
Math 40510, Algebraic Geometry

Problem Set 1, due February 10, 2025

Note: Answers that are sloppy, either from a mathematical point of view or because they are hard to
read, will result in points being deducted even if they are technically correct.

Solutions

1. In class on 1/13/25 we defined the polynomial ring R = k[x1, . . . , xn], where k is a field, and we
considered

[R]d = {polynomials of degree ≤ d} ∪ {0}.

In this problem we’ll find the dimension of this vector space.

a) (7 points) Prove (using a suitable induction) that(
d− 1

d− 1

)
+

(
d

d− 1

)
+ · · ·+

(
n + d− 3

d− 1

)
+

(
n + d− 2

d− 1

)
=

(
n + d− 1

d

)
.

Solution: For convenience let’s write it in reverse order[(
d− 1

d− 1

)
+

(
d

d− 1

)
+ · · ·+

(
n + d− 3

d− 1

)]
+

(
n + d− 2

d− 1

)
By induction on d, the part in brackets is

(
n+d−2

d

)
. Since

(
n
k

)
= n!

k!(n−k)! , we have that the above

is

=

(
n + d− 2

d

)
+

(
n + d− 2

d− 1

)
=

(n + d− 2)!

d!(n− 2)!
+

(n + d− 2)!

(d− 1)!(n− 1)!

Now get a common denominator:

=
(n + d− 2)!(n− 1)

d!(n− 1)!
+

d(n + d− 2)!

d!(n− 1)!
=

(n + d− 2)!(n− 1 + d)

d!(n− 1)!

=
(n + d− 1)!

d!(n− 1)!
=

(
n + d− 1

d

)
.

b) (7 points) Find the dimension of [R]d.

[Hints:

• The answer should be a single binomial coefficient. You’ll lose points if your answer is
more complicated, even if what you write is correct.

• In the class notes we gave a basis for the vector space [R]d. If you weren’t in class, you
can find the notes uploaded to the webpage. Let me know if you can’t find it. You can
use this as your starting point. I want a rigorous proof of the stated problem, and very
likely you’ll want to use special cases of part a).]

Solution: It’s enough to find how many elements there are in the basis. The basis we gave was
in the middle column of the following table, and in the last column we use part a) for different
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values of d.

degree elements total number
0 1 1

1 x1, x2, . . . , xn n =
(
n
1

)
2 x1(everything in x1, . . . , xn of degree 1) n + (n− 1) + · · ·+ 1

x2(everything in x2, . . . , xn of degree 1) =
(
n+1
2

)
x3(everything in x3, . . . , xn of degree 1)

...
xn(xn)

3 x1(everything in x1, . . . , xn of degree 2)
(
n+1
2

)
+
(
n
2

)
+ . . .

(
3
2

)
+
(
2
2

)
x2(everything in x2, . . . , xn of degree 2) =

(
n+2
3

)
...

xn−1(everything in xn−1,xn of degree 2)
xn(everything in xn of degree 2)

...
...

d etc.
(
n+d−2
d−1

)
+
(
n+d−3
d−1

)
+ · · ·+

(
d−1
d−1

)
=
(
n+d−1

d

)

So the total number is the following. We’ll use the fact that
(
n
k

)
=
(

n
n−k

)
.

1 +

(
n

1

)
+

(
n + 1

2

)
+

(
n + 2

3

)
+ · · ·+

(
n + d− 1

d

)
=

(
n− 1

n− 1

)
+

(
n

n− 1

)
+

(
n + 1

n− 1

)
+

(
n + 2

n− 1

)
+ · · ·+

(
n + d− 1

n− 1

)
.

Now use a) again, interchanging the roles of n and d. We get

dim[R]d =

(
n + d

n

)
.

c) (7 points) Verify your answer to a) with the case n = 4, d = 3 by listing all of the elements of
the basis and counting, to confirm that your part a) gives the right answer in this case.

Solution: Since n = 4 and d = 3 we expect our basis to have
(
4+3
4

)
= 35 elements. Let’s use

w, x, y, z as our indeterminates. The basis elements are:

1

w, x, y, z

w2, wx,wy,wz, x2, xy, xz, y2, yz, z2

w3, w2x,w2y, w2z, wx2, wxy, wxz, wy2, wyz, wz2, x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3

and there are indeed 35 of them.

