1. A charge Q is distributed uniformly along the z axis from $z = -a$ to $z = a$. Write out the first few terms in the Legendre polynomials expansion of the potential for the case $r > a$.

Answer: The potential at a point $z > a$ on the axis may be written

$$\Phi(z) = \frac{1}{4\pi \epsilon_0} \frac{Q}{2a} \int_{-a}^{a} \frac{dz'}{z - z'} = \frac{1}{4\pi \epsilon_0} \frac{Q}{2a} \ln \left(\frac{z + a}{z - a} \right).$$

Expanding in powers of a/z, we find

$$\Phi(x) = \frac{1}{4\pi \epsilon_0} \frac{Q}{2a} \left[\left(\frac{a}{z} - \frac{1}{2} \frac{a^2}{z^2} + \frac{1}{3} \frac{a^3}{z^3} + \cdots \right) \right.$$

$$\left. - \left(-\frac{a}{z} - \frac{1}{2} \frac{a^2}{z^2} - \frac{1}{3} \frac{a^3}{z^3} + \cdots \right) \right]$$

$$= \frac{1}{4\pi \epsilon_0} \frac{Q}{a} \left[\frac{a}{z} + \frac{1}{3} \frac{a^3}{z^3} + \frac{1}{5} \frac{a^5}{z^5} + \cdots \right].$$

Replacing $1/z^{(l+1)}$ by $1/r^{(l+1)} P_l(\cos \theta)$, we obtain

$$\Phi(x) = \frac{Q}{4\pi \epsilon_0} \left[\frac{1}{r} + \frac{1}{3} \frac{a^2}{r^3} P_2(\cos \theta) + \frac{1}{5} \frac{a^4}{r^5} P_4(\cos \theta) + \cdots \right].$$

Verify that your answer is correct for $r \gg a$.

Answer: For $r \gg a$, the above potential reduces to the potential of a point charge at the origin.

$$\Phi(x) \rightarrow \frac{Q}{4\pi \epsilon_0} \frac{1}{r}.$$

2. A point dipole p is imbedded at the center of a dielectric sphere (radius R and dielectric constant ϵ_r). Find the potential inside and outside of the sphere.

Answer: Set up a boundary value problem: Assume that the potential has the form

$$\Phi^{\text{in}} = \frac{1}{4\pi \epsilon_0} \frac{p}{r^2} P_1(\cos \theta) + ArP_1(\cos \theta)$$

$$\Phi^{\text{out}} = \frac{B}{r^2} P_1(\cos \theta),$$

where A and B are expansion constants. Boundary conditions at $r = R$ lead to the two equations:

$$\frac{B}{R^2} = AR + \frac{p}{4\pi \epsilon_0} \frac{1}{R^2}$$

$$\frac{2B}{R^3} = \epsilon_r \left(-A + \frac{2p}{4\pi \epsilon_0} \frac{1}{R^3} \right).$$
Solving, we find

\[
A = \frac{2(\epsilon_r - 1)}{(\epsilon_r + 2)} \frac{p}{R^3} \frac{1}{4\pi \epsilon_0}
\]

\[
B = \frac{3\epsilon_r}{(\epsilon_r + 2)} \frac{p}{4\pi \epsilon_0}
\]

By what factor is the dipole moment \(p \) enhanced by the presence of the dielectric sphere?

Answer:

\[
p_{\text{out}} = \frac{3\epsilon_r}{(\epsilon_r + 2)} \ p
\]

3. A long cylinder of radius \(R \) has magnetization vector \(\mathbf{M} = k \rho^3 \hat{z} \), where \(k \) is a constant and \(\rho \) is the radius in cylindrical coordinates.

(a) Ignoring end effects, determine the bound current densities \(\mathbf{J}_b = \nabla \times \mathbf{M} \) and \(\mathbf{K}_b = \mathbf{M} \times \mathbf{n} \).

Answer:

\[
\mathbf{J}_b = \nabla \times \mathbf{M} = -3k \rho^2 \hat{\phi}
\]

\[
\mathbf{K}_b = \mathbf{M} \times \mathbf{n} = k R^3 \hat{\phi}
\]

(b) From the bound currents determine \(\mathbf{B} \) inside and outside the cylinder using Ampère’s law.

Answer: For \(\rho < R \) choose a rectangular loop; one side of the loop coincides with the axis, an opposite side is parallel to the axis at a distance \(\rho \) away. These two sides are connected by sides perpendicular to the axis. The total bound current through this loop is

\[
I_b = l \int_0^\rho 3k \rho^2 d\rho = lk \rho^3
\]

This current flows in the \(-\hat{\phi}\) direction. From Ampère’s law, taking into account the sense of the current, one finds that \(\mathbf{B} \) is in the +\(z \) direction and that

\[
B_z(\rho) = \mu_0 k \rho^3 = \mu_0 M(\rho), \quad \rho < a.
\]

If the above loop encloses the the surface of the cylinder, then the total enclosed current will be

\[
I_b = l \int_0^R 3k \rho^2 d\rho - lk R^3 = 0.
\]

and we will have

\[
B_z(\rho) = 0, \quad \rho < a.
\]
(c) Determine H inside and outside the cylinder.
Answer: Outside $H = B/\mu_0 = 0$. Inside $H = B/\mu_0 - M = 0$. Therefore,
\[H = 0, \text{ everywhere}. \]

