Both Boghossian and Harman address themselves to the question of whether our a priori knowledge can be explained in terms of analyticity — i.e., in terms of our knowledge of meaning.

There are really two questions here:
1. Can we give a full explanation of any piece of a priori knowledge in terms of our knowledge of meaning?
2. Can such an explanation be given for every a priori knowable claim?

One might argue for a negative answer to the second question by focusing on apparently synthetic a priori truths — for example, geometrical claims or color incompatibilities. Our focus, though, will be on the first question: of whether any a priori knowledge can be explained in terms of linguistic knowledge.

Boghossian argues for a positive answer to this question by, first, introducing the notion of Frege-analyticity:

\[
S \text{ is Frege-analytic iff } S \text{ can be transformed into a logical truth by replacing synonyms with synonyms.}
\]

One might doubt whether any sentences really are Frege-analytic, on the grounds that there is no principled way of distinguishing between synonymous and non-synonymous expressions. This is, in effect, the argument of “Two Dogmas.” Boghossian argues (I think convincingly) that this move leads to an implausible skepticism about meaning; so in what follows I will set this aside and assume that there are some Frege-analytic sentences.

But this leaves open the question of whether the fact that a sentence is Frege-analytic provides an explanation of its a prioricity. And it’s pretty clear that we can’t give a full explanation of the fact that it is knowable a priori that S by noting that S is Frege-analytic, for two reasons: (a) this presupposes that facts about meaning are transparent, so that understanding what synonymous expressions means is always sufficient to know that they are synonymous; and (b) this presupposes an account of the a prioricity of the truth of logic into which S can be transformed. Without an account of how we can know this truth of logic a priori, after all, we won’t have a fully satisfactory account of how we can know S a priori.
We’ve already seen some difficulties with (a). (Remember “catsup”/“ketchup”.) But let’s set these aside for now, and assume that, at least in an interesting range of cases, meaning really is transparent.

Let’s focus instead on (b): the question of whether our knowledge of logic can be explained as a kind of linguistic knowledge. This is really the fundamental question for analytic theories of the a priori; Boghossian argues for a positive answer to this question, while Harman (using arguments from “Truth by Convention”) argues that this is a mistake.

The key to Boghossian’s positive answer lies in the notion of an implicit definition, which he describes in the following passage:

Implicit definition: It is by arbitrarily stipulating that certain sentences of logic are to be true, or that certain inferences are to be valid, that we attach a meaning to the logical constants. More specifically, a particular constant means that logical object, if any, which makes valid a specified set of sentences and/or inferences involving it.

Now, the transition from this sort of implicit definition account of grasp, to the analytic theory of the apriority of logic, can seem pretty immediate. For it would seem that the following sort of argument is now in place:

1. If logical constant C is to mean what it does, then argument-form A has to be valid, for C means whatever logical object in fact makes A valid.

2. C means what it does.

Therefore,

3. A is valid.

If this sort of model works, then it promises to extend the scope of the analytic explanation of the a priori beyond cases of Frege-analyticity. Consider, for example,

If Bob is taller than Sandy, and Sandy is taller than Jim, then Bob is taller than Jim.

This is plausibly analytic; but it is not obvious how to turn it into a logical truth by substituting synonyms for synonyms. But we can still give an account of the a prioricity of this sentence if we can plausibly claim that the implicit definition by which we give meaning to ‘taller than’ includes the stipulation that any sentence of the form
If x is taller than y, and y is taller than z, then x is taller than z. will be true. And this does not seem too implausible.

It might also help with some Kantian examples of the synthetic a priori, like the truths of arithmetic and geometry. One might reasonably doubt whether these claims are Frege-analytic. But, once we have the notion of implicit definition on the table, we can think of the axioms of geometry and arithmetic as the stipulations which give meaning to key mathematical terms like “point”, “successor”, “natural number”, etc.

Let’s now consider some objections to this sort of theory of the a priori. (Here for simplicity I focus on the explanation of a priori knowledge; but the following could all be recast in terms of a priori justification, a priori warrant, etc.)

Objection 1: This assumes that we can know premises 1 & 2 of the above argument a priori.

Boghossian thinks that it is “quite clear” that we will have knowledge the facts about meaning expressed by 1 and 2. But this is a little bit puzzling, for two reasons.

First, we’re supposed to be getting an account of a priori knowledge. It’s odd that the account we get makes use of other a priori knowledge — especially because it seems pretty clear that we won’t be able to explain our a priori knowledge of 1 and 2 in the way Boghossian wants to explain our a priori knowledge of 3, for two reasons: (i) regress; (ii) 2 does not seem like it will be true by stipulation. So it’s legitimate to ask how the proponent of the analytic theory of the a priori proposes to explain our knowledge of 1 and 2.

Harman suggests, plausibly, that the best way for the proponent of this theory to go is to explain our knowledge of 1 and 2 on the basis of our knowledge of our own intentions:
Here is a possible conventionalist answer: Everything I know is something represented either in language or in some other system of representation that I use for thought. The terms or symbols in a language or system of representation that I use have meaning by virtue of my conventions for the use of terms or symbols, i.e., by my intentions to use these terms or symbols in one or another way, including, for example, an intention to use my terms in such a way that S is true. But an intention to do something is or involves the belief that I will do it, and so in certain cases, including this one, involves the knowledge that I will do it. One does not infer that one will do something from one’s intention to do it; rather, the intention includes that belief as an inseparable part, a belief not based on evidence of any sort.

