
Problem set #2
PHIL 43916

September 12, 2012

1. Rule-to-rule semantics

Everyone did pretty well on this one. Some fairly minor common things:

• You should make clear when you are using the lexicon, just as you are clear about
what rule of the semantic theory you are using.

• Our semantic rules tell you how to get from one node to another. Hence you should
always be clear, not just about which rules you are using, but about which prior
results about the semantic values of other nodes you are using. So, e.g., you
shouldn’t just say that a given claim follows from rule (b), but rather than it
follows from (⟦3⟧v, ⟦5⟧v, (b)).

• Despite the fact that I often do this on the board to save time, you don’t need to
draw little pictures of people. You can just write ⟦Pavarotti⟧v=Pavarotti. (You also
don’t need to write anything more complicated, like ⟦Pavarotti⟧v=Pavarotti the
man.)

2. Type driven semantics

On this semantics, the tree should look like this:

And we can calculate its truths conditions as follows:

(1)S

(2)S

N(7)

James Bond(14)

VP(8)

Vi(9)

is nice(15)

(3)conjP

(5)conj

and(16)

(6)S

N(10)

Sophia Loren(17)

VP(11)

Vt(12)

likes(18)

N(13)

Pavarotti(19)

Node Value From

⟦14⟧v= James Bond lexicon

⟦7⟧v= James Bond ⟦14⟧v, pass up

⟦15⟧v= f: f(x)=1 if x∈{y:y is nice in v} and 0
otherwise

lexicon

⟦9⟧v= f: f(x)=1 if x∈{y:y is nice in v} and 0
otherwise

⟦15⟧v, pass up

⟦8⟧v= f: f(x)=1 if x∈{y:y is nice in v} and 0
otherwise

⟦9⟧v, pass up

⟦2⟧v= ⟦8⟧v(⟦7⟧v) functional application

⟦2⟧v= 1 if James Bond∈{y:y is nice in v}
and 0 otherwise

⟦2⟧v, ⟦8⟧v, ⟦7⟧v,
substitution

⟦17⟧v= Sophia Loren lexicon

⟦10⟧v= Sophia Loren ⟦17⟧v, pass up

⟦18⟧v= f: f(x)=the function g which is such
that g(y)=1 if y∈{y:y likes x in v}
and 0 otherwise

lexicon

⟦12⟧v= f: f(x)=the function g which is such
that g(y)=1 if y∈{y:y likes x in v}
and 0 otherwise

⟦18⟧v, pass up

⟦19⟧v= Pavarotti lexicon

⟦13⟧v= Pavarotti ⟦19⟧v, pass up

⟦11⟧v= ⟦12⟧v(⟦13⟧v) functional application

⟦11⟧v= f: f(y)=1 if x∈{x:x likes Pavarotti in
v} and 0 otherwise

⟦11⟧v, ⟦12⟧v, ⟦13⟧v,
substitution

⟦6⟧v= ⟦11⟧v(⟦10⟧v) functional application

⟦6⟧v= 1 if Sophia Loren ∈{x:x likes
Pavarotti in v} and 0 otherwise

⟦6⟧v, ⟦10⟧v, ⟦11⟧v,
substitution

2

⟦16⟧v= f: f(x)=[1→1, 0→0] if x=1, and f(x)
=[1→0, 0→0] if x=0

lexicon

⟦5⟧v= f: f(x)=[1→1, 0→0] if x=1, and f(x)
=[1→0, 0→0] if x=1

⟦16⟧v, pass up

⟦3⟧v= ⟦5⟧v(⟦6⟧v) functional application

⟦3⟧v= f: [1→1, 0→0] if Sophia Loren ∈{x:x
likes Pavarotti in v} and [1→0, 0→0]
otherwise

⟦3⟧v, ⟦5⟧v, ⟦6⟧v,
substitution

⟦1⟧v= ⟦3⟧v(⟦2⟧v) functional application

⟦1⟧v= 1 if Sophia Loren ∈{x:x likes
Pavarotti in v} and James Bond∈{y:y
is nice in v} and 0 otherwise

⟦1⟧v, ⟦2⟧v, ⟦3⟧v,
substitution

General thoughts:

• In this semantics, the semantic value of many nodes will be a function. Suppose
that ⟦1⟧ is the function which has value 1 if its argument is nice and 0 otherwise. It
is bad form to write this as

 ⟦1⟧=f(x)=1 if x is nice and 0 otherwise

 since this implies that the ⟦1⟧ sometimes =1 — which it doesn’t. (If it’s semantic
 value is a function, it can’t also be a truth value.) Better to write

 ⟦1⟧=the function f which is such that f(x)=1 if x is nice and 0 otherwise

 or, for short,
 ⟦1⟧= f: f(x)=1 if x is nice and 0 otherwise

• When you are deriving the truth conditions, it is OK if you take some shortcuts.
For example, you can combine the pass-up and lexicon steps into one line, and you
can combine the functional application and substitution steps into one line. But I
thought that it would be useful to have a derivation laid out with all of the steps
made explicit.

• Suppose that you have some sentence [S neg S*]. Then it is true to say that ⟦S⟧
v=⟦neg⟧(⟦S*⟧). But this is not the most informative statement of the truth
conditions for S. What you want to do is to substitute in the semantic values you
have already derived — whether from the lexicon or other calculations — for neg
and S*, and to say what the value of the function ⟦neg⟧ is for argument ⟦S*⟧.

3

