
Math 40510, Algebraic Geometry

Problem Set 3, due April 28, 2023

Solutions

In class we gave the axiomatic approach for a projective plane P2, and we now recall the axioms we
used. Remember that P2 consists of a set P of points and a collection L of subsets called lines, satisfying
these axioms (from Moorhouse):

(M1) Given any two points P,Q there is a unique line PQ containing both P and Q.
(M2) Given any two lines `,m there is a unique point P lying both on ` and on m (i.e. any

two lines meet in a point).
(M3) There exist four points such that no three are collinear.

We derived a lot from these axioms, and then we constructed the classical projective planes P2
k (where k

is a field) as examples of projective planes.

Later in the book Moorhouse also gives axioms for projective n-space. Let’s just look at the case n = 3.
Temporarily forget about the construction of the classical P3 that we gave (lines through the origin in k4)
and let’s focus on the axioms.

Here are the axioms for P3 obtained by specializing the Moorhouse axioms and tweaking a little bit for
convenience. We will say that:

P3 consists of a set P of points, a collection L of lines and a collection H of planes,

satisfying the following axioms.

(S1) Any two distinct points lie on exactly one line.
(S2) Any two distinct planes meet in exactly one line.
(S3) If a plane contains a line, it contains all the elements of that line.
(S4) Two distinct lines meet in a point if and only if they lie in a common plane.
(S5) There exists a set of five points, of which no four lie in a common plane.
(S6) Every line contains at least three points.
(S7) if X is a plane and P1, P2 are points of X then X contains the entire line spanned by P1

and P2 (whose existence is guaranteed by (S1)).

For each of the following problems you can refer to any earlier problem in addition to using the axioms.
You can do this regardless of whether you were able to prove the earlier problem or not.

Problem 1. Prove that three noncollinear points lie on a unique plane. (Be sure to prove uniqueness
as part of your answer.)

Solution:

Let our three points be P1, P2, P3. By (S1), P1 and P2 span the line P1P2, and P2 and
P3 span the line P2P3. These lines are distinct since the three points are noncollinear.
These two lines meet at the point P2, so by (S4) they both lie in a plane H. In particular,
by (S7) H contains the three points P1, P2, P3.

Suppose that there is a different plane H ′ also containing the three points P1, P2, P3.
By (S7), H ′ contains the line P1P2 and also the line P2P3, which (again) are different
lines. But these two lines are also contained in H. This contradicts (S2). Thus H is
unique.
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Problem 2. Given any line ` and any point P not on `, prove that there exists a unique plane
containing both P and `.

Solution:

Let P1, P2 be points of ` (OK by (S6)). Then P1P2 = ` since two points determine a
unique line (S1). By Problem 1 there is a unique plane H containing P1, P2, P .

We next claim that H has to contain ` as well. (So far all we know is that H contains
P1, P2 and P .) The line PP1 meets the line ` at the point P1, so by (S4) these two lines
lie in a common plane, and by the argument in Problem 1 this plane is the unique plane
containing P, P1, P2. So H contains ` and P and is the unique plane doing that.

Problem 3. Let X be any plane and let ` be any line not contained in X. Prove that X must meet
` in exactly one point.

X

`

Solution:

Let P be any point of P3 not on `. This is OK by (S5). It doesn’t matter if P is on X
or not. By Problem 2 there is a unique plane, say H, containing both P and `. By (S2),
X and H meet in a line, say m. Then m lies on X and m lies on H. But ` also lies on
H, so by Problem 4, ` and m meet in a point, say Q. Clearly Q is on `. But Q is also on
m, which is entirely contained in X. So by (S3), Q also lies on X. Thus X meets ` at
the point Q.

Problem 4. If X is a plane, show that it is a P2; i.e. show that axioms (M1), (M2), (M3) hold.

Solution:

(M1): this is the same as (S1).
(M2): If ` and m are lines on X then they lie on a common plane, so they meet in a

point thanks to (S4).
(M3): By (S5) there is a set of five points, call it Z = {P1, P2, P3, P4, P5}, no four of

which are in a common plane. In particular, at most three points of Z are on the plane
X. Choose one of these five points that is not on X; say without loss of generality that
it is P1. Define a function πP1 : Z\{P1} → X as follows (basically it is a projection). For
any Q ∈ Z\{P1}, there is a unique line P1Q containing both P1 and Q by (S1). This line
meets X in one point, by Problem 3, since P1 /∈ X. We define πP1(Q) to be this point
X ∩ P1Q. (Note that if Q is on X then Q = πP1(Q).)

