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1 Soundness and completeness

When discussing Russell’s logical system and its relation to Peano’s axioms of
arithmetic, we distinguished between the axioms of Russell’s system, and the
theorems of that system. Roughly, the axioms of a theory are that theory’s
basic assumptions, and the theorems are the formulae provable from the axioms
using the rules provided by the theory.

Suppose we are talking about the theory A of arithmetic. Then, if we express
the idea that a certain sentence p is a theorem of A — i.e., provable from A’s
axioms — as follows:

`A p

Now we can introduce the notion of the valid sentences of a theory. For our
purposes, think of a valid sentence as a sentence in the language of the theory
that can’t be false. For example, consider a simple logical language which
contains some predicates (written as upper-case letters), ‘not’, ‘&’, and some
names, each of which is assigned some object or other in each interpretation.
Now consider a sentence like

Fn

In most cases, a sentence like this is going to be true on some interpretations,
and false in others — it depends on which object is assigned to ‘n’, and whether
it is in the set of things assigned to ‘F ’. However, if we consider a sentence like
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not (Fn & not Fn)

we can see that it is true, no matter what object is assigned to ‘n.’ So this is an
example of a valid sentence in the language of the theory: it’s a sentence which
can’t be false.

Now we can ask, for any theory, how the theorems of the theory relate to its
valid sentences. When we talk about soundness and completeness, we are talking
about this relationship.

If every theorem of a theory is valid, we say that the theory is sound. This
means, basically, that if you derive a sentence from the axioms of a sound theory,
you never get a falsehood. We usually only work with sound theories. To get
an example of an unsound theory, suppose that we added a new connective,
‘tonk’, to our usual basic logical language, and that ‘tonk’ was governed by the
following two rules:

p
p tonk q

p tonk q
q

Can you see why a logic involving ‘tonk’ would be unsound?

If every theorem is valid, the theory is sound; if every valid sentence is a theorem,
we say that the theory is complete. This means that any sentence which is true
in the language of a complete theory is provable from the theory’s axioms.

Gödel’s incompleteness theorems are, as the name would indicate, proofs that
certain mathematical and logical theories — one of which is Peano arithmetic —
are not complete. That is, Gödel showed that there were certain valid sentences
of those theories which were not provable from their axioms.

2 Gödel’s first incompleteness theorem

2.1 Gödel numbering and ‘provable’

First we note that we can use the natural numbers to come up with ‘names’
for every formula of arithmetic. We do this by assigning every formula what is
now called a Gödel number. There are many ways to do this. One is by first
assigning a natural number to every basic symbol of the language of arithmetic,
such as, for example, 0, 1, +, *, =, (, . . . . Then imagine that we have some
formula of arithmetic, e.g.
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0+1=1

We assign this formula a Gödel number by multiplying the Gödel number for
the first digit of the formula (0) by 2, the Gödel number for the second digit of
the formula (+) by 3, the Gödel number of the third digit (1) by 5, and so on,
multiplying the Gödel number for the nth digit by the nth prime number. The
sum of these n products is the Gödel number for the formula as a whole.

The point of using only prime numbers is that, this way, no two formulae will
ever have the same Gödel number. The key points here are that every formula
has a Gödel number, and that no two formulae every have the same Gödel
number.

Rather than actually writing out the Gödel numbers for formulae, if we’re talk-
ing about some sentence p, we’ll use the following symbol for the Gödel number
of p: ppq.

The point of this is to give us a way, using the language of arithmetic, of talking
about the sentences of that language.

Now assume that we can also define a predicate ‘provable’ such that, for the
theory A of arithmetic,

`A p ⇐⇒ `A provable(ppq)

i.e., ‘provable(ppq)’ is a theorem of A if and only if ‘p’ is. That is, ‘provable(x)’
is a a theorem of the theory just in case the formula whose Gödel number ‘x’ is
is a theorem. Intuitively, formulae involving ‘provable’ talk about sentences of
the language of arithmetic.

2.2 The fixed point theorem

Gödel showed that we could, for the theory A of arithmetic, find a sentence q
such that

`A (q ⇐⇒ ¬ provable(q))

In other words, he showed that there was a formula such that it was provable
in A that the formula was true iff it was not provable.

Suppose first that the formula is true. Then it follows from the above that it
is not provable. Suppose instead that the formula is false. We are assuming
that theory in question is sound, and hence that falsehoods are never provable
in the theory. So, whether the theory is true or false, it is unprovable. Hence,
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by the fixed point theorem, it is true, and its negation is false. So there is some
formula which is unprovable, and whose negation is also unprovable.

This is the moral of the first incompleteness theorem: there is some formula in
the language of arithmetic which can neither be proved or refuted (i.e., have its
negation proven) by the axioms.

3 Gödel’s second incompleteness theorem

The second incompleteness theorem establishes that we cannot prove, in the
language of arithmetic, the consistency of the axioms of arithmetic. The route
this takes is a proof of the conditional claim

A is consistent → q

Since this conditional is provable, if the consistency of A were provable, ‘q’
would be provable as well. But we just saw above (in the proof of the first
incompleteness theorem) that it isn’t. So, the consistency of A is not provable
in A.

4 (Possible) consequences of the incompleteness theorems

Many consequences have been claimed for the incompleteness theorems, and
most of these are still a matter of dispute. Some of the alleged consequences
are as follows:

• Logicism. The incompleteness theorems show that there is no set of axioms
from which all the truths of arithmetic can be proven. So, if we think of
logicism as the view that all mathematical truths are disguised versions
of truths provable in some system of logic, it seems that Gödel has shown
that logicism is false.

• Mathematical truth and provability. Gödel’s results have also been taken to
show that mathematical truth is something independent of human mathe-
matical activity, rather than being in some sense a ‘creation of the mind’,
if you think of the latter as essentially involving the construction of proofs.

• The computational model of the mind. It has also been argued that Gödel’s
theorems show that the mind is importantly unlike machines such as com-
puters. The idea here is that if our minds were like computers, we could
know only what was provable. But we can know, for example, that our
beliefs are consistent, which (given certain assumptions) is not provable.
So, we know things that no computer could figure out.
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