
Chapter 2

Central-Field Schrödinger
Equation

We begin the present discussion with a review of the Schrödinger equation for a
single electron in a central potential V (r). First, we decompose the Schrödinger
wave function in spherical coordinates and set up the equation governing the
radial wave function. Following this, we consider analytical solutions to the
radial Schrödinger equation for the special case of a Coulomb potential. The
analytical solutions provide a guide for our later numerical analysis. This review
of basic quantum mechanics is followed by a discussion of the numerical solution
to the radial Schrödinger equation.

The single-electron Schrödinger equation is used to describe the electronic
states of an atom in the independent-particle approximation, a simple approx-
imation for a many-particle system in which each electron is assumed to move
independently in a potential that accounts for the nuclear field and the field of
the remaining electrons. There are various methods for determining an approx-
imate potential. Among these are the Thomas-Fermi theory and the Hartree-
Fock theory, both of which will be taken up later. In the following section, we
assume that an appropriate central potential has been given and we concentrate
on solving the resulting single-particle Schrödinger equation.

2.1 Radial Schrödinger Equation

First, we review the separation in spherical coordinates of the Schrödinger
equation for an electron moving in a central potential V (r). We assume that
V (r) = Vnuc(r) + U(r) is the sum of a nuclear potential

Vnuc(r) = − Ze2

4πε0

1
r

,

and an average potential U(r) approximating the electron-electron interaction.
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We let ψ(r) designate the single-particle wave function. In the sequel, we
refer to this wave function as an orbital to distinguish it from a many-particle
wave function. The orbital ψ(r) satisfies the Schrödinger equation

hψ = Eψ , (2.1)

where the Hamiltonian h is given by

h =
p2

2m
+ V (r) . (2.2)

In Eq.(2.2), p = −ih̄∇ is the momentum operator and m is the electron’s mass.
The Schrödinger equation, when expressed in spherical coordinates, (r, θ, φ),
becomes

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂
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(
sin θ

∂ψ

∂θ
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+
1

r2sin2θ

∂2ψ

∂φ2
+

2m

h̄2 (E − V (r)) ψ = 0 . (2.3)

We seek a solution ψ(r, θ, φ) that can be expressed as a product of a function
P of r only, and a function Y of the angles θ and φ:

ψ(r) =
1
r
P (r) Y (θ, φ) . (2.4)

Substituting this ansatz into Eq.(2.3), we obtain the following pair of equations
for the functions P and Y

1
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∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2θ

∂2Y

∂φ2
+ λY = 0 , (2.5)

d2P

dr2
+

2m

h̄2

(
E − V (r) − λh̄2

2mr2

)
P = 0 , (2.6)

where λ is an arbitrary separation constant.
If we set λ = `(`+1), where ` = 0, 1, 2, · · · is an integer, then the solutions

to Eq.(2.5) that are finite and single valued for all angles are the spherical
harmonics Y`m(θ, φ).

The normalization condition for the wave function ψ(r) is∫
d3rψ†(r)ψ(r) = 1 , (2.7)

which leads to normalization condition∫ ∞

0

dr P 2(r) = 1 , (2.8)

for the radial function P (r).
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The expectation value 〈O〉 of an operator O in the state ψ is given by

〈O〉 =
∫

d3rψ†(r)Oψ(r) . (2.9)

In the state described by ψ(r) = P (r)
r Y`m(θ, φ), we have

〈L2〉 = `(` + 1)h̄2 , (2.10)
〈Lz〉 = mh̄ . (2.11)

2.2 Coulomb Wave Functions

The basic equation for our subsequent numerical studies is the radial Schrödinger
equation (2.6) with the separation constant λ = `(` + 1):

d2P

dr2
+

2m

h̄2

(
E − V (r) − `(` + 1)h̄2

2mr2

)
P = 0 . (2.12)

We start our discussion of this equation by considering the special case V (r) =
Vnuc(r).

Atomic Units: Before we start our analysis, it is convenient to introduce
atomic units in order to rid the equation of unnecessary physical constants.
Atomic units are defined by requiring that the electron’s mass m, the electron’s
charge |e|/√4πε0, and Planck’s constant h̄, all have the value 1. The atomic unit
of length is the Bohr radius, a0 = 4πε0h̄

2/me2 = 0.529177 . . . Å, and the atomic
unit of energy is me4/(4πε0h̄)2 = 27.2114 . . . eV. Units for other quantities can
be readily worked out from these basic few. For example, the atomic unit of
velocity is cα, where c is the speed of light and α is Sommerfeld’s fine structure
constant: α = e2/4πε0h̄c = 1/137.0359895 . . . .

In atomic units, Eq.(2.12) becomes

d2P

dr2
+ 2

(
E +

Z

r
− `(` + 1)

2r2

)
P = 0 . (2.13)

We seek solutions to the radial Schrödinger equation (2.13) that satisfy the
normalization condition (2.8). Such solutions exist only for certain discrete
values of the energy, E = En`, the energy eigenvalues. Our problem is to
determine these energy eigenvalues and the associated eigenfunctions, Pn`(r).
If we have two eigenfunctions, Pn`(r) and Pm`(r), belonging to the same angular
momentum quantum number ` but to distinct eigenvalues, Em` 6= En`, then it
follows from Eq.(2.13) that∫ ∞

0

drPn`(r)Pm`(r) = 0 . (2.14)
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Near r = 0, solutions to Eq.(2.13) take on one of the following limiting forms:

P (r) →
{

r`+1 regular at the origin, or
r−` irregular at the origin . (2.15)

Since we seek normalizable solutions, we must require that our solutions be
of the first type, regular at the origin. The desired solution grows as r`+1 as r
moves outward from the origin while the complementary solution decreases as
r−` as r increases.

Since the potential vanishes as r → ∞, it follows that

P (r) →
{

e−λr regular at infinity, or
eλr irregular at infinity , (2.16)

where λ =
√−2E. Again, the normalizability constraint (2.8) forces us to seek

solutions of the first type, regular at infinity. Substituting

P (r) = r`+1e−λrF (r) (2.17)

into Eq.(2.13), we find that F (x) satisfies Kummer’s equation

x
d2F

dx2
+ (b − x)

dF

dx
− aF = 0 , (2.18)

where x = 2λr, a = `+1−Z/λ, and b = 2(`+1). The solutions to Eq.(2.18) that
are regular at the origin are the Confluent Hypergeometric functions (Magnus
and Oberhettinger, 1949, chap. VI):

F (a, b, x) = 1 +
a

b
x +

a(a + 1)
b(b + 1)

x2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

x3

3!
+ · · ·

+
a(a + 1) · · · (a + k − 1)
b(b + 1) · · · (b + k − 1)

xk

k!
+ · · · . (2.19)

This series has the asymptotic behavior

F (a, b, x) → Γ(b)
Γ(a)

exxa−b[1 + O(|x|−1)] , (2.20)

for large |x|. The resulting radial wave function, therefore, grows exponentially
unless the coefficient of the exponential in Eq.(2.20) vanishes. Since Γ(b) 6= 0,
we must require Γ(a) = ∞ to obtain normalizable solutions. The function
Γ(a) = ∞ when a vanishes or when a is a negative integer. Thus, normalizable
wave functions are only possible when a = −nr with nr = 0, 1, 2, · · · . The
quantity nr is called the radial quantum number. With a = −nr, the Confluent
Hypergeometric function in Eq.(2.19) reduces to a polynomial of degree nr. The
integer nr equals the number of nodes (zeros) of the radial wave function for
r > 0. From a = ` + 1 − Z/λ, it follows that

λ = λn =
Z

nr + ` + 1
=

Z

n
,
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with n = nr + ` + 1. The positive integer n is called the principal quantum
number. The relation λ =

√−2E leads immediately to the energy eigenvalue
equation

E = En = −λ2
n

2
= − Z2

2n2
. (2.21)

There are n distinct radial wave functions corresponding to En. These are the
functions Pn`(r) with ` = 0, 1, · · · , n−1. The radial function is, therefore, given
by

Pn`(r) = Nn` (2Zr/n)`+1e−Zr/nF (−n + ` + 1, 2` + 2, 2Zr/n) , (2.22)

where Nn` is a normalization constant. This constant is determined by requiring

N2
n`

∫ ∞

0

dr (2Zr/n)2`+2e−2Zr/nF 2(−n + ` + 1, 2` + 2, 2Zr/n) = 1 . (2.23)

This integral can be evaluated analytically to give

Nn` =
1

n(2` + 1)!

√
Z(n + `)!

