SOURCE CODING WITH SIDE INFORMATION AT THE DECODER
(WYNER-ZIV CODING)

FEB 13, 2003
Problem: Determine \mathcal{R}, the set of all achievable rate pairs.

Result:

\[\mathcal{R} = \{ (R_x, R_v) \mid R_x \geq H(X|V), \ R_v \geq H(V|X), \ R_x + R_v \geq H(X,V) \} \]
SOURCE CODING WITH SIDE INFORMATION

\[
\begin{align*}
\{X_i\} & \rightarrow \text{ENCODER 1} \quad \text{RATE } R_1 \quad \rightarrow \text{DECODER 1} \quad \rightarrow \{\hat{X}_i\} \\
\{V_i\} & \rightarrow \text{ENCODER 0} \quad \text{RATE } R_0
\end{align*}
\]

- Goal: Design encoders \(E_0, E_1 \) to encode \(X \) with the optimal rate, and decoder \(D_1 \) to decode \(\hat{X} \) with arbitrarily low probability of error.
- \(\{V_k\} \) is statistically dependent on \(\{X_k\} \).
- Rate of \(E_i \) is \(R_i \) bits/source-symbol.
- A rate pair \((R_0, R_1) \) is achievable if \(\exists \) encoders \(E_0, E_1 \) (with parameters \(R_0, R_1 \)) and a decoder \(D_1 \) that can reproduce \(X \) with arbitrarily high reliability – i.e., if \(\exists \) mappings

Encoder 0: \[f_0 : V^n \rightarrow \{0, 1, \ldots, 2^{nR_0} - 1\}, \]

Encoder 1: \[f_1 : X^n \rightarrow \{0, 1, \ldots, 2^{nR_1} - 1\}, \]

Decoder 1: \[g_1 : \{0, 1, \ldots, 2^{nR_0} - 1\} \times \{0, 1, \ldots, 2^{nR_1} - 1\} \rightarrow X^n \]

such that the reconstruction error \(\Delta = \frac{1}{n} E[d_H(X^n, \hat{X}^n)] \leq \epsilon, \)
• **Problem:** Determine \mathcal{R}, the set of all achievable rate pairs.

• **Result:** If $Q(x, v) = Pr\{X = x, V = v\}$, then (R_0, R_1) is achievable if and only if:

\[R_1 \geq H(X|W) \text{ and } R_0 \geq I(V; W) \]

for some auxiliary random variable W satisfying

(a) \[\sum_{w \in \mathcal{W}} p(x, v, w) = Q(x, v), \]
(b) \[p(x, v, w) = Q(x, v)p_t(w|v) \]

Result: If $Q(x, y, v) = Pr \{X = x, Y = y, V = v\}$, then (R_0, R_1, R_2) is achievable if and only if:

- $R_1 \geq H(X|W)$,
- $R_2 \geq H(Y|W)$, and
- $R_0 \geq I(V; W)$

for some auxiliary random variable W satisfying

(a) $\sum_{w \in \mathcal{W}} p(x, y, v, w) = Q(x, y, v)$,
(b) $p(x, y, v, w) = Q(x, y, v)p_t(w|v)$

- Let \mathcal{P} be the family of probability mass functions $p(x, y, v, w)$ satisfying (a) and (b).
- The set of achievable rate triplets is:

$$\mathcal{R} = \left\{ (R_0, R_1, R_2) : R_0 \geq I(V; W), R_1 \geq H(X|W), R_2 \geq H(Y|W), p \in \mathcal{P} \right\}$$

$[c]$ denotes closure.
Lossy Source Coding with Side Information

- **Goal:** Design an encoder E_c that encodes X at the optimal rate and a decoder D_c that reconstructs \hat{X} within an average distortion d, given side information Y.
- Y is statistically dependent on X.
- Rate of E_c is R bits/source-symbol.
- A pair (R, d) is achievable if there exists an encoder E_c of rate R and a decoder D_c that can reconstruct X within an average distortion d – i.e., there exist mappings

 Encoder: $f_E : X^n \to \{0, 1, \ldots, 2^{nR} - 1\}$,

 Decoder: $f_D : Y^n \times \{0, 1, \ldots, 2^{nR} - 1\} \to \hat{X}^n$, such that:

 $$\limsup_{n \to \infty} E[D(X^n, f_D(Y^n, f_E(X^n)))] \leq d$$
• Let $R_{X|Y}(d)$ be the smallest allowable rate if Y is available to both E_c and D_c.

