Math 40510, Algebraic Geometry

Problem Set 2, due March 24, 2023

Note: Answers that are sloppy, either from a mathematical point of view or because they are hard to read, will result in points being deducted even if they are technically correct.

1. In class we showed that if $R=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field, and if I and J are ideals for which $I+J=\langle 1\rangle$ then $I \cap J=I J$. Assume that I and J have this property, namely $I+J=\langle 1\rangle$. Let s and t be arbitrary positive integers. Prove that it's also true that $I^{s}+J^{t}=\langle 1\rangle$.
2. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ and let I and J be ideals.
(i) Prove that if I is radical then so is $I: J$.
(ii) Give an example to show that if I is not radical then $I: J$ need not be radical. (So you have to find a suitable I and a suitable J.)
3. Let $I, J, K \subset k\left[x_{1}, \ldots, x_{n}\right]$ be ideals.
(i) Prove that $(I: J): K=I: J K$.
(ii) Prove that $(I \cap J): K=(I: K) \cap(J: K)$.
(iii) Prove that $I:(J+K)=(I: J) \cap(I: K)$.
4. If I is a prime ideal, show that $\sqrt{I}=I$.
5. For both of the following sets, find the Zariski closure and prove your answer.
(i) $S=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{R}^{3} \mid t \in \mathbb{Z}\right\}$.
(ii) $T=\left\{(p, q) \in \mathbb{R}^{2} \mid p, q \in \mathbb{Z}\right.$ are prime numbers $\}$.
6. In this problem we work over the real numbers, \mathbb{R}. Let

$$
D=\left\{\left(t^{a}, t^{b}, t^{c}, t^{d}\right) \mid t \in \mathbb{R}^{4}\right\},
$$

where a, b, c, d are given positive integers. For any part of this problem you can use without proof the fact that D is a variety in \mathbb{R}^{4} for any choice of a, b, c, d, but you can't choose your own values for a, b, c, d.
(i) If $a=b=c=d=3$, describe the variety geometrically and find the defining polynomials as a variety in \mathbb{R}^{4}.
(ii) From now on assume a, b, c, d are arbitrary. Prove that $D \subset \mathbb{R}^{4}$ is irreducible.
(iii) If P is the point $(1,2,3,4)$ in \mathbb{R}^{4}, prove that the ideal $\mathbb{I}(D \cup\{P\})$ is not a prime ideal.
(iv) If P is the point $(1,1,1,1)$ in \mathbb{R}^{4}, prove that the ideal $\mathbb{I}(D \cup\{P\})$ is a prime ideal.
7. Let $R=\mathbb{C}[x, y, z, w]$ and let

$$
D=\left\{\left(t^{a}, t^{b}, t^{c}, t^{d}\right) \mid t \in \mathbb{C}^{4}\right\},
$$

where a, b, c, d are given positive integers. You can use without proof the following two facts:

- D is a variety in \mathbb{C}^{4};
- D is irreducible (since the argument in any case would be the same as what you just did in Problem \#6 for \mathbb{R}).

However, as in Problem \#6 you can't choose your own values for a, b, c, d.
Let

$$
J=\mathbb{I}(D)^{3}=\left\{\sum_{i=1}^{s} a_{i} f_{i} g_{i} h_{i} \mid a_{i} \in R \text { and } f_{i}, g_{i}, h_{i} \in \mathbb{I}(D)\right\} .
$$

(I'm just reminding you what the cube of an ideal means.) Prove that \sqrt{J} is a prime ideal.