(n − ` − 1)!
. (2.24)

The radial functions Pn`(r) for the lowest few states are found to be:

P10(r) = 2Z3/2 re−Zr , (2.25)

P20(r) =
1√
2
Z3/2 re−Zr/2

(
1 − 1

2
Zr

)
, (2.26)

P21(r) =
1

2
√

6
Z5/2 r2e−Zr/2 , (2.27)

P30(r) =
2

3
√

3
Z3/2 re−Zr/3

(
1 − 2

3
Zr +

2
27

Z2r2

)
, (2.28)

P31(r) =
8

27
√

6
Z5/2 r2e−Zr/3

(
1 − 1

6
Zr

)
, (2.29)

P32(r) =
4

81
√

30
Z7/2 r3e−Zr/3. (2.30)

In Fig. 2.1, we plot the Coulomb wave functions for the n = 1, 2 and 3 states
of hydrogen, Z = 1. In this figure, the angular momentum states are labeled
using spectroscopic notation: states with l = 0, 1, 2, 3, 4, · · · are given the labels
s, p, d, f, g, · · · , respectively. It should be noted that the radial functions with
the lowest value of l for a given n, have no nodes for r > 0, corresponding to
the fact that nr = 0 for such states. The number of nodes is seen to increase
in direct proportion to n for a fixed value of l. The outermost maximum of
each wave function is seen to occur at increasing distances from the origin as n
increases.

The expectation values of powers of r, given by

〈rν〉n` = N2
n`

( n

2Z

)ν+1
∫ ∞

0

dx x2`+2+νe−xF 2(−n + ` + 1, 2` + 2, x) , (2.31)
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Figure 2.1: Hydrogenic Coulomb wave functions for states with n = 1, 2 and 3.

can be evaluated analytically. One finds:

〈r2〉n` =
n2

2Z2
[5n2 + 1 − 3`(` + 1)] , (2.32)

〈r〉n` =
1

2Z
[3n2 − `(` + 1)] , (2.33)〈

1
r

〉
n`

=
Z

n2
, (2.34)〈

1
r2

〉
n`

=
Z2

n3(` + 1/2)
, (2.35)〈

1
r3

〉
n`

=
Z3

n3(` + 1)(` + 1/2)`
, ` > 0 , (2.36)〈

1
r4

〉
n`

=
Z4[3n2 − `(` + 1)]

2n5(` + 3/2)(` + 1)(` + 1/2)`(` − 1/2)
, ` > 0 . (2.37)

These formulas follow from the expression for the expectation value of a power
of r given by Bethe and Salpeter (1957):

〈rν〉 =
( n

2Z

)ν J
(ν+1)
n+l,2l+1

J
(1)
n+l,2l+1

, (2.38)
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where, for σ ≥ 0,

J
(σ)
λ,µ = (−1)σ λ!σ!

(λ − µ)!

σ∑
β=0

(−1)β

(
σ
β

)(
λ + β

σ

) (
λ + β − µ

σ

)
, (2.39)

and for σ = −(s + 1) ≤ −1,

J
(σ)
λ,µ =

λ!
(λ − µ)! (s + 1)!

s∑
γ=0

(−1)s−γ

(
s
γ

) (
λ − µ + γ

s

)
(

µ + s − γ
s + 1

) . (2.40)

In Eqs. (2.39-2.40), (
a
b

)
=

a! (b − a)!
b!

(2.41)

designates the binomial coefficient.

2.3 Numerical Solution to the Radial Equation

Since analytical solutions to the radial Schrödinger equation are known for only a
few central potentials, such as the Coulomb potential or the harmonic oscillator
potential, it is necessary to resort to numerical methods to obtain solutions in
practical cases.

We use finite difference techniques to find numerical solutions to the radial
equation on a finite grid covering the region r = 0 to a practical infinity, a∞, a
point determined by requiring that P (r) be negligible for r > a∞.

Near the origin, there are two solutions to the radial Schrödinger equation,
the desired solution which behaves as r`+1, and an irregular solution, referred
to as the complementary solution, which diverges as r−` as r → 0. Numerical
errors near r = 0 introduce small admixtures of the complementary solution into
the solution being sought. Integrating outward from the origin keeps such errors
under control, since the complementary solution decreases in magnitude as r in-
creases. In a similar way, in the asymptotic region, we integrate inward from a∞
toward r = 0 to insure that errors from small admixtures of the complementary
solution, which behaves as eλr for large r, decrease as the integration proceeds
from point to point. In summary, one expects the point-by-point numerical
integration outward from r = 0 and inward from r = ∞ to yield solutions that
are stable against small numerical errors.

The general procedure used to solve Eq.(2.13) is to integrate outward from
the origin, using an appropriate point-by-point scheme, starting with solutions
that are regular at the origin. The integration is continued to the outer classical
turning point, the point beyond which classical motion in the potential V (r) +
`(` + 1)/2r2 is impossible. In the region beyond the classical turning point, the
equation is integrated inward, again using a point-by-point integration scheme,
starting from r = a∞ with an approximate solution obtained from an asymptotic
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series. Typically, we choose a∞ so that the dimensionless quantity λr ≈ 40
for the first few steps of the inward integration. With this choice, P (r) is
roughly 10−12 of its maximum value near a∞. The solutions from the inward
and outward integrations are matched at the classical turning point. The energy
is then adjusted until the derivative of P (r) is continuous at the matching point.

The resulting function P (r) is an eigenfunction and the corresponding energy
E is its eigenvalue. To find a particular eigenfunction, we make use of the fact
that different eigenfunctions have different numbers of nodes for r > 0. For a
given value of `, the lowest energy eigenfunction has no node, the next higher
energy eigenfunction has one node, and so on. We first make a preliminary
adjustment of the energy to obtain the desired number of nodes and then make
a final fine adjustment to match the slope of the wave function at the classical
turning point.

The radial wave function increases rapidly at small values of r then oscil-
lates in the classically allowed region and gradually decreases beyond the clas-
sical turning point. To accommodate this behavior, it is convenient to adopt
a nonuniform integration grid, more finely spaced at small r than at large r.
Although there are many possible choices of grid, one that has proven to be
both convenient and flexible is

r[i] = r0 (et[i] − 1) , where
t[i] = (i − 1)h , i = 1, 2, . . . , N .

(2.42)

We typically choose r0 = 0.0005 a.u., h = 0.02 − 0.03, and extend the grid to
N = 500 points. These choices permit the radial Schrödinger equation to be
integrated with high accuracy (parts in 1012) for energies as low as 0.01 a.u..

We rewrite the radial Schrödinger equation as the equivalent pair of first
order radial differential equations:

dP

dr
= Q(r), (2.43)

dQ

dr
= −2

(
E − V (r) − `(` + 1)

2r2

)
P (r) . (2.44)

On the uniformly-spaced t-grid, this pair of equations can be expressed as a
single, two-component equation

dy

dt
= f(y, t) , (2.45)

where y is the array,

y(t) =
[

P (r(t))
Q(r(t))

]
. (2.46)

The two components of f(y, t) are given by

f(y, t) = dr
dt


 Q(r(t))

−2
(

E − V (r) − `(` + 1)
2r2

)
P (r(t))


 . (2.47)
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We can formally integrate Eq.(2.45) from one grid point, t[n], to the next,
t[n + 1], giving

y[n + 1] = y[n] +
∫ t[n+1]

t[n]

f(y(t), t) dt . (2.48)

2.3.1 Adams Method (adams)

To derive the formula used in practice to carry out the numerical integration
in Eq.(2.48), we introduce some notation from finite difference theory. More
complete discussions of the calculus of difference operators can be found in
textbooks on numerical methods such as Dahlberg and Björck (1974, chap. 7).
Let the function f(x) be given on a uniform grid and let f [n] = f(x[n]) be
the value of f(x) at the nth grid point. We designate the backward difference
operator by ∇:

∇f [n] = f [n] − f [n − 1] . (2.49)

Using this notation, (1 − ∇)f[n] = f [n − 1]. Inverting this equation, we may
write,

f [n + 1] = (1 −∇)−1f [n],
f [n + 2] = (1 −∇)−2f [n],

...
(2.50)

or more generally,
f [n + x] = (1 −∇)−xf [n]. (2.51)

In these expressions, it is understood that the operators in parentheses are to
be expanded in a power series in ∇, and that Eq.(2.49) is to be used iteratively
to determine ∇k .

Equation(2.51) is a general interpolation formula for equally spaced points.
Expanding out a few terms, we obtain from Eq.(2.51)

f [n + x] =
(

1 +
x

1!
∇ +

x(x + 1)
2!

∇2 +
x(x + 1)(x + 2)

3!
∇3 + · · ·

)
f [n] ,

=
(

1 + x +
x(x + 1)

2!
+

x(x + 1)(x + 2)
3!

+ · · ·
)

f [n]

−
(

x +
2x(x + 1)

2!
+

3x(x + 1)(x + 2)
3!

+ · · ·
)

f [n − 1]

+
(

x(x + 1)
2!

+
3x(x + 1)(x + 2)

3!
+ · · ·

)
f [n − 2]

−
(

x(x + 1)(x + 2)
3!

