1. Show that the exchange contribution to the interaction energy for the state $|ab, LS\rangle$ is

$$\eta^2 \sum_k (-1)^{l_a+l_b+S+k} \begin{pmatrix} l_a & l_b & L \\ l_a & l_b & k \end{pmatrix} X_k(abba).$$

2. LS to jj transformation matrix:

(a) Each nonrelativistic LS-coupled state belonging to a given J, $|[(l_1l_2)L,(s_1s_2)S]J\rangle$, can be expanded as a linear combination of the nonrelativistic jj-coupled states $|[(l_1s_1)j_1,(l_2s_2)j_2]J\rangle$, belonging to the same J. Write the matrix of expansion coefficients in terms of six-j symbols.

(b) Prove that this transformation matrix is symmetric.

(c) Give numerical values for the elements of the 2×2 matrix that gives the two (sp) states 1P_1 and 3P_1 in terms of the two states $(s_{1/2}p_{1/2})_1$ and $(s_{1/2}p_{3/2})_1$.

(d) Give numerical values for the elements of the 3×3 matrix that gives the three (pd) states 1P_1, 3P_1 and 3D_1 in terms of the three states $(p_{1/2}d_{3/2})_1$, $(p_{3/2}d_{3/2})_1$ and $(p_{3/2}d_{5/2})_1$.