• Let $R^*_Y(d)$ be the smallest allowable rate if Y is available only to D_c.

• **Problem**: Determine the set of achievable pairs (R, d).

• **Theorem 1** If (X, Y) are drawn i.i.d. according to $Q(x, y) = \text{Pr}\{X = x, Y = y\}$, and $D : \mathcal{X} \times \hat{\mathcal{X}} \rightarrow \mathbb{R}^+$, $(D(x^n, \hat{x}^n) = \frac{1}{n} \sum_i D(x_i, \hat{x}_i))$, then

$$R^*_Y(d) = \min_{p(w|x)} \min_f \left(I(X; W) - I(Y; W) \right)$$

where W is an auxiliary random variable satisfying

(a) $\sum_{w \in \mathcal{W}} p(x, y, w) = Q(x, y),$ (b) $p(x, y, w) = Q(x, y) p_t(w|x)$

The minimization in (1) is over all $f : \mathcal{Y} \times \mathcal{W} \rightarrow \hat{\mathcal{X}}$ and $p(w|x)$, $|\mathcal{W}| \leq |\mathcal{X}| + 1$, such that $E[D(x, \hat{x})] = \sum_x \sum_w \sum_y Q(x, y) p(w|x) D(x, f(y, w)) \leq d$.

• $R^*_Y(d) \geq R_{X|Y}(d)$

(For $d = 0$, $R^*_Y(0) = R_{X|Y}(0) = H(X|Y)$ ← (Slepian-Wolf))

• If X and Y are jointly Gaussian, then $R^*_Y(d) = R_{X|Y}(d)$

EXAMPLE: SOURCE CODING WITH SIDE INFORMATION

Without Side Information

- X, Y – continuous valued RVs.
- Quantize x using 8-level quantizer. $w = Q_8(x)$.
- Encoder: Send index i of the region containing x
 $\Rightarrow R_s = 3$ bits/sample.
- Decoder: $\hat{x} = \arg\min_{a \in \mathbb{R}} E\left[D(x, a) \mid X \in \Gamma_i\right]$

With Side Information

- Case 1: Encoder is the same.
- Decoder: $\hat{x} = \arg\min_{a \in \mathbb{R}} E\left[D(x, a) \mid X \in \Gamma_i, Y = y\right]$
- Case 2: $W_c = \{r_0, \ldots, r_1\}$
- $\mathcal{C} = \{r_0, r_2, r_4, r_6\}$, rate of \mathcal{C} is $R_c = 2$ bits/sample.
- Encoder: Send index j of the coset containing
 $w = Q_8(x)$. Rate is $R = R_s - R_c = 1$ bit/sample.
- Decoder: Look for the most likely w_i in coset j
i.e., $Y = y$ is the output of channel $P(Y \mid W)$.
 Estimate: $\hat{x} = \arg\min_{a \in \mathbb{R}} E\left[D(x, a) \mid X \in \Gamma_i, Y = y\right]$
Case 3: \(C = \{ r_0, r_4 \} \), rate of \(C \) is \(R_c = 1 \) bits/sample.

Encoder: Send index \(j \) of the coset containing \(w = Q_8(x) \). Rate is \(R = R_s - R_c = 2 \) bit/sample.

Rate of the channel code reduced, distance of the channel code \(C \) increased.

Can we do better?

- Block encoding, vector quantizers or scalar quantizers with memory.
- Design a channel code \(C \) for the fictitious channel \(P(Y \mid W) \) such that \(C \) partitions the set of codewords \(W_c \) into disjoint cosets.
- \(R_c \leq I(Y; W) \). (From channel coding theorem)
- \(R_s \geq I(X; W) \). (From rate distortion theorem)
- \(\Rightarrow R = R_s - R_c \geq (I(X; W) - I(Y; W)) \)

THEOREM 1: PROOF OF CONVERSE

[Theorem 1: Elements of Information Theory, Wiley Series, 1991.]

Lemma 2 (Convexity): $R^*_Y(d)$ is a non-increasing convex function in d.

Proof: $R^*_Y(d)$ monotonic since the domain in (1) increases with d.

