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1 A few versions of the paradox

1.1  The randomized open version

Suppose that you have a certain amount of money, say $20. I now put double that amount
into one envelope, and half that amount into another envelope, and put the envelopes into
a machine which randomly selects one. Suppose that I now give you the chance to trade
the $20 for the envelope which comes out of the randomizer. Should you? How would
you calculate the expected utility of switching?



1.2 The randomized closed version

Suppose that you have a certain amount of money in a closed envelope. You don’t know
how much; but you do know that there’s some finite, nonzero amount of money in the
envelope. I now put double that amount, whatever it is, into one envelope, and half that
amount into another envelope, and put the envelopes into a machine which randomly
selects one. Suppose that I now give you the chance to trade your envelope for the
envelope which comes out of the randomizer. Should you? How would you calculate the
expected utility of switching?

1.3 The probabilistic open version

Suppose that you have a certain amount of money, say $20. I have an envelope which has
1/2 chance of containing $40 and 1/2 chance of containing $10. Should you trade your
$20 for my envelope?

1.4 The probabilistic closed version

Suppose that you have a finite, nonzero amount of money in a closed envelope, but you
don’t know how much. I have an envelope which has 1/2 chance of containing double
that amount (whatever it is) and 1/2 chance of containing half that amount. Should you
trade your envelope for mine?

So far, it might seem that these cases are pretty straightforward. But the obvious answers
to the questions above lead us to say some strange things in (at least superficially) similar
cases.

1.5 The choice open version

Suppose now that I have two envelopes, A and B, one of which contains twice the amount
of money in the other. You choose one — suppose that it is A. You open it, and find
$20 inside. Should you trade your $20 for envelope B? How should you reason about the
expected utility of switching in this case?

This appears to be, in relevant respects, just the same as the probabilistic open version;
so it appears that you should not only switching, but be willing to pay to switch.

But, on the other hand, the decision to switch in this case looks sort of odd. After all,
you just chose A randomly; why should opening it give you a reason to think that you
stand to gain by switching for the other envelope?

1.6 The choice open reverse version

Suppose now that I have two envelopes, A and B, one of which contains twice the amount
of money in the other. You choose one — suppose that it is A. I now open envelope B,



which you did not choose, and find $20 inside. Should you trade envelope A for my $207

Here the reasoning seems the reverse of the above; so it seems that you should want to,
and indeed be willing to pay to, keep your own envelope.

But again, this seems odd. Why should my opening my envelope put you in a position
where it would be rational for you to pay to keep your envelope?

Still, so far you might reasonably regard this sort of reasoning as surprising, but not quite
paradoxical. After all, it might not seem as though we’ve really been able to deduce an
absurd result yet.

1.7 The choice closed version

So suppose that again I have two envelopes, labeled A and B, and you know that one
contains twice the amount in the other. Again, you choose envelope A. We open neither
envelope. Should you exchange your envelope for mine?

On the one hand, you want to say ‘Yes.” After all, we said ‘yes’ in the choice open version,
and just as the randomized closed version seems just the same as the randomized open
version the probabilistic closed versions seems just the same as the probabilistic open
version, the choice closed version seems just the same as the choice open version.

However, there are two reasons for thinking that this cannot be correct:

1. Just as we can extend the reasoning from the choice open version to the choice
closed version, so we can extend the reasoning from the choice open reverse version
to the choice closed version. But this would tell us not to switch.

2. Suppose that we switch. Now I might ask you whether you want to switch again.
Should you? Clearly not; you would just be trading back for the envelope you had
in the first place, so any line of reasoning which led to the conclusion that you stood
to gain from both switches must be flawed. But it seems that any line of reasoning
which leads you to believe that you should switch the first time can be used to show
that you should also switch a second time (and a third, and a fourth ...).

2 Problems with the set-up of the paradox

2.1 There’s no such thing as 1/2 of $.01

The extension from the open versions of the case to the corresponding closed versions
rests on the assumption that, no matter what value you found in your envelope, you
would assign equal probabilities to the hypotheses that the other envelope contained
double and that it contained half. But suppose you open your envelope, and there is only
one cent inside. Then it seems that the other envelope cannot contain half that amount,
since there is no such thing as one half of one cent.



Two responses to this problem: (i) this would make the argument for switching better,
not worse; (ii) we can make sense of the idea of half of a cent.

However, nothing is lost in what follows if we just assume that the lowest amount of
money that can be in an envelope is $1, and that every possible value in the envelopes is
some power of 2, so that possible values are $1, $2, $4, .. ..