+ · · ·
)

f [n − 3] + · · · . (2.52)

Truncating this formula at the kth term leads to a polynomial of degree k in x
that passes through the points f [n], f [n − 1], · · · , f [n − k] , as x takes on the
values 0,−1,−2, · · · ,−k, respectively. We may use the interpolation formula
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(2.51) to carry out the integration in Eq.(2.48), analytically leading to the result:
(Adams-Bashforth)

y[n + 1] = y[n] − h∇
(1 −∇) log(1 −∇)

f [n] ,

= y[n] + h(1 +
1
2
∇ +

5
12

∇2 +
9
24

∇3 + · · · )f [n] . (2.53)

This equation may be rewritten, using the identity (1−∇)−1f [n] = f [n+1], as
an interpolation formula: (Adams-Moulton)

y[n + 1] = y[n] − h∇
log(1 −∇)

f [n + 1] ,

= y[n] + h(1 − 1
2
∇− 1

12
∇2 − 1

24
∇3 + · · · )f [n + 1] . (2.54)

Keeping terms only to third-order and using Eqs.(2.53-2.54), we obtain the
four-point (fifth-order) predict-correct formulas

y[n + 1] = y[n] +
h

24
(55f [n] − 59f [n − 1] + 37f [n − 2] − 9f [n − 3])

+
251
720

h5y(5)[n] , (2.55)

y[n + 1] = y[n] +
h

24
(9f [n + 1] + 19f [n] − 5f [n − 1] + f [n − 2])

− 19
720

h5y(5)[n] . (2.56)

The error terms in Eqs.(2.55-2.56) are obtained by evaluating the first neglected
term in Eqs.(2.53-2.54) using the approximation

∇kf [n] ≈ hk

(
dkf

dtk

)
[n] = hk

(
dk+1y

dtk+1

)
[n] . (2.57)

The magnitude of the error in Eq.(2.56) is smaller (by an order of magnitude)
than that in Eq.(2.55), since interpolation is used in Eq.(2.56), while extrapola-
tion is used in Eq.(2.55). Often, the less accurate extrapolation formula (2.55)
is used to advance from point t[n] (where y[n], f [n], f [n − 1], f [n − 2], and
f [n− 3] are known) to the point t[n+1] . Using the predicted value of y[n+1],
one evaluates f [n + 1] . The resulting value of f [n + 1] can then be used in the
interpolation formula (2.56) to give a more accurate value for y[n + 1].

In our application of Adams method, we make use of the linearity of the
differential equations (2.45) to avoid the extrapolation step altogether. To show
how this is done, we first write the k + 1 point Adams-Moulton interpolation
formula from Eq.(2.54) in the form,

y[n + 1] = y[n] +
h

D

k+1∑
j=1

a[j] f [n − k + j] . (2.58)
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Table 2.1: Adams-Moulton integration coefficients

a[1] a[2] a[3] a[4] a[5] a[6] D error
1 1 2 -1/12

-1 8 5 12 -1/24
1 -5 19 9 24 -19/720

-19 106 -264 646 251 720 -3/160
27 -173 482 -798 1427 475 1440 -863/60480

The coefficients a[j] for 2-point to 7-point Adams-Moulton integration formulas
are given in Table 2.1, along with the divisors D used in Eq.(2.58), and the
coefficient of hk+2y(k+2)[n] in the expression for the truncation error.

Setting f(y, t) = G(t)y, where G is a 2 × 2 matrix, we can take the k + 1
term from the sum to the left-hand side of Eq.(2.58) to give

(
1 − ha[k + 1]

D
G[n + 1]

)
y[n + 1] = y[n] +

h

D

k∑
j=1

a[j] f [n − k + j] . (2.59)

From Eq.(2.47), it follows that G is an off-diagonal matrix of the form

G =
(

0 b
c 0

)
, (2.60)

for the special case of the radial Schrödinger equation. The coefficients b(t) and
c(t) can be read from Eq.(2.47):

b(t) = dr
dt c(t) = −2dr

dt

(
E − V (r) − `(`+1)

2r2

)
. (2.61)

The matrix

M [n + 1] = 1 − ha[k + 1]
D

G[n + 1]

on the left-hand side of Eq.(2.59) is readily inverted to give

M−1[n + 1] =
1

∆[n + 1]

(
1 λb[n + 1]

λc[n + 1] 1

)
, (2.63)

where

∆[n + 1] = 1 − λ2b[n + 1]c[n + 1] ,

λ =
ha[k + 1]

D
.

Equation(2.59) is solved to give

y[n + 1] = M−1[n + 1]


y[n] +

h

D

k∑
j=1

a[j] f [n − k + j]


 . (2.64)
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This is the basic algorithm used to advance the solution to the radial Schrödinger
equation from one point to the next. Using this equation, we achieve the ac-
curacy of the predict-correct method without the necessity of separate predict
and correct steps. To start the integration using Eq.(2.64), we must give initial
values of the two-component function f(t) at the points 1, 2, · · · , k. The sub-
routine adams is designed to implement Eq.(2.64) for values of k ranging from
0 to 8.

2.3.2 Starting the Outward Integration (outsch)

The k initial values of y[j] required to start the outward integration using the
k+1 point Adams method are obtained using a scheme based on Lagrangian dif-
ferentiation formulas. These formulas are easily obtained from the basic finite
difference expression for interpolation, Eq.(2.51). Differentiating this expres-
sion, we find (

dy

dx

)
[n − j] = − log(1 −∇) (1 −∇)j y[n] . (2.65)

If Eq.(2.65) is expanded to k terms in a power series in ∇, and evaluated at the
k + 1 points, j = 0, 1, 2, · · · , k, we obtain the k + 1 point Lagrangian differenti-
ation formulas. For example, with k = 3 and n = 3 we obtain the formulas:(

dy

dt

)
[0] =

1
6h

(−11y[0] + 18y[1] − 9y[2] + 2y[3]) − 1
4
h3y(4) (2.66)(

dy

dt

)
[1] =

1
6h

(−2y[0] − 3y[1] + 6y[2] − y[3]) +
1
12

h3y(4) (2.67)(
dy

dt

)
[2] =

1
6h

(y[0] − 6y[1] + 3y[2] + 2y[3]) − 1
12

h3y(4) (2.68)(
dy

dt

)
[3] =

1
6h

(−2y[0] + 9y[1] − 18y[2] + 11y[3]) +
1
4
h3y(4) . (2.69)

The error terms in Eqs.(2.66-2.69) are found by retaining the next higher-order
differences in the expansion of Eq.(2.65) and using the approximation (2.57).
Ignoring the error terms, we write the general k + 1 point Lagrangian differen-
tiation formula as (

dy

dt

)
[i] =

k∑
j=0

m[ij] y[j] , (2.70)

where i = 0, 1, · · · , k, and where the coefficients m[ij] are determined from
Eq.(2.65).

To find the values of y[j] at the first few points along the radial grid, first
we use the differentiation formulas (2.70) to eliminate the derivative terms from
the differential equations at the points j = 1, · · · , k, then we solve the resulting
linear algebraic equations using standard methods.

Factoring r`+1 from the radial wave function P (r) ,

P (r) = r`+1 p(r) , (2.71)
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we may write the radial Schrödinger equation as

dp

dt
=

dr

dt
q(t) , (2.72)

dq

dt
= −2

dr

dt

[
(E − V (r))p(t) +

(
` + 1

r

)
q(t)

]
. (2.73)

Substituting for the derivatives from Eq.(2.70), we obtain the 2k × 2k system
of linear equations

k∑
j=1

m[ij] p[j] − b[i] q[i] = −m[i0] p[0] , (2.74)

k∑
j=1

m[ij] q[j] − c[i] p[i] − d[i] q[i] = −m[i0] q[0] , (2.75)

where

b(t) =
dr

dt
,

c(t) = −2
dr

dt
[E − V (r)] ,

d(t) = −2
dr

dt

(
` + 1

r

)
, (2.76)

and where p[0] and q[0] are the initial values of p(t) and q(t) , respectively. If we
assume that as r → 0, the potential V (r) is dominated by the nuclear Coulomb
potential,

V (r) → −Z

r
, (2.77)

then from Eq.(2.73) it follows that the initial values must be in the ratio

q[0]
p[0]

= − Z

` + 1
. (2.78)

We choose p[0] = 1 arbitrarily and determine q[0] from Eq.(2.78).
The 2k×2k system of linear equations (2.74-2.75) are solved using standard

methods to give p[i] and q[i] at the points j = 1, · · · , k along the radial grid.
From these values we obtain

P [i] = r`+1[i] p[i] (2.79)

Q[i] = r`+1[i]
(

q[i] +
` + 1
r[i]

p[i]
)

. (2.80)

These are the k initial values required to start the outward integration of the
radial Schrödinger equation using the k + 1 point Adams method. The routine
outsch implements the method described here to start the outward integration.
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There are other ways to determine solutions to the second-order differential
equations at the first k grid points. One obvious possibility is to use a power
series representation for the radial wave function at small r. This method is not
used since we must consider cases where the potential at small r is very different
from the Coulomb potential and has no simple analytical structure. Such cases
occur when we treat self-consistent fields or nuclear finite-size effects.

Another possibility is to start the outward integration using Runge-Kutta
methods. Such methods require evaluation of the potential between the grid
points. To obtain such values, for cases where the potential is not known analyt-
ically, requires additional interpolation. The present scheme is simple, accurate,
and avoids such unnecessary interpolation.