In this way we get four points on X, namely πP1(P2), πP1(P3), πP1(P4), πP1(P5). We
claim that no three of these are on a line. Suppose, for example, that πP1(P2), πP1(P3),
πP1(P4) lie on a line `. By Problem 2, ` and P1 span a plane, H. By the way this has
been constructed, and using (S3), this forces P1, P2, P3, P4 to all lie on H; for instance,



3

H contains πP1(P2) and it contains P1, so it contains the line spanned by these points,
which by construction contains P2, so P2 ∈ H. This contradicts the choice of the five
points.

Problem 5. Prove that every line meeting two sides of a triangle, but none of its vertices, must also
meet the third side. More precisely:

Consider the triangle P1, P2, P3. We’ll interpret this as the data consisting of the three
points P1, P2, P3 together with the corresponding three lines that they span pairwise,
which we’ll denote P1P2, P1P3, P2P3 (this is OK by (S1)).

•

•

•
P1

P2

P3

Choose a third point, A, on P1P2 and a third point, B, on P1P3 (this is ok by (S6)):

•

•

•

•

•
P1

P2

P3

A
B

Then prove that the line AB has to meet the line P2P3 in a point.

Solution:

By Problem 1, P1, P2, P3 lie on a unique plane, H. By (S7), the lines P1P2, P1P3 and
P2P3 all lie on H, and by (S3) all the points on these lines also lie on H. In particular, A
and B lie on H so again by (S7) the line AB lies on H. By Problem 4, the axioms for P2

hold for H. But then by (M2) the lines AB and the line P2P3 meet at a point (on H).

For Problems 6, 7 and 8, feel free to use any facts we proved in class about P2.

Problem 6. If the P3 is finite, show that any two lines of P3 have the same number of elements, which
we’ll still call d+ 1. (Note that the two lines don’t necessarily meet in a point, so they’re
not necessarily in the same plane.)

Solution:

Let `1 and `2 be distinct lines in P3. They can meet in either zero points or one point:
indeed, by (S1) if they meet in two or more points then they are the same line.

Case 1: `1 and `2 meet in a point. Then by (S4) the two lines lie in a common plane.
By Problem 4, this plane satisfies the axioms of a projective plane, so by what we did in
class they have the same number of elements.
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Case 2: `1 and `2 are disjoint. Let P1 ∈ `1 and P2 ∈ `2 be points. By (S1) there is
a unique line, `, spanned by P1 and P2. ` meets `1 and `2 in one point each, since two
distinct lines meet in at most one point. By (S4), then, `1 and ` lie in a common plane
and by Case 1 it follows that `1 and ` have the same number of points. Similarly, ` and
`2 have the same number of points. Then `1 and `2 have the same number of points and
we are done.

Problem 7. Show that any two planes contain the same number of elements. What is that number
(in terms of the integer d in Problem 6)? Explain your answer. Again, feel free to use
earlier problems or results from class.

Solution:

We have seen in Problem 4 that any plane satisfies the axioms for P2, and we showed
in class that P2 has d2 + d+ 1 points. Thus any two planes have that number of points.

Problem 8. In terms of d (as in Problem 6), how many points are in P3? Explain your answer using
the axioms and previous problems.

Solution:

Fix a line `1 and a line `2 disjoint from `1 in P3. Let L1 be the collection of planes
containing `1. No plane H in L1 also contains `2, since otherwise we’d have two disjoint
lines in H, and we saw in Problem 4 that H is a copy of P2, where no two lines can be
disjoint.

There is a bijection between the elements of L1 and the points of `2 as follows:

φ : L1 → `2

given by φ(H) = H∩`2. This is well-defined because we just saw that H does not contain
`2, so by Problem 3, H meets `2 in a point (of `2). It is a bijection because each H gives
a different point of `2 (so φ is one-to-one), and given any P ∈ `2 there is an H containing
it by Problem 2 (so φ is onto).