4. An infinite straight wire carries a current
\[I(t) = \left\{ \begin{array}{ll} 0 & t \leq 0 \\ I_0 & t > 0 \end{array} \right. \]
(a) Show that the (retarded) vector potential A is in the z direction and that
\[A_z(\rho, t) = 0 \quad ct < \rho \\
= \frac{\mu_0 I_0}{2\pi} \ln \left(\frac{ct + \sqrt{c^2t^2 - \rho^2}}{\rho} \right) \quad ct \geq \rho. \]
Answer: For $ct < \rho$ no signal reaches ρ. For $ct > \rho$, only that segment of the wire with $|z| \leq \sqrt{c^2t^2 - \rho^2}$ contributes to the potential at ρ. For $ct > \rho$, we have
\[A_z = \frac{\mu_0 I_0}{4\pi} \int_{-\sqrt{c^2t^2 - \rho^2}}^{\sqrt{c^2t^2 - \rho^2}} \frac{dz}{\sqrt{z^2 + \rho^2}} \\
= \frac{\mu_0 I_0}{4\pi} \ln \left(\frac{\sqrt{c^2t^2 - \rho^2} + ct}{-\sqrt{c^2t^2 - \rho^2} + ct} \right) \\
= \frac{\mu_0 I_0}{2\pi} \ln \left(\frac{ct + \sqrt{c^2t^2 - \rho^2}}{\rho} \right). \]

(b) Find $B(\rho, t)$ and $E(\rho, t)$. Show that your fields have the correct static limit as $t \to \infty$.
Answer: E has only a z component since
\[E = -\frac{\partial A}{\partial t}. \]
We find
\[E_z = \frac{\mu_0 I_0}{2\pi} \left(\frac{1}{ct + \sqrt{c^2t^2 - \rho^2}} \right) \left(c + \frac{c^2t}{\sqrt{c^2t^2 - \rho^2}} \right) \\
= \frac{\mu_0 I_0}{2\pi} \frac{c}{\sqrt{c^2t^2 - \rho^2}}. \]
As $t \to \infty$, $E_z \to 0$, as expected.
\[B_\phi = -\frac{\partial A_z}{\partial \phi} \]
\[= \frac{\mu_0 I_0}{2\pi} \left[\frac{1}{\rho} + \left(\frac{1}{ct + \sqrt{c^2t^2 - \rho^2}} \right) \frac{\rho}{\sqrt{c^2t^2 - \rho^2}} \right] \]
\[= \frac{\mu_0 I_0}{2\pi} \frac{ct}{\rho \sqrt{c^2t^2 - \rho^2}} \]
\[\rightarrow \frac{\mu_0 I_0}{2\pi} \frac{1}{\rho} \text{ as } t \rightarrow \infty. \]

5. A transmission line consists of two long conducting ribbons of width \(w \), parallel to one another and separated by distance \(h \). A uniformly distributed current \(I \) runs up one conductor and back down the other as illustrated in the figure.

(a) Determine the direction and magnitude of the \(B \) field between the ribbons.

Answer: First note that the magnitude of the surface current density is \(K = \frac{I}{w} \). Using the coordinates shown in the figure, the \(B \) field between the ribbons is in the \(-z\) direction:

\[B = -\mu_0 K \hat{z} = -\mu_0 \frac{I}{w} \hat{z}. \]

(b) Determine the magnetic energy stored in a section of length \(l \).

Answer:

\[W_m = \frac{1}{2} \int d^3r \mathbf{B} \cdot \mathbf{H} = \frac{\mu_0 h I^2}{2w} l \]

(c) Find the self inductance per unit length of the transmission line.

Answer: Use \(W_m = (1/2)LI^2 \) to find

\[L/l = \mu_0 \frac{h}{w}. \]

(d) Assuming that one end of the transmission line is connected to a power supply with terminal voltage \(V \) and the other end is terminated by a resistor \(R \), determine the direction and magnitude of Poynting vector. Express the magnitude in terms of \(V \) and \(R \).

Answer: Assuming the upper ribbon is at potential \(V \), the electric field is downward and has value

\[\mathbf{E} = -\frac{V}{h} \hat{y} \]

The Poynting vector is

\[\mathbf{S} = \mathbf{E} \times \mathbf{H} = \frac{V}{h} \frac{I}{w} \hat{x} = \frac{V^2}{RA} \hat{x}, \]
where \(A = wh \) is the area between the ribbons normal to the direction of energy flow (\(\hat{x} \)).

(e) Determine the direction and magnitude force/length exerted on the upper ribbon by the \(E \) field and by the \(B \) field.

Answer: The contribution to the force from the \(E \) field is

\[
dF_y = \varepsilon_0 \left[E_y^2 - \frac{1}{2} E^2 \right] (-a) \, da = -\frac{\varepsilon_0}{2} \frac{V^2}{h^2} \, da,
\]

thus

\[
F^e_y / l = -\frac{\varepsilon_0 V^2 w}{2h^2}.
\]

The contribution from the \(B \) field is

\[
dF_y = \frac{1}{\mu_0} \left[0 - \frac{1}{2} B^2 \right] (-a) \, da = +\frac{\mu_0}{2} \frac{I^2}{w^2} \, da,
\]

and

\[
F^m_y / l = \frac{\mu_0 I^2}{2w}.
\]