2.3.3 Starting the Inward Integration (insch)

To start the inward integration using the k +1 point Adams method, we need k
values of P [i] and Q[i] in the asymptotic region just preceding the practical infin-
ity. We determine these values using an asymptotic expansion of the Schrödinger
wave function. Let us suppose that the potential V (r) in the asymptotic region,
r ≈ a∞, takes the limiting form,

V (r) → −ζ

r
, (2.81)

where ζ is the charge of the ion formed when one electron is removed. The
radial Schrödinger equation in this region then becomes

dP

dr
= Q(r), (2.82)

dQ

dr
= −2

(
E +

ζ

r
− `(` + 1)

2r2

)
P (r) . (2.83)

We seek an asymptotic expansion of P (r) and Q(r) of the form :

P (r) = rσe−λr
{

a0 +
a1

r
+ · · · + ak

rk
+ · · ·

}
, (2.84)

Q(r) = rσe−λr

{
b0 +

b1

r
+ · · · + bk

rk
+ · · ·

}
. (2.85)

Substituting the expansions (2.84-2.85) into the radial equations (2.82-2.83)
and matching the coefficients of the two leading terms, we find that such an
expansion is possible only if

λ =
√−2E ,

σ =
ζ

λ
. (2.86)



2.3. NUMERICAL SOLUTION TO THE RADIAL EQUATION 39

Using these values for λ and σ, the following recurrence relations for ak and bk

are obtained by matching the coefficients of r−k in Eqs.(2.82-2.83) :

ak =
`(` + 1) − (σ − k)(σ − k + 1)

2kλ
ak−1 , (2.87)

bk =
(σ + k)(σ − k + 1) − `(` + 1)

2k
ak−1 . (2.88)

We set a0 = 1 arbitrarily, b0 = −λ, and use Eqs.(2.87-2.88) to generate the
coefficients of higher-order terms in the series. Near the practical infinity, the
expansion parameter 2λr is large (≈ 80), so relatively few terms in the expansion
suffice to give highly accurate wave functions in this region. The asymptotic
expansion is used to evaluate Pi and Qi at the final k points on the radial grid.
These values are used in turn to start a point-by-point inward integration to
the classical turning point using the k + 1 point Adams method. In the routine
insch, the asymptotic series is used to obtain the values of P (r) and Q(r) at
large r to start the inward integration using Adams method.

2.3.4 Eigenvalue Problem (master)

To solve the eigenvalue problem, we:

1. Guess the energy E.

2. Use the routine outsch to obtain values of the radial wave function at
the first k grid points, and continue the integration to the outer classical
turning point (ac) using the routine adams.

3. Use the routine insch to obtain the values of the wave function at the
last k points on the grid, and continue the inward solution to ac using the
routine adams.

4. Multiply the wave function and its derivative obtained in step 3 by a scale
factor chosen to make the wave function for r < ac from step 2, and that
for r > ac from step 3, continuous at r = ac.

If the energy guessed in step 1 happened to be an energy eigenvalue, then not
only the solution, but also its derivative, would be continuous at r = ac. If it
were the desired eigenvalue, then the wave function would also have the correct
number of radial nodes, nr = n − ` − 1.

Generally the energy E in step 1 is just an estimate of the eigenvalue, so
the numerical values determined by following steps 2 to 4 above give a wave
function having an incorrect number of nodes and a discontinuous derivative at
ac. This is illustrated in Fig. 2.2. In the example shown there, we are seeking
the 4p wave function in a Coulomb potential with Z = 2. The corresponding
radial wave function should have nr = n − l − 1 = 2 nodes. We start with the
guess E = −0.100 a.u. for the energy and carry out steps 2 to 4 above. The
resulting function, which is represented by the thin solid curve in the figure, has
three nodes instead of two and has a discontinuous derivative at ac ≈ 19 a.u..
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Figure 2.2: The radial wave function for a Coulomb potential with Z = 2 is
shown at several steps in the iteration procedure leading to the 4p eigenstate.

The number of nodes increases with increasing energy. To reduce the number
of nodes, we must, therefore, lower the energy. We do this by multiplying E
(which is of course negative) by a factor of 1.1. Repeating steps 2 - 4 with
E = −0.110 a.u., leads to the curve shown in the dot-dashed curve in the
figure. The number of nodes remains nr = 3, so we repeat the steps again with
E = 1.1(−0.110) = −0.121 a.u.. At this energy, the number of nodes nr = 2
is correct, as shown in the dashed curve in Fig. 2.2; however, the derivative of
the wave function is still discontinuous at ac. To achieve a wave function with
a continuous derivative, we make further corrections to E using a perturbative
approach.

If we let P1(r) and Q1(r) represent the radial wave function and its derivative
at E1, respectively, and let P2(r) and Q2(r) represent the same two quantities
at E2, then it follows from the radial Schrödinger equation that

d

dr
(Q2P1 − P2Q1) = 2(E1 − E2)P1P2 . (2.89)

From this equation, we find that

2(E1 − E2)
∫ ∞

ac

P1 P2 dr = −(Q2P1 − P2Q1)+, (2.90)

2(E1 − E2)
∫ ac

0

P1 P2 dr = (Q2P1 − P2Q1)−, (2.91)
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where the superscripts ± indicate that the quantities in parentheses are to be
evaluated just above or just below ac. These equations are combined to give

E1 − E2 =
(Q+

1 − Q−
1 )P2(ac) + (Q−

2 − Q+
2 )P1(ac)

2
∫ ∞
0

P1 P2 dr
. (2.92)

Suppose that the derivative Q1 is discontinuous at ac. If we demand that Q2 be
continuous at ac, then the term Q−

2 − Q+
2 in the numerator of (2.92) vanishes.

Approximating P2 by P1 in this equation, we obtain

E2 ≈ E1 +
(Q−

1 − Q+
1 )P1(ac)

2
∫ ∞
0

P 2
1 dr

, (2.93)

as an approximation for the eigenenergy. We use this approximation iteratively
until the discontinuity in Q(r) at r = ac is reduced to an insignificant level.

The program master is designed to determine the wave function and the
corresponding energy eigenvalue for specified values of n and ` by iteration. In
this program, we construct an energy trap that reduces E (by a factor of 1.1)
when there are too many nodes at a given step of the iteration, or increases
E (by a factor of 0.9) when there are too few nodes. When the number of
nodes is correct, the iteration is continued using Eq.(2.93) iteratively until the
discontinuity in Q(r) at r = ac is reduced to a negligible level. In the routine, we
keep track of the least upper bound on the energy Eu (too many nodes) and the
greatest lower bound El (too few nodes) as the iteration proceeds. If increasing
the energy at a particular step of the iteration would lead to E > Eu, then we
simply replace E by (E+Eu)/2, rather than following the above rules. Similarly,
if decreasing E would lead to E < El, then we replace E by (E + El)/2.

For the example shown in the Fig. 2.2, it required 8 iterations to obtain
the energy E4p = −1/8 a.u. to 10 significant figures starting from the estimate
E = −.100 a.u.. The resulting wave function is shown in the heavy solid line in
the figure.

It is only necessary to normalize P (r) and Q(r) to obtain the desired radial
wave function and its derivative. The normalization integral,

N−2 =
∫ ∞

0

P 2(r)dr ,

is evaluated using the routine rint; a routine based on the trapezoidal rule with
endpoint corrections that will be discussed later. As a final step in the routine
master, the wave function and its derivative are multiplied by N to give a
properly normalized numerical solution to the radial Schrödinger equation.

2.4 Potential Models

The potential experienced by a bound atomic electron near r = 0 is dominated
by the nuclear Coulomb potential, so we expect

V (r) ≈ −Z

r
,
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for small r. At large r, on the other hand, an electron experiences a potential
that is the sum of the attractive nuclear Coulomb potential and the sum of the
repulsive potentials of the remaining electrons, so we expect

lim
r→∞V (r) = −ζ

r
,

with ζ = Z−N+1 for an N electron atom with nuclear charge Z. The transition
from a nuclear potential to an ionic potential is predicted by the Thomas-Fermi
model, for example. However, it is possible to simply approximate the poten-
tial in the intermediate region by a smooth function of r depending on several
parameters that interpolates between the two extremes. One adjusts the param-
eters in this potential to fit the observed energy spectrum as well as possible.
We examine this approach in the following section.

2.4.1 Parametric Potentials

It is a simple matter to devise potentials that interpolate between the nuclear
and ionic potentials. Two simple one-parameter potentials are:

Va(r) = −Z

r
+

(Z − ζ) r

a2 + r2
, (2.94)

Vb(r) = −Z

r
+

Z − ζ

r
(1 − e−r/b). (2.95)

The second term in each of these potentials approximates the electron-electron
interaction. As an exercise, let us determine the values of the parameters a and
b in Eqs.(2.94) and (2.95) that best represent the four lowest states (3s, 3p, 4s
and 3d) in the sodium atom. For this purpose, we assume that the sodium
spectrum can be approximated by that of a single valence electron moving in
one of the above parametric potentials. We choose values of the parameters to
minimize the sum of the squares of the differences between the observed levels
and the corresponding numerical eigenvalues of the radial Schrödinger equation.
To solve the radial Schrödinger equation, we use the routine master described
above. To carry out the minimization, we use the subroutine golden from the
NUMERICAL RECIPES library. This routine uses the golden mean technique
to find the minimum of a function of a single variable, taken to be the sum of
the squares of the energy differences considered as a function of the parameter
in the potential.

