corresponds to the point (−a, 0), so we focus on the factor on the right.
Multiplying it out and setting it equal to zero we have

b2x− b2a+ a2t2x+ a3t2 = 0, or x(b2 + a2t2) = b2a− a3t2.
Thus

x =
a(b2 − a2t2)
b2 + a2t2

.

Then

y = t(x+ a) = t

[
a · b

2 − a2t2

b2 + a2t2
+ a

]
= at

[
b2 − a2t2

b2 + a2t2
+ 1

]
=

2ab2t

a2t2 + b2
.

b) Let’s try the slopes t = 0 and t = b
a . First let’s see what we predict will happen. When t = 0,

the line with slope 0 is the x-axis, and we predict that the second point will be the point (a, 0),
i.e. x = a, y = 0. When t = b

a this corresponds to the line joining (−a, 0) and (0, b), so we
predict we’ll get x = 0, y = b.

Let’s confirm that our predictions hold. When t = 0 our parametrization gives

x =
a(b2)

b2
= a and y = 0

as predicted.

When t = b
a our parametrization gives

x =
a(b2 − a2 · b2

a2
)

b2 + a2 · b2
a2

=
a(0)

2b2
= 0 and y = a · b

a

[
b2 − a2 · b2

a2

b2 + a2 · b2
a2

+ 1

]
= b(0 + 1) = b
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as predicted.