2. We saw in class that if f, g ∈ k[x], where k is a field, then there are unique elements q, r ∈ k[x] such
that
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• f = qg + r, and

• either r = 0 (as a polynomial) or deg r < deg g.

In this problem we’ll talk about what happens if k is not a field. So consider Z6[x].

a) (7 points) Give an example of polynomials f and g in Z6[x] so that no q and r exist with the
stated properties.

Solution: Of course the condition deg r < deg g is important – otherwise we could always take
q = 0, g = f as a solution.

Let f = x5, g = 3x2. Let

q(x) = adx
d + ad−1x

d−1 + · · ·+ a4x
4 + a3x

3 + a2x
2 + a1x + a0.

Then

qg = 3adx
d+2 + 3ad−1x

d+1 + · · ·+ 3a4x
6 + 3a3x

5 + 3a2x
4 + 3a1x

3 + 3a0x
2.

If gq + r = f then in particular either 3a3 = 1 or r has x5 a term involving x5. The first is
impossible since 3 has no inverse in Z6. The second violates the condition deg r < deg g.

b) (7 points) Give an example of polynomials f and g in Z6[x] so that q and r exist but q is not
unique.

Solution:
Take f = 3x5, g = 3x2. Then

3x5 = 3x2(x3 + 2xa)

In this example r = 0 but q = x3 + 2xa works for all choices of a, so q is not unique.

3. We saw the following facts in class:

• A finite subset of kn is an affine variety.

• For any n, kn is a subvariety of kn (i.e. kn is contained in kn and is an affine varitey), since
kn = V(0).

For the following problems, assume that k is an infinite field.

a) (7 points) Let X be an infinite proper subset of k1. Then X is not an affine variety.

Solution:
If X were an affine variety in k1 then there exist f1, . . . , fs ∈ k[x] such that X = V(f1, . . . , fs).
On the other hand, for any i = 1, . . . , s we have fi(p) = 0 for all P ∈ X. But X is infinite, so fi
has infinitely many roots. Thus fi is the zero polynomial. But this means X = k1, and hence is
not a proper subset of k1.

b) (7 points) Give an example of an infinite proper subset of kn, for n ≥ 2, that is an affine variety.
Justify your answer.

Solution:
Let X be the set

X = {(t, 0, 0, . . . , 0) | t ∈ k}.
Then X = V(x2, x3, . . . , xn) so it is an affine variety. It is clearly proper, and it is infinite since
k is.
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c) (8 points) Let

X = {(a, b, c) | a, b, c ∈ Z are prime numbers or 0}.
Prove that X is not an affine variety.

Solution:
Suppose X were an affine variety, so X = V(f1, . . . , fs).

Fix any i with 1 ≤ i ≤ s. Fix prime numbers b, c and set

gb,c(x) = fi(x, b, c).

Now gb,c(x) is a polynomial in one variable that vanishes whenever x is a prime number, by
assumption. But the set of prime numbers is infinite, so gb,c(x) has infinitely many roots, and
hence is the zero polynomial. Similarly, setting ha,c(y) = fi(a, y, c) and `a,b(z) = fi(a, b, z), both
of these are the zero polynomial.

We want to conclude that fi is the zero polynomial. Since fi vanishes at every triple of prime
numbers or 0, fi(0, 0, 0) = 0 so the constant term of fi is 0. Suppose fi has some non-zero term.
It has to involve at least one variable, and without loss of generality say it’s x. But we saw
g1,1(x) = fi(x, 1, 1) is the zero polynomial, so the selected term in fact must be zero. Thus fi is
the zero polynomial, for 1 ≤ i ≤ s.

It follows that V(f1, . . . , fs) must in fact be all of R3, so the given X is not an affine variety.

4. Consider the curve
C = V(y2 − 4x2(x + 2))

in R2. You’re welcome to use a graphing program to see what the curve looks like. (It’s a nodal
cubic.)

a) (7 points) Use the lines through the origin to come up with a parametrization of C the way we
did in class on Wednesday (1/22/25). Specifically, give explicit rational functions a(t), b(t) and
set (x, y) = (a(t), b(t)). [Hint: The first 6 words of this part of the problem are important!]

Solution:
A line through the origin with slope t has equation

y = tx.

What does the intersection of such a line with C look like? We solve the equations

y = tx
y2 − 4x2(x + 2) = 0.