We find that the value a = 0.2683 a.u. minimizes the sum of the squares of
the differences between the calculated and observed terms using the potential Va

from Eq.(2.94). Similarly, b = 0.4072 a.u. is the optimal value of the parameter
in Eq.(2.95). In Table 2.2, we compare the observed sodium energy level with
values calculated using the two potentials. It is seen that the calculated and
observed levels agree to within a few percent for both potentials, although Vb

leads to better agreement.
The electron-electron interaction potential for the two cases is shown in

Fig. 2.3. These two potentials are completely different for r < 1 a.u., but agree
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Table 2.2: Comparison of n = 3 and n = 4 levels (a.u.) of sodium calculated
using parametric potentials with experiment.

State Va Vb Exp.
3s -0.1919 -0.1881 -0.1889
3p -0.1072 -0.1124 -0.1106
4s -0.0720 -0.0717 -0.0716
3d -0.0575 -0.0557 -0.0559

0 1 2 3 4 5
r (a.u.)

0
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30
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(r

)

10r/(r
2
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10(1 - e
-r/b

 )/r

Figure 2.3: Electron interaction potentials from Eqs.(2.94) and (2.95) with pa-
rameters a = 0.2683 and b = 0.4072 chosen to fit the first four sodium energy
levels.

closely for r > 1 a.u., where the n = 3 and n = 4 wave functions have their
maxima.

Since the two potentials are quite different for small r, it is possible to decide
which of the two is more reasonable by comparing predictions of levels that
have their maximum amplitudes at small r with experiment. Therefore, we are
led to compare the 1s energy from the two potentials with the experimentally
measured 1s binding energy Eexp

1s = −39.4 a.u. We find upon solving the radial
Schrödinger equation that

E1s =
{ −47.47a.u. for Va,

−40.14a.u. for Vb.

It is seen that potential Vb(r) predicts an energy that is within 2% of the ex-
perimental value, while Va leads to a value of the 1s energy that disagrees with
experiment by about 18%. As we will see later, theoretically determined poten-
tials are closer to case b than to case a, as one might expect from the comparison
here.
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One can easily devise multi-parameter model potentials, with parameters
adjusted to fit a number of levels precisely, and use the resulting wave functions
to predict atomic properties. Such a procedure is a useful first step in examining
the structure of an atom, but because of the ad hoc nature of the potentials
being considered, it is difficult to assess errors in predictions made using such
potentials.

2.4.2 Thomas-Fermi Potential

A simple approximation to the atomic potential was derived from a statistical
model of the atom by L.H Thomas and independently by E. Fermi in 1927. This
potential is known as the Thomas-Fermi potential. Although there has been a
revival of research interest in the Thomas-Fermi method in recent years, we will
consider only the most elementary version of the theory here to illustrate an
ab-initio calculation of an atomic potential.

We suppose that bound electrons in an atom behave in the same way as free
electrons confined to a box of volume V . For electrons in a box, the number of
states d3N available in a momentum range d3p is given by

d3N = 2
V

(2π)3
d3p, (2.96)

where the factor 2 accounts for the two possible electron spin states. Assuming
the box to be spherically symmetric, and assuming that all states up to momen-
tum pf (the Fermi momentum) are filled, it follows that the particle density ρ
is

ρ =
N

V
=

1
π2

∫ pf

0

p2dp =
1

3π2
p3

f . (2.97)

Similarly, the kinetic energy density is given by

εk =
Ek

V
=

1
π2

∫ pf

0

p2

2
p2dp =

1
10π2

p5
f . (2.98)

Using Eq.(2.97), we can express the kinetic energy density in terms of the par-
ticle density through the relation

εk =
3
10

(3π2)2/3ρ5/3 . (2.99)

In the Thomas-Fermi theory, it is assumed that this relation between the kinetic-
energy density and the particle density holds not only for particles moving freely
in a box, but also for bound electrons in the nonuniform field of an atom. In the
atomic case, we assume that each electron experiences a spherically symmetric
field and, therefore, that ρ = ρ(r) is independent of direction.

The electron density ρ(r) is assumed to vanish for r ≥ R, where R is deter-
mined by requiring ∫ R

0

4πr′2ρ(r′)dr′ = N, (2.100)
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where N is the number of bound electrons in the atom.
In the Thomas-Fermi theory, the electronic potential is given by the classical

potential of a spherically symmetric charge distribution:

Ve(r) =
∫ R

0

1
r>

4πr′2ρ(r′)dr′ , (2.101)

where r> = max (r, r′). The total energy of the atom in the Thomas-Fermi
theory is obtained by combining Eq.(2.99) for the kinetic energy density with the
classical expressions for the electron-nucleus potential energy and the electron-
electron potential energy to give the following semi-classical expression for the
energy of the atom:

E =
∫ R

0

{
3
10

(3π2)2/3ρ2/3 − Z

r
+

1
2

∫ R

0

1
r>

4πr′2ρ(r′)dr′
}

4πr2ρ(r)dr . (2.102)

The density is determined from a variational principle; the energy is required
to be a minimum with respect to variations of the density, with the constraint
that the number of electrons is N. Introducing a Lagrange multiplier λ, the
variational principal δ(E − λN) = 0 can be written

∫ R

0

{
1
2
(3π2)2/3ρ2/3 − Z

r
+

∫ R

0

1
r>

4πr′2ρ(r′)dr′ − λ

}
4πr2δρ(r)dr = 0.

(2.103)
Requiring that this condition be satisfied for arbitrary variations δρ(r) leads to
the following integral equation for ρ(r):

1
2
(3π2)2/3ρ2/3 − Z

r
+

∫ R

0

1
r>

4πr′2ρ(r′)dr′ = λ . (2.104)

Evaluating this equation at the point r = R, where ρ(R) = 0, we obtain

λ = −Z

R
+

1
R

∫ R

0

4πr′2ρ(r′)dr′ = −Z − N

R
= V (R) , (2.105)

where V (r) is the sum of the nuclear and atomic potentials at r. Combining
(2.105) and (2.104) leads to the relation between the density and potential,

1
2
(3π2)2/3ρ2/3 = V (R) − V (r) . (2.106)

Since V (r) is a spherically symmetric potential obtained from purely classical
arguments, it satisfies the radial Laplace equation,

1
r

d2

dr2
rV (r) = −4πρ(r) , (2.107)

which can be rewritten

1
r

d2

dr2
r[V (R) − V (r)] = 4πρ(r) . (2.108)
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Substituting for ρ(r) from (2.106) leads to

d2

dr2
r[V (R) − V (r)] =

8
√

2
3π

(r[V (R) − V (r)])3/2

r1/2
. (2.109)

It is convenient to change variables to φ and x, where

φ(r) =
r[V (R) − V (r)]

Z
, (2.110)

and
x = r/ξ , (2.111)

with

ξ =
(

9π2

128Z

)1/3

. (2.112)

With the aid of this transformation, we can rewrite the Thomas-Fermi equation
(2.109) in dimensionless form:

d2φ

dx2
=

φ3/2

x1/2
. (2.113)

Since limr→0 r[V (r) − V (R)] = −Z, the desired solution to (2.113) satisfies the
boundary condition φ(0) = 1. From ρ(R) = 0, it follows that φ(X) = 0 at
X = R/ξ.

By choosing the initial slope appropriately, we can find solutions to the
Thomas-Fermi equation that satisfy the two boundary conditions for a wide
range of values X. The correct value of X is found by requiring that the
normalization condition (2.100) is satisfied. To determine the point X, we write
Eq.(2.108) as

r
d2φ

dr2
=

1
Z

4πr2ρ(r) . (2.114)

From this equation, it follows that N(r), the number of electrons inside a sphere
of radius r, is given by

N(r)
Z

=
∫ r

0

r
d2φ(r)

dr2
dr (2.115)

=
(

r
dφ

dr
− φ

)r

0

(2.116)

= r
dφ

dr
− φ(r) + 1 . (2.117)

Evaluating this expression at r = R, we obtain the normalization condition

X

(
dφ

dx

)
X

= −Z − N

Z
. (2.118)

An iterative scheme is set up to solve the Thomas-Fermi differential equa-
tion. First, two initial values of X are guessed: X = Xa and X = Xb. The
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Figure 2.4: Thomas-Fermi functions for the sodium ion, Z = 11, N = 10.
Upper panel: the Thomas-Fermi function φ(r). Center panel: N(r), the num-
ber of electrons inside a sphere of radius r. Lower panel: U(r), the electron
contribution to the potential.