- For distortions d_1, d_2, let f_1, W_1 and f_2, W_2 be the parameters that achieve the minima in (1).
- Let $Q = \begin{cases} 1 & \text{with prob } \lambda \\ 2 & \text{with prob } 1 - \lambda \end{cases}$
- Let $W = (W_Q, Q)$
- $d = E[d(X, \hat{X})] = \lambda E[d(X, f_1(Y, W_1))] + (1 - \lambda) E[d(X, f_2(Y, W_2))] = \lambda d_1 + (1 - \lambda) d_2$

\[
I(X;W) - I(Y;W) &= H(X) - H(X|W_Q, Q) - H(Y) + H(Y|W_Q, Q) \\
&= H(X) - \lambda H(X|W_1) - (1 - \lambda) H(X|W_2) + \cdots \\
&= \lambda (I(X;W_1) - I(Y;W_1)) + (1 - \lambda) (I(X;W_2) - I(Y;W_2))
\]

- $R^*_Y(d) = \min(I(X;U) - I(Y;U)) \leq I(X;W) - I(Y;W) \\
 = \lambda R^*_Y(d_1) + (1 - \lambda) R^*_Y(d_2)$
Converse Theorem: Suppose \(\exists f_n : \mathcal{X}_n \to \{1, \ldots, 2^{nR}\} \) and \(g_n : \mathcal{Y}_n \times \{1, \ldots, 2^{nR}\} \to \hat{\mathcal{X}}_n \) such that \(E[d(X^n, g_n(Y^n, f_n(X^n)))] \leq d \), then \(R \geq R_Y^*(d) \).

Proof: Let \(T = f_n(X^n) \) and let \(W_i = (T, Y^{i-1}, Y_i^{n+1}) \).

\[
\begin{align*}
nR & \geq H(T) \geq H(T|Y^n) \geq I(X^n; T|Y^n) = \sum_{i=1}^n I(X_i; T|Y^n, X_i^{i-1}) \\
& = \sum_i (H(X_i|Y^n, X_i^{i-1}) - H(X_i|T, Y^n, X_i^{i-1})) = \sum_i (H(X_i|Y_i) - H(X_i|T, Y^n, X_i^{i-1})) \\
& \geq \sum_i (H(X_i|Y_i) - H(X_i|T, Y^n)) = \sum_i (H(X_i|Y_i) - H(X_i|W_i, Y_i)) \\
& = \sum_i I(X_i; W_i|Y_i) = \sum_i (H(W_i|Y_i) - H(W_i|X_i, Y_i)) \\
& = \sum_i (H(W_i|Y_i) - H(W_i|X_i)) = \sum_i (H(W_i) - H(W_i|X_i) - (H(W_i) - H(W_i|Y_i))) \\
& = \sum_i (I(X_i; W_i) - I(Y_i; W_i)) \\
& \geq \sum_i R_Y^*(E[d(X_i, g_{ni}(Y_i, W_i))]) = n \frac{1}{n} \sum_i R_Y^*(E[d(X_i, g_{ni}(Y_i, W_i))]) \\
& \geq nR_Y^*(E[\sum_i \frac{1}{n} d(X_i, g_{ni}(Y_i, W_i))]) = nR_Y^*(d) \\
\end{align*}
\]

(where \(\hat{X}^n = g_n(Y^n, f_n(X^n)) = g_n(Y_i, W_i), \hat{X}_i = g_{ni}(Y_i, W_i) \) \(\Rightarrow R \geq R_Y^*(d) \).
Duality Between Channel Capacity and Rate Distortion

Channel Coding Theorem: All rates below capacity C are achievable. Specifically, $\forall \epsilon > 0$ and rate $R < C$, there exists a sequence of $(2^{nR}, n)$ codes with $P_e^{(n)} \rightarrow 0$.

Conversely, any sequence of $(2^{nR}, n)$ codes with $P_e^{(n)} \rightarrow 0$ must have $R \leq C$.

Rate Distortion Theorem: All rates above rate distortion function $R(D)$ are achievable.

Specifically, $\forall \epsilon > 0$ and rate $R > R(D)$, there exists a sequence of $(2^{nR}, n)$ rate distortion codes with average distortion $\leq D$.