In this view, in intending to use my terms in such a way that S is true, given the way I am using my terms, I know directly that S is true, given the way I am using my terms. Furthermore, my belief that S is true, given the way I am using my terms, is in this case (we need to suppose) constituted by my using S as a belief, that is, the belief that p. Given the way I am using my terms, in so using S, what I believe is that p. I have an immediate belief that p, not based on evidence, and in this context such a belief counts as knowledge. So, I know that p, where this knowledge is direct in the same way that in intentionally raising my hand I have direct knowledge that I am raising my hand.

This view relies on two assumptions: (A) that intentions can give one knowledge of what one is doing and (B) that sometimes a belief that S is true can be identified with the belief one has in accepting S and therefore with the belief that p.

Much about this is plausible. As Anscombe (among others) has emphasized, there seems to be a necessary connection between engaging in an intentional action and knowing what one is doing; this makes it somewhat plausible that there is, in general, a necessary connection between intention and knowledge.

But, as Harman points out, there’s a problem here. We seem to be explaining our knowledge of analytic truths by analogy with my knowledge that I have intentionally raised my hand. But my knowledge that I have raised my hand is not, it seems, a priori. So what’s going on here?

The defender of the analytic theory of the a priori, it seems, must say that whereas there is a gap between intending to raise my hand and doing so — I can, for example, try to
raise my hand but fail — there is no such gap between my intending to use terms in such a way that S is true without S being true.

The problem is that there does seem to be such a gap. Example: TONK. Here it is very clear that I have not succeeded in making sentences involving this connective true, try as I might. The defender of the analytic theory of the a priori must do something to explain cases of this sort away. (It is not obvious whether TONK is a counterexample to a priori knowledge of premise 1 or of premise 2; this depends on whether you think we succeeded in giving TONK a meaning (just one which failed to make the relevant inferences valid) or whether you think we failed to introduce a meaningful term at all.)

Objection 2: People can know a priori that, e.g., $2 + 2 = 4$, without knowing (as knowledge of premise 1 would seem to require) anything as esoteric as the implicit definition by which the reference of “+” is fixed.

In response to this objection, Boghossian appeals to Burge's distinction between justification and entitlement:

> I think that, strictly speaking, this objection is correct, but only in a sense that strips it of real bite. Philosophers are often in the position of articulating a warrant for an ordinary belief that the man in the street would not understand. If we insist that a person counts as justified only if they are aware of the reason that warrants their belief, then we will simply have to find another term for the kind of warrant that ordinary folk often have and that philosophers seek to articulate. Tyler Burge has called it an “entitlement”:

> The distinction between justification and entitlement is this. Although both have positive force in rationally supporting a propositional attitude or cognitive practice, and in constituting an epistemic right to it, entitlements are epistemic rights or warrants that need not be understood by or even be accessible to the subject. . . . The unsophisticated are entitled to rely on their perceptual beliefs. Philosophers may articulate these entitlements. But being entitled does not require being able to justify reliance on these resources, or even to conceive such a justification. Justifications, in the narrow sense, involve reasons that people have and have access to.45

> When someone is entitled, all the facts relevant to the person’s justification are already in place, so to say; what’s missing is the reflection that would reveal them.

Is this plausible? A crude formulation of the idea would be this: if Bob believes p, and there’s someone who can give a justification for p, then Bob — even if he’s not aware of the justification, and perhaps even if he couldn’t be — is entitled to his belief. This makes
the notion of entitlement extremely weak; and it does not seem to capture the justification that the “man in the street” has for arithmetical claims or logical inferences.

It seems to me that there’s another puzzle here which is a bit hard to state clearly. We want to know not just why someone is justified in certain mathematical beliefs once he has them, but also how he wound up with the right mathematical beliefs in the first place. The notion of entitlement does not help with this.

Objection 3: The inference from 1 & 2 to 3 is a logical inference, and hence can explain knowledge of the conclusion only if the subject in question knows that 3 follows from 1 & 2. But this is just the sort of logical knowledge that the account was supposed to explain.

This is, on one plausible reading, the central objection of Quine’s “Truth by Convention.” Given this, it is somewhat puzzling that Boghossian spends so little time on it. His main reply is to cite Dummett’s point that arguments like the above are circular only if the argument ...

This seems to me to be inadequate. The idea behind Quine’s regress objection may be put like this (though it is a bit hard to know whether this is exactly what Quine had in mind):

Suppose (for reductio) that we wish to explain a priori knowledge of some logical truth — say, modus ponens — by pointing out that the logical truth in question is the conclusion of a valid argument whose premises we know a priori to be true. Call this argument “A”.

An argument can give us a priori knowledge of its conclusion only if two things are true: (i) we know a priori that the premises are true, and (ii) we know a priori that if the premises are true, the conclusion must be true.

Let’s suppose constraint (i) is satisfied by argument A. Requirement (ii) still entails that we know a priori that

\[(1) \text{ if A’s premises are true, then A’s conclusion is true.} \]

What explains our a priori knowledge of (1)? Given that the argument is valid, (1) will express a logical truth. Hence, if Boghossian’s strategy is
general, we should explain our a priori knowledge of (1) by displaying an argument, like the one above, which has (1) as its conclusion. Let’s call this argument “B.” With constraint (ii) still in place, in order for B to give us a priori knowledge of (1), we must know a priori that

(2) if B’s premises are true, then B’s conclusion is true.

But (2), by the reasoning above, will be a logical truth; and we’ll still need an explanation of our a priori knowledge of (2). It’s pretty clear at this point that we are off on a regress, and that we will never get, via this strategy, a general explanation of our a priori knowledge of logic.

It’s hard for me to see how Dummett’s point, or anything Boghossian says, is even addressed to Quine’s worry.

A better idea, I think, would be for the proponent of the analytic theory of the a priori to dispute the claim above about the necessary conditions for an argument giving us a priori knowledge of its conclusion, and in particular to dispute the necessity of (ii). How plausible is this?