Thomas-Fermi equation (2.113) is integrated inward to r = 0 twice: the first
time starting at x = Xa, using initial conditions φ(Xa) = 0, dφ/dx(Xa) =
−(Z − N)/XaZ, and the second time starting at x = Xb, using initial condi-
tions φ(Xb) = 0, dφ/dx(Xb) = −(Z − N)/XbZ. We examine the quantities
φ(0) − 1 in the two cases. Let us designate this quantity by f ; thus, fa is
the value of φ(0) − 1 for the first case, where initial conditions are imposed at
x = Xa, and fb is the value of φ(0) − 1 in the second case. If the product
fafb > 0, we choose two new points and repeat the above steps until fafb < 0.
If fafb < 0, then it follows that the correct value of X is somewhere in the
interval between Xa and Xb. Assuming that we have located such an interval,
we continue the iteration by interval halving: choose X = (Xa + Xb)/2 and
integrate inward, test the sign of ffa and ffb to determine which subinterval
contains X and repeat the above averaging procedure. This interval halving is
continued until |f | < ε, where ε is a tolerance parameter. The value chosen for
ε determines how well the boundary condition at x = 0 is to be satisfied.

In the routine thomas, we use the fifth-order Runge-Kutta integration
scheme given in Abramowitz and Stegun to solve the Thomas-Fermi equation.
We illustrate the solution obtained for the sodium ion, Z = 11, N = 10 in
Fig. 2.4. The value of R obtained on convergence was R = 2.914 a.u.. In the
top panel, we show φ(r) in the interval 0 - R. In the second panel, we show
the corresponding value of N(r), the number of electrons inside a sphere of
radius r. In the bottom panel, we give the electron contribution to the poten-
tial. Comparing with Fig. 2.3, we see that the electron-electron potential U(r)
from the Thomas-Fermi potential has the same general shape as the electron-
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interaction contribution to the parametric potential Vb(r). This is consistent
with the previous observation that Vb(r) led to an accurate inner-shell energy
for sodium.

2.5 Separation of Variables for Dirac Equation

To describe the fine structure of atomic states from first principles, it is necessary
to treat the bound electrons relativistically. In the independent particle picture,
this is done by replacing the one-electron Schrödinger orbital ψ(r) by the corre-
sponding Dirac orbital ϕ(r). The orbital ϕ(r) satisfies the single-particle Dirac
equation

hDϕ = Eϕ, (2.119)

where hD is the Dirac Hamiltonian. In atomic units, hD is given by

hD = cα · p + βc2 + V (r) . (2.120)

The constant c is the speed of light; in atomic units, c = 137.0359895 . . .. The
quantities α and β in Eq.(2.120) are 4 × 4 Dirac matrices:

α =
(

0 σ
σ 0

)
, β =

(
1 0
0 −1

)
. (2.121)

The 2 × 2 matrix σ is the Pauli spin matrix, discussed in Sec. 1.2.1.
The total angular momentum is given by J = L + S, where L is the orbital

angular momentum, and S is the 4 × 4 spin angular momentum matrix,

S =
1
2

(
σ 0
0 σ

)
. (2.122)

It is not difficult to show that J commutes with the Dirac Hamiltonian. We
may, therefore, classify the eigenstates of hD according to the eigenvalues of
energy, J2 and Jz .The eigenstates of J2 and Jz are easily constructed using the
two-component representation of S. They are the spherical spinors Ωκm(r̂).

If we seek a solution to the Dirac equation (2.120) having the form

ϕκ(r) =
1
r

(
iPκ(r) Ωκm(r̂)
Qκ(r) Ω−κm(r̂)

)
, (2.123)

then we find, with the help of the identities (1.124, 1.126), that the radial
functions Pκ(r) and Qκ(r) satisfy the coupled first-order differential equations:

(V + c2)Pκ + c

(
d

dr
− κ

r

)
Qκ = EPκ (2.124)

−c

(
d

dr
+

κ

r

)
Pκ + (V − c2)Qκ = EQκ (2.125)
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where V (r) = Vnuc(r)+U(r). The normalization condition for the orbital ϕκ(r),∫
ϕ†

κ(r)ϕκ(r)d3r = 1, (2.126)

can be written ∫ ∞

0

[ P 2
κ (r) + Q2

κ(r) ]dr = 1, (2.127)

when expressed in terms of the radial functions Pκ(r) and Qκ(r). The radial
eigenfunctions and their associated eigenvalues, E, can be determined analyti-
cally for a Coulomb potential. In practical cases, however, the eigenvalue prob-
lem must be solved numerically.

2.6 Radial Dirac Equation for a Coulomb Field

In this section, we seek analytical solutions to the radial Dirac equations (2.124)
and (2.125) for the special case V (r) = −Z/r. As a first step in our analysis, we
examine these equations at large values of r. Retaining only dominant terms as
r → ∞, we find

c
dQκ

dr
= (E − c2)Pκ , (2.128)

c
dPκ

dr
= −(E + c2)Qκ . (2.129)

This pair of equations can be converted into the second-order equation

c2 d2Pκ

dr2
+ (E2 − c4)Pκ = 0, (2.130)

which has two linearly independent solutions, e±λr, with λ =
√

c2 − E2/c2.
The physically acceptable solution is

Pκ(r) = e−λr . (2.131)

The corresponding solution Qκ is given by

Qκ(r) =

√
c2 − E

c2 + E
e−λr. (2.132)

Factoring the asymptotic behavior, we express the radial functions in the form

Pκ =
√

1 + E/c2e−λr(F1 + F2) , (2.133)

Qκ =
√

1 − E/c2e−λr(F1 − F2) . (2.134)

Substituting this ansatz into (2.124) and (2.125), we find that the functions F1

and F2 satisfy the coupled equations

dF1

dx
=

EZ

c2λx
F1 +

(
Z

λx
− κ

x

)
F2 , (2.135)

dF2

dx
= −

(
Z

λx
+

κ

x

)
F1 +

(
1 − EZ

c2λx

)
F2 , (2.136)
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where x = 2λr.
We seek solutions to Eqs.(2.135,2.136) that have the limiting forms F1 =

a1x
γ and F2 = a2x

γ as x → 0. Substituting these expressions into (2.135) and
(2.136) and retaining only the most singular terms, we find:

a2

a1
=

γ − EZ/c2λ

−κ + Z/λ
=

−κ − Z/λ

γ + EZ/c2λ
. (2.137)

Clearing fractions in the right-hand equality, leads to the result γ2 = κ2 −
Z2/c2 = κ2 − α2Z2. Here, we have used the fact that c = 1/α in atomic
units. The physically acceptable value of γ is given by the positive square root,
γ =

√
κ2 − α2Z2. Next, we use Eq.(2.135) to express F2 in terms of F1,

F2 =
1

−κ + Z/λ

[
x

dF1

dx
− EZ

c2λ
F1

]
. (2.138)

This equation, in turn, can be used to eliminate F2 from Eq.(2.136), leading to

x
d2F1

dx2
+ (1 − x)

dF1

dx
−

(
γ2

x2
− EZ

c2λ

)
F1 = 0 . (2.139)

Finally, we write
F1(x) = xγF (x) , (2.140)

and find that the function F (x) satisfies the Kummer’s equation,

x
d2F

dx2
+ (b − x)

dF

dx
− aF = 0 , (2.141)

where a = γ − EZ/c2λ, and b = 2γ + 1. This equation is identical to Eq.(2.18)
except for the values of the parameters a and b. The solutions to Eq.(2.141) that
are regular at the origin are the Confluent Hypergeometric functions written out
in Eq.(2.19). Therefore,

F1(x) = xγ F (a, b, x) . (2.142)

The function F2(x) can also be expressed in terms of Confluent Hypergeometric
functions. Using Eq.(2.138), we find

F2(x) =
xγ

(−κ + Z/λ)

(
x

dF

dx
+ aF

)
=

(γ − EZ/c2λ)
(−κ + Z/λ)

xγF (a + 1, b, x) . (2.143)

Combining these results, we obtain the following expressions for the radial Dirac
functions:

Pκ(r) =
√

1 + E/c2e−x/2xγ [(−κ + Z/λ)F (a, b, x)
+(γ − EZ/c2λ)F (a + 1, b, x)

]
, (2.144)

Qκ(r) =
√

1 − E/c2 e−x/2xγ [(−κ + Z/λ)F (a, b, x)
−(γ − EZ/c2λ)F (a + 1, b, x)

]
. (2.145)
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These solutions have yet to be normalized.
We now turn to the eigenvalue problem. First, we examine the behavior of

the radial functions at large r. We find:

F (a, b, x) → Γ(b)
Γ(a)

exxa−b[1 + O(|x|−1)] , (2.146)

aF (a + 1, b, x) → Γ(b)
Γ(a)

exxa+1−b[1 + O(|x|−1)] . (2.147)

From these equations, it follows that the radial wave functions are normalizable
if, and only if, the coefficients of the exponentials in Eqs.(2.146) and (2.147)
vanish. As in the nonrelativistic case, this occurs when a = −nr, where nr =
0,−1,−2, · · · . We define the principal quantum number n through the relation,
n = k + nr, where k = |κ| = j + 1/2. The eigenvalue equation, therefore, can
be written

EZ/c2λ = γ + n − k .

The case a = −nr = 0 requires special attention. In this case, one can solve the
eigenvalue equation to find k = Z/λ. From this, it follows that the two factors
−κ+Z/λ and γ−EZ/c2λ in Eqs.(2.144) and (2.145) vanish for κ = k > 0. States
with nr = 0 occur only for κ < 0. Therefore, for a given value of n > 0 there
are 2n − 1 possible eigenfunctions: n eigenfunctions with κ = −1,−2, · · · − n,
and n − 1 eigenfunctions with κ = 1, 2, · · ·n − 1.