Plugging in tx for y in the second equation we get

t2x2 − 4x2(x + 2) = 0

so

(1) x2[t2 − 4x− 8)] = 0

So other than at the origin (x = 0) the line meets C at a point whose x-coordinate is obtained
by setting t2 − 4x− 8 = 0. Thus 4x = t2 − 8, so

x =
t2 − 8

4
.

Since y = tx, we have our parametrization:

(x, y) =

(
t2 − 8

4
,
t3 − 8t

4

)
.
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b) (7 points) Confirm algebraically that for any t ∈ R, (a(t), b(t)) is a point of C.

Solution:
We plug the above parametrization into the equation for C and show that we get 0 (so (x, y)
lies on C).

y2 − 4x2(x + 2) = y2 − 4x3 − 8x2

=

(
t3 − 8t

4

)2

− 4

(
t2 − 8

4

)3

− 8

(
t2 − 8

4

)2

=

(
t(t2 − 8)

4

)2

− 4

(
t2 − 8

4

)3

− 8

(
t2 − 8

4

)2

=

(
t2 − 8

4

)2 [
t2 − 4 · t

2 − 8

4
− 8

]
=

(
t2 − 8

4

)2

· 0

= 0.

c) (7 points) Use the geometry to show that for any point P on C other than the origin, there is a
unique value tP of t so that (a(tP ), b(tP )) = P .

Solution:
We saw in part a) (equation (1) that the intersection of the line with C consists of a double
root when x = 0 (which corresponds to the origin) plus a single root that we used for the
parametrization. So if P is any point on C other than the origin, there is a unique line through
P and the origin, so there is a unique value tP (giving that unique line) as claimed.

d) (7 points) What are the two values of t that give the origin? Explain.

Solution:
Since our parametrization is

(x, y) =

(
t2 − 8

4
,
t3 − 8t

4

)
=

(
t2 − 8

4
, t · t

2 − 8

4

)
,

to get (0, 0) we need

t = ±
√

8.

5. a) (7 points) Let R = k[x1, . . . , xn] and let I1, I2, . . . be ideals. (This is not necessarily a finite set
of ideals.) Prove that the intersection

I =
⋂
i≥1

Ii

is again an ideal.

Solution:
(i) I is not empty since 0 ∈ Ii for all i.

(ii) If f, g ∈ I then f, g ∈ Ii for all i, so f + g ∈ Ii for all i, so I is closed under addition.

(iii) If f ∈ I and h ∈ R then f ∈ Ii for all i, hence fh ∈ Ii for all i and so fh ∈ I. Thus I is
closed under multiplication by an element of the ring.

Therefore I is an ideal.
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b) (8 points) Let R = R[x, y, z]. Consider the points Pi = (i, i2, i3) ∈ R3 for all positive integers i.
So for example

P1 = (1, 1, 1), P2 = (2, 4, 8), P3 = (3, 9, 27), . . . .

(This is an infinite set.) Find a set of two generators for the ideal

I =
⋂
i≥1

I(Pi).

In other words, I’m telling you that there exist polynomials F,G so that I = (F,G) and I’m
asking you to find F and G. You can use any results from class without justification – just
carefully quote the result you’re using, and carefully prove that your answer is correct. (If you
happen to use an algebra program, it’s not enough to run this on the program – you have to
justify your answer.)

Solution:
Notice that all of these points lie on the twisted cubic curve C = {(t, t2, t3) | t ∈ R}. We claim

that I = I(C) = (y − x2, z − x3). The fact that these two polynomials generate I(C) was shown in
class on Wednesday, January 29. So it’s enough to prove that I = I(C).

Since Pi ∈ C for each i, we have I(C) ⊆ I. We have to prove the reverse inclusion. So let
f(x, y, z) ∈ I. We want to show that f(x, y, z) ∈ I(C).

Use the parametrization. We are assuming that f(i, i2, i3) = 0 for i = 1, 2, 3, . . . . Consider the
polynomial f(t, t2, t3) ∈ R[t]. (This just means you start with the polynomial f(x, y, z) and put
in t everywhere you see x, put in t2 everywhere you see y and put in t3 everywhere you see z.)
Our assumption means that the polynomial f(t) has infinitely many roots, so it must be the zero
polynomial. This means f(t, t2, t3) = 0 for all t ∈ R, so f(x, y, z) vanishes at every point of C, i.e.
f ∈ I(C).