2.2 There’s a finite amount of money in the world

Suppose that you know that there’s a total of 100 billion dollars in the world, and you
open your envelope to find 400 billion dollars inside. It doesn’t seem that there could be
double that amount in the other envelope, since their sum would then exceed the total
amount of money in the world. So it seems that in this case you can be certain that you
should not switch. As above, this seems to disrupt the argument which takes us from the
‘open’ versions of the example to the ‘closed’ versions.

How should we get around this problem?

2.8 Infinite probability distributions

For the reasons given above, it is clear that there cannot be a finite upper bound on the
amount of money in the envelopes. So, there are infinitely many possible values of the
envelopes. Furthermore, it seems that it cannot be the case that some of these values are
less likely than others to be in one of the envelopes; otherwise, there are some values you
might find in your envelope which are such that you would not be rational to believe that
the other envelope had a 1/2 chance of containing half, and a 1/2 chance of containing
double. (For example, imagine that it is much more likely that an envelope will contain
$2 than that it will contain $8, and you find $4 in the envelope you select. It would not
be rational for you to switch. So there must be no cases of this sort if the original paradox
is going to be convincing.)

So there must be infinitely many equiprobable possible values of the envelopes. But this
does not seem possible. What would the probability of each possible value be? (There’s
an analogy here with Zeno’s arguments against the possibility of motion in a world in
which space and time are continuous; even if we can perform infinitely many tasks in a
finite time, there’s still a problem with performing infinitely many tasks each of which
takes some finite amount of time ¢ in a finite time. Even if an infinite series can sum to
1, an infinite series of equal finite numbers cannot.)

This raises a genuine problem for the paradox. However, it is a problem that can be
solved. For example, suppose that the probabilities of values of the lower envelope are as
follows:

(=)

Pr(lower=1=2%) = 1 x 37 = 1
Pr(lower=2=2") = 1 % %1 =2
Pr(lower=4=2%) = 1 « %2 =2



Pr(lower=8=23) =

This probability distribution raises none of the problems raised by the simpler one men-
tioned above — since the series of probabilities of the possible lower values is an infinite
series of ever decreasing finite values which sums to 1 — and yet it still supports switch-
ing. For any amount you find in your envelope, there is a greater chance that the other
envelope contains less than that it contains more, but the difference in probabilities is
more than offset by the difference between what you would gain if the other envelope
were higher and what you would lose if the other envelope were lower.

3 Solutions to the paradox

3.1 ‘The Two-Envelope Paradox and Infinite Expectations’

Antzenius & McCarthy (in ‘The Two-Envelope Paradox and Infinite Expectations’) offer a
solution to the paradox which raises the following doubt about the argument for switching.
Supposing as above that the possible values in the envelopes are all powers of 2, then the
amounts that you can stand to gain and lose are all also powers of 2. So consider, for
example, $4. What are the chances that switching will gain you $4, versus the chances
that switching will lose you $47 The first happens if there is $4 in envelope A, and $8
in envelope B; the second happens if there is $8 in envelope A, and $4 in envelope B.
But the chances of these being the values in the envelopes is the same; so the chances of
switching gaining you $4 is the same as the chances of switching losing you $4.

Once you see that, you can see that this argument generalizes. The chances of you gaining
$1 is the same as the chances of you losing $1, the chances of you gaining $64 is the same
as the chances of you losing $64, and so on for every power of 2.

This makes it clear that you do not stand to gain by switching in the closed case. But we
already knew that. It seems that you might still wonder (i) whether you stand to gain
by switching in the open case, and (ii) what was wrong with the initial line of reasoning
which seemed to support switching in the closed case.

3.2 Dominance reasoning and inference from an unknown

It will be useful to take a closer look at that reasoning. Recall that in our discussion
of Newcomb’s problem and the prisoner’s dilemma our use of the following ‘dominance
principle’:

Suppose that you are choosing between two actions, act 1 and act 2. It is
always rational to do act 2 if the following is the case: whatever happens,
doing act 2 will never make you worse off than doing act 1; and in some cases,
doing act 2 will make you better off than doing act 1.



This principle does not straightforwardly apply to the two-envelope paradox, but a prin-
ciple closely related to it does:

Suppose that you are choosing between two actions, act 1 and act 2. It is
always rational to do act 2 if the following is the case: there is some piece of
information about the case which you lack but which is such that, were you
acquire that piece of information (no matter what it turns out to be), it would
be rational for you to do act 2.

Call this principle inference from an unknown. This is the principle which seems to lead
us from the open versions of the case to the closed versions; so, one possible view of the
paradox is that in the open versions, you are rational to believe that you stand to gain
by switching, and in the open choice reverse version you are rational to believe that you
stand to gain by not switching, but that in the closed choice version you have no argument
that you stand to gain either way. If this is correct, then the case is one in which inference
from an unknown leads us astray.

