3.7			
Name			
rame			

Finite Mathematics (Math 10120), Spring 2020 Quiz 4 Wednesday, March 25, 2020

1. The 20 students in Dr. Doctor's class received the following scores on a recent quiz: 8, 10, 3, 10, 6, 9, 4, 9, 10, 6, 8, 10, 1, 7, 9, 9, 5, 8, 2, 10. Complete the frequency and relative frequency distributions below:

Score	Frequency	Relative Frequency
0		D
1	1 = 1	1/20
2	1 = 1	1/20
3	1 = 1	1/20
4	[= 1	1/20
5	1 = (1/20
6	11 = 2	2/20 = 1/10
7	= 1	1/20
8	1(1 = 3	3/20
9	1111 = 4	4/20 = 1/5
10	ILH = 5	5/20= 1/4

2. Find the mean, the variance and the **population** standard deviation of the data given by the following frequency distribution. I want you go show your work, so punching these numbers into a calculator that produces this information won't get credit.

Score x_i	Frequency f_i	×if;	xi-yı	(xi-m)	f; (x; -m)2
80	2	160	15	225	450
70	2	140	5	25	50
60	5	300	-5	25	(25
50	1	50	-15	25 25 225	225
10 650 4 M= 650 = 65					$72 = \frac{10}{820} = 82$
mean $\mu = 65$					a = 182
variance $\sigma^2 = 85$					= 9.22 (2 dec. places)
stand	$\mathbf{dard} \mathbf{dev} \sigma$	= 9,22	(z dec.	es \	2 1.02 (3.00)