Solving the eigenvalue equation for E, we obtain

Enκ =
c2√

1 + α2Z2

(γ+n−k)2

. (2.148)

It is interesting to note that the Dirac energy levels depend only on k = |κ|.
Those levels having the same values of n and j, but different values of ` are
degenerate. Thus, for example, the 2s1/2 and 2p1/2 levels in hydrogenlike ions
are degenerate. By contrast, levels with the same value of n and ` but different
values of j, such as the 2p1/2 and 2p3/2 levels, have different energies. The
separation between two such levels is called the fine-structure interval.

Expanding (2.148) in powers of αZ, we find

Enκ = c2 − Z2

2n2
− α2Z4

2n3

(
1
k
− 3

4n

)
+ · · · . (2.149)

The first term in this expansion is just the electron’s rest energy (mc2) expressed
in atomic units. The second term is precisely the nonrelativistic Coulomb-field
binding energy. The third term is the leading fine-structure correction. The
fine-structure energy difference between the 2p3/2 and 2p1/2 levels in hydrogen
is predicted by this formula to be

∆E2p =
α2

32
a.u. = 0.3652 cm−1 ,
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in close agreement with the measured separation. The separation of the 2s1/2

and 2p1/2 levels in hydrogen is measured to be 0.0354 cm−1. The degeneracy
between these two levels predicted by the Dirac equation is lifted by the Lamb-
shift!

Let us introduce the (noninteger) parameter N = Z/λ = (γ + n − k)c2/E.
From (2.148), we find N =

√
n2 − 2(n − k)(k − γ). Thus, N = n when

n = k. With this definition, the coefficients of the hypergeometric functions
in Eqs.(2.144) and (2.145) can be written

(−κ + Z/λ) = (N − κ) , (2.150)
(γ − EZ/c2λ) = −(n − k) . (2.151)

Introducing the normalization factor

Nnκ =
1

N Γ(2γ + 1)

√
Z Γ(2γ + 1 + n − k)
2 (n − k)! (N − κ)

, (2.152)

we can write the radial Dirac Coulomb wave functions as

Pnκ(r) =
√

1 + Enκ/c2 Nnκe−x/2xγ [(N−κ)F (−n + k, 2γ + 1, x)
−(n−k)F (−n + k + 1, 2γ + 1, x)] , (2.153)

Qnκ(r) =
√

1 − Enκ/c2 Nnκe−x/2xγ [(N−κ)F (−n + k, 2γ + 1, x)
+(n−k)F (−n + k + 1, 2γ + 1, x)] . (2.154)

These functions satisfy the normalization condition (2.127). It should
be noticed that the ratio of the scale factors in (2.153) and (2.154) is√

(1 − Enκ/c2)/(1 + Enκ/c2) ≈ αZ/2n. Thus, Qnκ(r) is several orders of mag-
nitude smaller than Pnκ(r) for Z = 1. For this reason, Pnκ and Qnκ are referred
to as the large and small components of the radial Dirac wave function, respec-
tively.

As a specific example, let us consider the 1s1/2 ground state of an electron
in a hydrogenlike ion with nuclear charge Z. For this state, n = 1, κ = −1,
k = 1, γ =

√
1 − α2Z2, Enκ/c2 = γ, N = 1, λ = Z and x = 2Zr. Therefore,

P1−1(r) =

√
1 + γ

2

√
2Z

Γ(2γ + 1)
(2Zr)γe−Zr ,

Q1−1(r) =

√
1 − γ

2

√
2Z

Γ(2γ + 1)
(2Zr)γe−Zr .

In Fig. 2.5, we plot the n = 2 Coulomb wave functions for nuclear charge
Z = 2. The small components Q2κ(r) in the figure are scaled up by a factor of
1/αZ to make them comparable in size to the large components P2κ(r). The
large components are seen to be very similar to the corresponding nonrelativistic
Coulomb wave functions Pn`(r), illustrated in Fig. 2.1. The number of nodes
in the Pnκ(r) is n − ` − 1. The number of nodes in Qnκ(r) is also n − ` − 1
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Figure 2.5: Radial Dirac Coulomb wave functions for the n = 2 states of hydro-
genlike helium, Z = 2. The solid lines represent the large components P2κ(r)
and the dashed lines represent the scaled small components, Q2κ(r)/αZ.

for κ < 0, but is n − ` for κ > 0. These rules for the nodes will be useful in
designing a numerical eigenvalue routine for the Dirac equation. It should be
noticed that, except for sign, the large components of the 2p1/2 and 2p3/2 radial
wave functions are virtually indistinguishable.

2.7 Numerical Solution to Dirac Equation

The numerical treatment of the radial Dirac equation closely parallels that used
previously to solve the radial Schrödinger equation. The basic point-by-point in-
tegration of the radial equations is performed using the Adams-Moulton scheme
(adams). We obtain the values of the radial functions near the origin necessary
to start the outward integration using an algorithm based on Lagrangian differ-
entiation (outdir). The corresponding values of the radial functions near the
practical infinity, needed to start the inward integration, are obtained from an
asymptotic expansion of the radial functions (indir). A scheme following the
pattern of the nonrelativistic routine master is then used to solve the eigen-
value problem. In the paragraphs below we describe the modifications of the
nonrelativistic routines that are needed in the Dirac case.
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To make comparison with nonrelativistic calculations easier, we subtract the
rest energy c2 a.u. from Eκ in our numerical calculations. In the sequel, we use
Wκ = Eκ − c2 instead of E as the value of the energy in the relativistic case.

The choice of radial grid is identical to that used in the nonrelativistic case;
r(t) gives the value of the distance coordinate on the uniformly-spaced t grid.
The radial Dirac equations on the t grid take the form

dy

dt
= f(y, t) , (2.155)

where y(t) and f(y, t) are the two-component arrays:

y =
(

Pκ

Qκ

)
, (2.156)

f(y, t) = r′
( −(κ/r)Pκ(r) − α[Wκ − V (r) + 2α−2]Qκ(r)

(κ/r)Qκ(r) + α[Wκ − V (r)]Pκ(r)

)
, (2.157)

where, r′(t) = dr
dt .

2.7.1 Outward and Inward Integrations (adams, outdir,
indir)

adams: We integrate Eqs.(2.156) and(2.157) forward using the Adams-
Moulton algorithm given in Eq.(2.58):

y[n + 1] = y[n] +
h

D

k+1∑
j=1

a[j] f [n − k + j] . (2.158)

The coefficients a[j] and D for this integration formula are given in Table 2.1.
Writing f(y, t) = G(t) y, equation (2.158) can be put in the form (2.59),

(
1 − ha[k + 1]

D
G[n + 1]

)
y[n + 1] = y[n] +

h

D

k∑
j=1

a[j] f [n − k + j] , (2.159)

where G is the 2 × 2 matrix

G(t) =
(

a(t) b(t)
c(t) d(t)

)
, (2.160)

with

a(t) = −r′ (κ/r) , b(t) = −α r′ (Wκ − V (r) + 2α−2) ,
c(t) = α r′ (Wκ − V (r)) , d(t) = r′ (κ/r) .

(2.161)

The matrix M [n + 1] = 1 − ha[k+1]
D G[n + 1] on the left-hand side of Eq.(2.160)

can be inverted to give

M−1[n + 1] =
1

∆[n + 1]

(
1 − λd[n + 1] λb[n + 1]

λc[n + 1] 1 − λa[n + 1]

)
, (2.162)
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where

∆[n + 1] = 1 − λ2(b[n + 1]c[n + 1] − a[n + 1]d[n + 1]) ,

λ =
ha[k + 1]

D
.

With these definitions, the radial Dirac equation can be written in precisely the
same form as the radial Schrödinger equation (2.64)

y[n + 1] = M−1[n + 1]


y[n] +

h

D

k∑
j=1

a[j] f [n − k + j]


 . (2.163)

This formula is used in the relativistic version of the routine adams to carry
out the step-by-step integration of the Dirac equation.