Conversely, any sequence of $(2^{nR}, n)$ rate distortion codes with average distortion $\leq D$ must have $R \geq R(D)$.
Proof of Achievability of CCT

- Fix $p(x)$. Let $R < C = \max_p I(X;Y)$
- Generate a $(2^{nR}, n)$ code at random $\sim p(x)$.
- Encoder: If message is $w \in \{1, \ldots, 2^{nR}\}$, send codeword $X^n(w)$.
- Decoder: Receive Y^n and decode \hat{w} if \exists a unique \hat{w} such that $(X^n(\hat{w}), Y^n) \in A^{(n)}_{\epsilon}$.
- Prob of error calculation
 - E1: there is no $X^n(\hat{w})$ that is jointly typical with Y^n. This prob. is very small, say $P_{E1} < \epsilon$.
 - E2: there is more than codeword that is jointly typical with Y^n. This prob is $P_{E2} \leq 2^{-n(I(X;Y)-3\epsilon)2^{nR}}.$
 - $P_{E2} \to 0$ if $R < I(X;Y) - 3\epsilon$.

Proof of Achievability of RDT

- Fix $p(\hat{x}|x)$. Let $R > R(d) = \min_{p(\hat{x}|x): Ed(X,\hat{X}) \leq d} I(X;\hat{X})$
- Generate a $(2^{nR}, n)$ RD code at random $\sim p(\hat{x})$.
- Encoder: If X^n is the message, look for a $w \in \{1, \ldots, 2^{nR}\}$ such that $(X^n(\hat{w}), X^n) \in A^{(n)}_{d,\epsilon}$. If there is no such w send $w = 1$, else send the smallest w.
- Decoder: Estimate is $\hat{X}^n(w)$.
- Average distortion calculation
 - E1: If there is at least one w such that $(\hat{X}^n(w), X^n) \in A^{(n)}_{d,\epsilon}$, then the average distortion is $D1 \leq d + \epsilon$.
 - E2: If there is no such w, then $D2 \leq P_e d_{max}$
 - $P_e \to 0$ if $R > I(X;\hat{X}) + 3\epsilon$.

STRONG TYPICALITY AND MARKOV LEMMA

- A sequence $x^n \in \mathcal{X}^n$ is ϵ-strongly typical if:
 1. $\forall a \in \mathcal{X}, \left| \frac{1}{n} N(a|x^n) - p(a) \right| < \frac{\epsilon}{|\mathcal{X}|}$,
 2. $N(a|x^n) = 0$ if $p(a) = 0$ (where $N(a|x^n)$ is the number of occurrences of a in x^n).
- $A^*_\epsilon(n)$ is the set of ϵ-strongly typical sequences x^n.

- A pair (x^n, y^n) is ϵ-strongly typical if:
 1. $\forall a \in \mathcal{X}, b \in \mathcal{Y}, \left| \frac{1}{n} N(a, b|x^n, y^n) - p(a, b) \right| < \frac{\epsilon}{|\mathcal{X}||\mathcal{Y}|}$,
 2. $N(a, b|x^n, y^n) = 0$ if $p(a, b) = 0$ (where $N(a, b|x^n, y^n)$ is the number of occurrences of the pair (a, b) in (x^n, y^n)).
- $A^*_\epsilon(n)(X, Y)$ is the set of ϵ-strongly typical sequence pairs (x^n, y^n).

- **Lemma 3:** $\Pr(A^*_\epsilon(n)) \to 1$ as $n \to \infty$.

- **Lemma 4:** Let Y_1, \ldots, Y_n be drawn $\sim \prod p(y)$. For $x^n \in A^*_\epsilon(n)$, we have
 $$2^{-n(I(X;Y)+\epsilon_1)} \leq \Pr((x^n, y^n) \in A^*_\epsilon(n)) \leq 2^{-n(I(X;Y)-\epsilon_1)}$$

- $A^*_\epsilon(n)(X, Y, Z)$ is the set of ϵ-strongly typical sequence triplets (x^n, y^n, z^n).

- If $(x^n, y^n, z^n) \in A^*_\epsilon(n) \Rightarrow (x^n, y^n) \in A^*_\epsilon(n)$ and $(y^n, z^n) \in A^*_\epsilon(n)$.
• Converse is not necessarily true.

• **Markov Lemma 5:** If $X \rightarrow Y \rightarrow Z$, i.e., $p(x, y, z) = p(x, y)p(z|y)$. If for a given $(y^n, z^n) \in A^*(n)$, X^n is drawn $\sim \prod_i p(x_i|y_i)$, then $\Pr\{(X^n, y^n, z^n) \in A^*(n)(X, Y, Z)\} > 1 - \epsilon$ for n sufficiently large.
PROOF OF ACHIEVABILITY

- Fix \(p(w|x) \) and \(f(w, y) \) that achieves equality in (1) for \(Ed(X, \hat{X}) \leq d \).