Now we count. There are d2 + d+ 1 points on each H by Problem 4 and what we did
in class, and there are d+ 1 planes in L1 since that is the number on `2 and we have the
bijection φ. This gives (d2 + d + 1)(d + 1) points. But we overcounted: we counted the
points on `1 (d+ 1) times so the number of points in P3 is

(d2 + d+ 1)(d+ 1)− d(d+ 1) = (d3 + 2d2 + 2d+ 1)− (d2 + d) = d3 + d2 + d+ 1.

Now we’ll focus on the classical projective spaces Pn
k and their varieties, using homogeneous coordinates.

Problem 9. In this problem we work over R. Let’s look at the projective twisted cubic over the real
numbers. Consider the mapping (function)

φ : P1 → P3

defined by φ([s, t]) = [s3, s2t, st2, t3].

(i) Show that this mapping is well-defined.

Solution:
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We know that [s, t] = [λs, λt] for any λ ∈ R. Then

φ([λs, λt]) = [(λs)3, (λs)2(λt), (λs)(λt)2, (λt)3] = [λ3s3, λ3s2t, λ3st2, λ3t3] = [s3, s2t, st2, t3]

since we pull out the same λ3 from each component.

(ii) Explain why (for example) the mapping φ′([s, t]) = [s3, s2t, st2, t4] would not be
well-defined. Make sure you give enough detail in your answer.

Solution:

Making the same calculation as in the last part, we’d have

φ([λs, λt]) = [λ3s3, λ3s2t, λ3st2, λ4t4].

But now we can’t pull the same scalar from each component, since most of the time
λ3 6= λ4. So this is not equal to [s3, s2t, st2, t3].

(iii) Let V = φ(P1) be the image of P1 in P3 under the mapping φ. Prove that V ∩ U0

(where U0 is the affine part of P3 as defined in class) is the affine twisted cubic
mentioned in class.

Solution:

We know V = {[s3, s2t, st2, t3] | [s, t] ∈ P1}. We also know U0 = {[a, b, c, d] ∈
P3 | a 6= 0}. So every point of V ∩U0 comes from a point [s, t] ∈ P1 such that s 6= 0
(since we need s3 6= 0). That is,

V ∩ U0 = {[s3, s2t, st2, t3 | s 6= 0} =

{[
1,

(
t

s

)
,

(
t

s

)2

,

(
t

s

)3
]
| s 6= 0

}
Since t

s can take any real value, this is the affine twisted cubic under the identifi-

cation of U0 with R3.

(iv) Consider the matrix

A =

[
x0 x1 x2
x1 x2 x3

]
Find the maximal minors of A.

Solution:

x0x2 − x21, x0x3 − x1x2, x1x3 − x22.

(v) Let I be the ideal generated by the maximal minors of A that you found in (9iv).
Show that V(I) = V . (Make sure you show both inclusions.)

Solution:

We want to show that V = V(x0x2 − x21, x0x3 − x1x2, x1x3 − x22).

⊆:
Let P ∈ V , so P = [s3, s2t, st2, t3] for some s, t. Plugging in

x0 = s3, x1 = s2t, x2 = st2, x3 = t3

it’s clear that all three given polynomials vanish at P .
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⊇:
Let P = [a, b, c, d] ∈ V(x0x2 − x21, x0x3 − x1x2, x1x3 − x22).

Case 1: a = 0, so P = [0, b, c, d]. We’re assuming that each of the three polynomials
vanishes at P . This gives

(0)(c)− b2 = 0 ⇒ b = 0
(0)(d)− (0)(c) = 0 ⇒ no new information
(0)(d)− c2 = 0 ⇒ c = 0

where on each line we use information we got earlier. We conclude P = [0, 0, 0, 1].
This is indeed a point of V (take s = 0, t = 1).

Case 2: a 6= 0, so without loss of generality we can take P = [1, b, c, d]. Since
P ∈ V(x0x2 − x21, x0x3 − x1x2, x1x3 − x22), this means

c− b2 = 0, d− bc = 0, bd− c2 = 0.

Thus
c = b2, d = bc = b3, b4 − b4 = 0.

In particular, P = [1, b, b2, b3] is of the desired form, taking s = 1, t = b.