As in the nonrelativistic case, we must supply values of yn at the first k
grid points. This is done by adapting the procedure used to start the outward
integration of the Schrödinger equation to the Dirac case.

outdir: The values of yn at the first k grid points, needed to start the outward
integration using (2.163), are obtained using Lagrangian integration formulas.
As a preliminary step, we factor rγ from the radial functions Pκ(r) and Qκ(r),
where γ =

√
k2 − (αZ)2. We write:

Pκ(r) = rγu(r(t)), (2.164)
Qκ(r) = rγv(r(t)), (2.165)

and find,

du/dt = a(t)u(t) + b(t)v(t), (2.166)
dv/dt = c(t)u(t) + d(t)v(t), (2.167)

where,

a(t) = −(γ + κ)r′/r, (2.168)
b(t) = −α(W − V (r) + 2α−2)r′, (2.169)
c(t) = α(W − V (r))r′, (2.170)
d(t) = −(γ − κ)r′/r. (2.171)

We normalize our solution so that, at the origin, u0 = u(0) = 1. It follows that
v0 = v(0) takes the value

v0 = −(κ + γ)/αZ, for κ > 0, (2.172)
= αZ/(γ − κ), for κ < 0, (2.173)

provided the potential satisfies

V (r) → −Z

r
,
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as r → 0. The two equations (2.172) and (2.173) lead to identical results
mathematically; however, (2.172) is used for κ > 0 and (2.173) for κ < 0 to avoid
unnecessary loss of significant figures by cancellation for small values of αZ. One
can express du/dt and dv/dt at the points t[i], i = 0, 1, · · · , k in terms of u[i] =
u(t[i]) and v[i] = v(t[i]) using the Lagrangian differentiation formulas written
down in Eq.(2.70). The differential equations thereby become inhomogeneous
matrix equations giving the vectors (u[1], u[2], · · · , u[k]) and (v[1], v[2], · · · , v[k])
in terms of initial values u[0] and v[0]:

k∑
j=1

m[ij] u[j] − a[i] u[i] − b[i] v[i] = −m[i0] u[0], (2.174)

k∑
j=1

m[ij] v[j] − c[i] u[i] − d[i] v[i] = −m[i0] v[0]. (2.175)

This system of 2k×2k inhomogeneous linear equations can be solved by standard
routines to give u[i] and v[i] at the points i = 1, 2, · · · , k. The corresponding
values of Pκ and Qκ are given by

Pκ(r[i]) = r[i]γ u[i], (2.176)
Qκ(r[i]) = r[i]γ v[i]. (2.177)

These equations are used in the routine outdir to give the k values required
to start the outward integration using a k + 1-point Adams-Moulton scheme.

indir: The inward integration is started using an asymptotic expansion of the
radial Dirac functions. The expansion is carried out for r so large that the
potential V (r) takes on its asymptotic form

V (r) = −ζ

r
,

where ζ = Z − N + 1 is the ionic charge of the atom. We assume that the
asymptotic expansion of the radial Dirac functions takes the form

Pκ(r) = rσe−λr

{√
c2 + E

2c2

[
1 +

a1

r
+

a2

r
+ · · ·

]

+

√
c2 − E

2c2

[
b1

r
+

b2

r
+ · · ·

]}
, (2.178)

Qκ(r) = rσe−λr

{√
c2 + E

2c2

[
1 +

a1

r
+

a2

r
+ · · ·

]

−
√

c2 − E

2c2

[
b1

r
+

b2

r
+ · · ·

]}
, (2.179)
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where λ =
√

c2 − E2/c2. The radial Dirac equations admit such a solution only
if σ = Eζ/c2λ. The expansion coefficients can be shown to satisfy the following
recursion relations:

b1 =
1
2c

(
κ +

ζ

λ

)
, (2.180)

bn+1 =
1

2nλ

(
κ2 − (n − σ)2 − ζ2

c2

)
bn , n = 1, 2, · · · , (2.181)

an =
c

nλ

(
κ + (n − σ)

E

c2
− ζλ

c2

)
bn , n = 1, 2, · · · . (2.182)

In the routine indir, Eqs.(2.178) and (2.179) are used to generate the k values
of Pκ(r) and Qκ(r) needed to start the inward integration.

2.7.2 Eigenvalue Problem for Dirac Equation (master)

The method that we use to determine the eigenfunctions and eigenvalues of the
radial Dirac equation is a modification of that used in the nonrelativistic routine
master to solve the eigenvalue problem for the Schrödinger equation. We guess
an energy, integrate the equation outward to the outer classical turning point ac

using outdir, integrate inward from the practical infinity a∞ to ac using indir
and, finally, scale the solution in the region r > ac so that the large component
P (r) is continuous at ac. A preliminary adjustment of the energy is made to
obtain the correct number of nodes (= n − l − 1) for P (r) by adjusting the
energy upward or downward as necessary. At this point we have a continuous
large component function P (r) with the correct number of radial nodes; however,
the small component Q(r) is discontinuous at r = ac. A fine adjustment of the
energy is made using perturbation theory to remove this discontinuity.

If we let P1(r) and Q1(r) be solutions to the radial Dirac equation corre-
sponding to energy W1 and let P2(r) and Q2(r) be solutions corresponding to
energy W2, then it follows from the radial Dirac equations that

d

dr
(P1Q2 − P2Q1) =

1
c
(W2 − W1)(P1P2 + Q1Q2) . (2.183)

Integrating both sides of this equation from 0 to ac and adding the corresponding
integral of both sides from ac to infinity, we obtain the identity

P1(ac)(Q−
2 − Q+

2 ) + P2(ac)(Q+
1 − Q−

1 ) =
1
c
(W2 − W1)

∫ ∞

0

(P1P2 + Q1Q2)dr ,

(2.184)
where Q+

1 and Q+
2 are the values of the small components at ac obtained from

inward integration, and Q−
1 and Q−

2 are the values at ac obtained from outward
integration. If we suppose that Q1 is discontinuous at ac and if we require that
Q2 be continuous, then we obtain from (2.184) on approximating P2(r) and
Q2(r) by P1(r) and Q1(r),

W2 ≈ W1 +
cP1(ac)(Q+

1 − Q−
1 )∫ ∞

0
(P 2

1 + Q2
1)dr

. (2.185)
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Table 2.3: Parameters for the Tietz and Green potentials.

Tietz Green
Element t γ H d

Rb 1.9530 0.2700 3.4811 0.7855
Cs 2.0453 0.2445 4.4691 0.8967
Au 2.4310 0.3500 4.4560 0.7160
Tl 2.3537 0.3895 4.4530 0.7234

The approximation (2.185) is used iteratively to reduce the discontinuity in
Q(r) at r = ac to insignificance. The Dirac eigenvalue routine dmaster is
written following the pattern of the nonrelativistic eigenvalue routine master,
incorporating the routines outdir and indir to carry out the point-by-point
integration of the radial equations and using the approximation (2.185) to refine
the solution.

2.7.3 Examples using Parametric Potentials

As in the nonrelativistic case, it is possible to devise parametric potentials to
approximate the effects of the electron-electron interaction. Two potentials that
have been used with some success to describe properties of large atoms having
one valence electron are the Tietz potential

V (r) = −1
r

[
1 +

(Z − 1)e−γr

(1 + tr)2

]
, (2.186)

and the Green potential

V (r) = −1
r

[
1 +

Z − 1
H(er/d − 1) + 1

]
. (2.187)

Each of these potentials contain two parameters that can be adjusted to fit ex-
perimentally measured energy levels. In Table 2.3, we list values of the param-
eters for rubidium (Z=37), cesium (Z=55), gold (Z=79) and thallium (Z=81).
Energies of low-lying states of these atoms obtained by solving the Dirac equa-
tion in the two potentials are listed in Table 2.4. Wave functions obtained by
solving the Dirac equation in parametric potentials have been successfully em-
ployed to predict properties of heavy atoms (such as hyperfine constants) and
to describe the interaction of atoms with electromagnetic fields. The obvious
disadvantage of treating atoms using parametric potentials is that there is no a
priori reason to believe that properties, other than those used as input data in
the fitting procedure, will be predicted accurately. In the next chapter, we take
up the Hartree-Fock theory, which provides an ab-initio method for calculating
electronic potentials, atomic energy levels and wave functions.
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Table 2.4: Energies obtained using the Tietz and Green potentials.

State Tietz Green Exp. State Tietz Green Exp.

Rubidium Z = 37 Cesium Z = 55
5s1/2 -0.15414 -0.15348 -0.15351 6s1/2 -0.14343 -0.14312 -0.14310
5p1/2 -0.09557 -0.09615 -0.09619 6p1/2 -0.09247 -0.09224 -0.09217
5p3/2 -0.09398 -0.09480 -0.09511 6p3/2 -0.08892 -0.08916 -0.08964
6s1/2 -0.06140 -0.06215 -0.06177 7s1/2 -0.05827 -0.05902 -0.05865
6p1/2 -0.04505 -0.04570 -0.04545 7p1/2 -0.04379 -0.04424 -0.04393
6p3/2 -0.04456 -0.04526 -0.04510 7p3/2 -0.04270 -0.04323 -0.04310
7s1/2 -0.03345 -0.03382 -0.03362 8s1/2 -0.03213 -0.03251 -0.03230
Gold Z = 79 Thallium Z = 81
6s1/2 -0.37106 -0.37006 -0.33904 6p1/2 -0.22456 -0.22453 -0.22446
6p1/2 -0.18709 -0.17134 -0.16882 6p3/2 -0.18320 -0.17644 -0.18896
6p3/2 -0.15907 -0.14423 -0.15143 7s1/2 -0.10195 -0.10183 -0.10382
7s1/2 -0.09386 -0.09270 -0.09079 7p1/2 -0.06933 -0.06958 -0.06882
7p1/2 -0.06441 -0.06313 -0.06551 7p3/2 -0.06391 -0.06374 -0.06426
7p3/2 -0.05990 -0.05834 -0.06234 8s1/2 -0.04756 -0.04771 -0.04792
8s1/2 -0.04499 -0.04476 -0.04405 8p1/2 -0.03626 -0.03639 -0.03598
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