But this just leads to another question: how could inference from an unknown fail? One
reply is that it can fail when applications of the principle in a single case lead to contra-
dictory results for different choices of the ‘unknown.” This is illustrated by the move from
the open choice case to the switching in the closed choice case, and the move from the
open reverse choice case to the conclusion that you ought to believe that you stand to
gain by not switching in the closed choice case. These arguments both rely on inference
from an unknown, but the relevant unknown in the first case is the value of envelope A,
and in the second case it is the value of envelope B.

Is it really true that we should believe that we stand to gain by switching in the open
case? Suppose that each players in the game look inside their envelopes, but don’t tell
the other person what they’ve seen. On the above sort of solution, each would be willing
to pay the other to switch. Does this indicate that something has gone wrong?

4 Problems with infinite expectations

There’s another sort of problem raised by the two-envelope paradox, which concerns how
we should reason about situations in which the expected gain of some action is infinite.
A famous example of such a case is the St. Petersburg paradox. Clark describes the case
as follows:



This needs some explanation. Suppose you are the player: if heads
comes up on the first throw you get £2, if it comes up on the second
throw you get £4, on the third £8, and so on. For each successive
throw the payout doubles. The chance of heads on the first throw
is '»; the chance that heads comes up first on the second throw is
the chance of tails on the first x ‘4, that is, '4; the chance that
heads comes up first on the third throw is "> x "2 x ', and so on.
For each successive throw the chance halves, just as the payout
doubles. The expected gain from the first toss is £2 x the probability
that it is heads (%), that is, £1; from the second throw it is £4 x '
= £1; from the third £8 x s = £1, and in general for the nth throw
it is £2" x '»» = £1. Since there is no limit to the possible number
of throws before heads comes up, the sum for the expected gains,
1+ 1+ 1+...goeson for ever and the expectation is infinite. Yet
would you pay any sum, however large, to participate?

Is this sort of case fully explained by diminishing returns and risk aversion? In other
words, if we ‘valued each dollar equally’ and had did not take a loss of $10 to be worse
than a win of $10 is good, is it really true that we would be rational to pay any amount
of money to play this game?

McCarthy and Arntzenius offer an interesting version of the case in their ‘paradox of
heaven and hell’:

“One day you wake up in Purgatory, and you are about to discover what you
have long suspected, that God does not much care for rational people like
yourself. First, God reliably informs you that you are immortal, but this does
not make you revise your temporal neutrality: you care just as much about
how well off you will be on some day in the distant future as you do about
tomorrow. Then God gives you a guided tour of Heaven and Hell and asks you
what you think. You decide that a day in Heaven is as good as a day in Hell is
bad, and you would be indifferent between a day in Heaven followed by a day
in Hell versus two days in Purgatory. Furthermore, you decide that how many
or few days you have spent in the past or expect to spend in the future in
either Heaven, Hell, or Purgatory, does not affect how much you would enjoy
or hate any day in the present in any of those places. So we can represent your
preferences as follows. The values of one day in Heaven, Purgatory, and Hell
are, respectively 1, 0, and -1. And the value of any gamble over days in these
places is equal to the expected number of days in Heaven minus the expected
number of days in Hell, at least when these are finite. ...

God then offers you a St. Petersburg gamble where the payoffs are days in
Heaven: a probability of a half of the next day in Heaven, and then back to
Purgatory; a probability of a quarter of the next two days in Heaven, then



back to Purgatory; and so on. Great! You accept, and as was inevitable, you
win some nite number of days in Heaven, then back to Purgatory. But early
the next morning at the entrance to Heaven you meet God, and he makes
you a deal: if you abandon all the days in Heaven you have won, and spend
today in Hell, hell give you another shot at the St. Petersburg gamble. But if
you decline, after your nite stay in Heaven youll spend the rest of your days
in Purgatory. From your preferences it seems rational for you to accept the
deal, so you do, and as was inevitable, you win another nite number of days in
Heaven, but you have to spend today in Hell. Early the next morning, rather
beleaguered after your day in Hell, you meet God again at the entrance to
Heaven. He makes you exactly the same deal as he did the day before, and
given your preferences, it seems rational for you to accept, so you do. Off
you go back to Hell, and rational person that you are, you are beginning to
suspect that you have an unending life in Hell to look forward to. What’s
gone wrong?”

This paradox relies on the fact that although the expected utility of playing a St. Peters-
burg game is infinite, the actual payoff is always finite. So in every St. Petersburg game,
the actual payoff is less than the expected utility of playing; that’s why it seems that the
rational person will always give up their winnings for a day in hell and the chance to play
again; the expected utility of playing again will always be greater than the days won +
the day in hell (which, by hypothesis, is as bad as one day in heaven is good).

What’s wrong with the line of reasoning which leads to spending eternity in hell?
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