- Calculate \(p(w) = \sum_x p(w|x)p(x) \). Suppose \(R_2 > R_Y^*(d) \).

- Codebook:
 - Let \(R_1 = I(W; X) + \epsilon \). Generate \(2^{nR_1} \) codewords \(W^n(s) \sim \prod_{i=1}^{n} p(w_i), s \in \{1, \ldots, 2^{nR_1}\} \).
 - Let \(R_2 = I(X; W) - I(Y; W) + 5\epsilon \). Randomly assign \(s \in \{1, \ldots, 2^{nR_1}\} \) to one of \(2^{nR_2} \) bins.

- Encoder: If message is \(X^n \), look for a \(s \) such that \((X^n, W^n(s)) \in A^*_\epsilon(n)\). If there is no such \(s \), set \(s = 1 \), else choose the smallest \(s \). Send index of bin \(i \) containing \(s \).

- Decoder: Look for a \(s \) in bin \(i \) such that \((W^n(s), Y^n) \in A^*_\epsilon(n)\). If there is a unique such \(s \), then \(\hat{X}^n \) is found by \(\hat{X}_i = f(W_i, Y_i) \), else \(\hat{X}^n = \hat{x}^n \) arbitrary.

- Probability of error and average distortion analysis
 - \(E_1: (X^n, Y^n) \notin A^*_\epsilon(n) \). \(P_{E_1} < \epsilon, D1 < \epsilon d_{\max} \)
 - \(E_2: X^n \) is typical, but there is no \(s \) such that \((X^n, W^n(s)) \in A^*_\epsilon(n)\). \(P_{E_2} \to 0 \) if \(R_1 > I(X; W) \) (Proof of the rate distortion theorem)
- E_3: $(X^n, W^n(s)) \in A_\epsilon^*(n)$ but $(W^n(s), Y^n) \notin A_\epsilon^*(n)$.
 P_{E_3} is small (Markov Lemma).

- E_4: There is another s' in bin i such that $(W^n(s'), Y^n) \in A_\epsilon^*(n)$.
 $P_{E_4} \leq 2^n(R_1 - R_2) 2^{-n(I(Y; W) - 3\epsilon)}$. (Proof of the channel capacity theorem)

- $P_{E_4} \rightarrow 0$ since $R_1 - R_2 < I(Y; W) - 3\epsilon$.

- If s is decoded correctly, then $(X^n, W^n(s)) \in A_\epsilon^*(n)$.
 Since $P_{E_1} < \epsilon$, we can assume $(X^n, Y^n) \in A_\epsilon^*(n)$.
 Then, Markov Lemma $\Rightarrow (X^n, W^n(s), Y^n) \in A_\epsilon^*(n)$.
 \Rightarrow empirical joint distribution is close to $p(x, y)p(w|x)$,
 $\Rightarrow (X^n, \hat{X}^n)$ will have a joint distribution that is close to the distribution achieving distortion d.

\[
\sum_{x, \hat{x}} h(x, \hat{x}) d(x, \hat{x}) \cong \sum_{x} \sum_{y, w : f(w, y) = \hat{x}} p(x, y)p(w|x) d(x, f(w, y)) \leq d
\]
Proof of Achievability

Wyner-Ziv argument

- **Lemma A** Let X, Y, W, f be as before. For $\epsilon_0 > 0$ and large n_0, there exists a code (n_0, M_0, Δ_0) defined by (F_E^0, F_D^0) such that:

 \[
 \Delta_0 \leq d + \epsilon_0, \quad \frac{1}{n} H(T|Y^{n_0}) \leq R_0 + \epsilon_0
 \]

 where $T = F_E^0(X^{n_0})$, $R_0 = I(X; W) - I(Y; W)$.

- **Lemma B** (Slepian-Wolf) Let (F_E^0, F_D^0) be a (n_0, M_0, Δ_0) code. Then if $R_0 = \frac{1}{n} H(T|Y^{n_0})$ (where $T = F_E^0(X^{n_0})$), then for a sufficiently large n_1 and $\delta > 0$ there exists a code (n, M, Δ) such that

 \[
 n = n_0 n_1, \quad M \leq 2^{n_1(n_0 R_0 + \delta)} \leq 2^{n(R_0 + \delta)}, \quad \text{and} \quad \Delta \leq \Delta_0 + \delta
 \]

- Lemma A and Lemma B \Rightarrow Prove achievability of RDT with Side Information.