
Math 40510, Algebraic Geometry

Problem Set 3, due April 28, 2023

Note: Answers that are sloppy, either from a mathematical point of view or because they are hard to
read, will result in points being deducted even if they are technically correct.

In class we gave the axiomatic approach for a projective plane P2, and we now recall the axioms we
used. Remember that P2 consists of a set P of points and a collection L of subsets called lines, satisfying
these axioms (from Moorhouse):

(M1) Given any two points P,Q there is a unique line PQ containing both P and Q.
(M2) Given any two lines `,m there is a unique point P lying both on ` and on m (i.e. any

two lines meet in a point).
(M3) There exist four points such that no three are collinear.

We derived a lot from these axioms, and then we constructed the classical projective planes P2
k (where k

is a field) as examples of projective planes.

Later in the book Moorhouse also gives axioms for projective n-space. Let’s just look at the case n = 3.
Temporarily forget about the construction of the classical P3 that we gave (lines through the origin in k4)
and let’s focus on the axioms.

Here are the axioms for P3 obtained by specializing the Moorhouse axioms and tweaking a little bit for
convenience. We will say that:

P3 consists of a set P of points, a collection L of lines and a collection H of planes,

satisfying the following axioms.

(S1) Any two distinct points lie on exactly one line.
(S2) Any two distinct planes meet in exactly one line.
(S3) If a plane contains a line, it contains all the elements of that line.
(S4) Two distinct lines meet in a point if and only if they lie in a common plane.
(S5) There exists a set of five points, of which no four lie in a common plane.
(S6) Every line contains at least three points.
(S7) if X is a plane and P1, P2 are points of X then X contains the entire line spanned by P1

and P2 (whose existence is guaranteed by (S1)).

For each of the following problems you can refer to any earlier problem in addition to using the axioms.
You can do this regardless of whether you were able to prove the earlier problem or not.

Problem 1. Prove that three noncollinear points lie on a unique plane. (Be sure to prove uniqueness
as part of your answer.)

Problem 2. Given any line ` and any point P not on `, prove that there exists a unique plane
containing both P and `.

Problem 3. Let X be any plane and let ` be any line not contained in X. Prove that X must meet
` in exactly one point.
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Problem 4. If X is a plane, show that it is a P2; i.e. show that axioms (M1), (M2), (M3) hold.

Problem 5. Prove that every line meeting two sides of a triangle, but none of its vertices, must also
meet the third side. More precisely:

Consider the triangle P1, P2, P3. We’ll interpret this as the data consisting of the three
points P1, P2, P3 together with the corresponding three lines that they span pairwise,
which we’ll denote P1P2, P1P3, P2P3 (this is OK by (S1)).
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Choose a third point, A, on P1P2 and a third point, B, on P1P3 (this is ok by (S6)):
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Then prove that the line AB has to meet the line P2P3 in a point.

For Problems 6, 7 and 8, feel free to use any facts we proved in class about P2.

Problem 6. If the P3 is finite, show that any two lines of P3 have the same number of elements, which
we’ll still call d+ 1. (Note that the two lines don’t necessarily meet in a point, so they’re
not necessarily in the same plane.)

Problem 7. Show that any two planes contain the same number of elements. What is that number
(in terms of the integer d in Problem 6)? Explain your answer. Again, feel free to use
earlier problems or results from class.

Problem 8. In terms of d (as in Problem 6), how many points are in P3? Explain your answer using
the axioms and previous problems.
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Now we’ll focus on the classical projective spaces Pn
k and their varieties, using homogeneous coordinates.

Specifically, for the final problem assume k = R.

Problem 9. Again, in this problem we work over R. Let’s look at the projective twisted cubic over
the real numbers. Consider the mapping (function)

φ : P1 → P3

defined by φ([s, t]) = [s3, s2t, st2, t3].

(i) Show that this mapping is well-defined.

(ii) Explain why (for example) the mapping φ′([s, t]) = [s3, s2t, st2, t4] would not be
well-defined. Make sure you give enough detail in your answer.

(iii) Let V = φ(P1) be the image of P1 in P3 under the mapping φ. Prove that V ∩ U0

(where U0 is the affine part of P3 as defined in class) is the affine twisted cubic
mentioned in class.

(iv) Consider the matrix

A =

[
x0 x1 x2
x1 x2 x3

]
Find the maximal minors of A.

(v) Let I be the ideal generated by the maximal minors of A that you found in (9iv).
Show that V(I) = V . (Make sure you show both inclusions.)


