
Lambda abstraction and its uses
PHIL 43916

November 12, 2012

1. ...The lambda operator 1
2. ..VP conjunction and disjunction 2
3. ..Relative clauses 4
4. ..VP anaphora 5

1. THE LAMBDA OPERATOR

Our goal today is to introduce a new operator into our language — the lambda operator,
symbolized by the Greek letter ‘λ’ — and show some of the natural language
constructions it can be used to analyze.

We’ve discussed a few different sorts of operators so far. Negation combines with a
sentence to form a sentence; conjunction and disjunction combine with a pair of sentences
to form a sentence; and the complementizer ‘that’ combines with a sentence to form a
complementizer phrase. ‘λ’ combines with sentences to form predicates (verb phrases).

Intuitively, and very roughly, the meaning of

 λx(ψ)

has as its meaning the property of being such that ψ is true. So, for example,

 λx(Grass is green)

is the property of being such that grass is green — in our semantics, the set of individuals
which are such that grass is green. Why do we write ‘λx’ rather than just ‘λ’? Because
the principal purpose of this operator is to combine with formulae which contain an
unbound (free) variable, like ‘x is green or x is blue.’ The formula

 λx(x is green or x is blue)

stands for, intuitively, the property of being green or being blue.

How, exactly, should we understand the semantics of this operator? One way to state the
semantic value of expressions containing it is the following:

 λx[ψ]t ⟷ ψ[t/x]

where ‘ψ[t/x]’ stands for the sentence obtained by replacing every occurrence of ‘x’ with
the term ‘t’. So, applying this to our example above would give us

 λx(x is green or x is blue)t ⟷ (t is green or t is blue)

We can divide this biconditional into its two directions:

Lambda reduction
λx[ψ]t → ψ[t/x]

Lambda abstraction
ψ→ λx[ψ[x/t]]t

These are schemata; when we say that these are rules governing ‘λ’, what we are saying is
that every instance of these schemata are true.

We can also write out its semantics in more familiar terms as

 ⟦ λxS⟧M,w,i,g = {u∈U: ⟦S⟧M,w,i,g[u/x]=1}

Now that we have this operator on the table, let’s see what it might be good for.

2. VP CONJUNCTION AND DISJUNCTION

Consider the sentence

 Bond is hungry or is bored.

From the point of view of the semantic theory we have been developing, this sentence is a
little puzzling. One wants to provide a tree something like

S

N

Bond

VP

VP

is hungry

conj

or

VP

is bored

2

But the problem is that the meaning of ‘or’ is a function from a pair of truth-values to a
truth value; this simply gives us no way of computing the semantic value of the highest
VP node on the basis of ⟦is hungry⟧ and ⟦is bored⟧, which are sets of individuals.

A natural thought is that we can reduce predicate disjunction and conjunction to
ordinary sentence-level disjunction and conjunction, by taking the logical form of the
above sentence to be

 Bond is hungry or Bond is bored.

which has an unproblematic structure. The problem is that this sort of move seems not to
be always available. Consider the sentences

 Everyone is hungry or is bored.
 Someone is bored and is hungry.

Pursuing the strategy sketched above would give us the wrong truth conditions for each.

This suggests that we need some way of understanding how conjunction and disjunction
can be used to form complex VPs; ideally, we should be able to do this while avoiding the
surprising conclusion that conjunction as it occurs in predicates is wholly unrelated to the
meaning of ‘and’ when used as a sentence connective.

Our lambda operator provides us with one way to do this. We might provide something
like the following rules for predicate conjunction and disjunction:

 ⟦VP VP1 or VP2⟧ = ⟦λx[VP1(x) ∨ VP2(x)]⟧
 ⟦VP VP1 or VP2⟧ = ⟦λx[VP1(x) & VP2(x)]⟧

Here’s a complication with this story. Consider a case in which we have a complex
predicate one part of which contains a quantifier, as in

 Bond is boring and eats everything.

So far we’ve understood quantifier phrases like ‘everything’ as combining with sentences
to form sentences. But the only way to fit the above sentence into that form would be for
the quantifier to move out of the complex predicate to take wide scope over the whole
sentence; and this would seem to violate our constraints about quantifiers moving out of
conjuncts, which we used to explain the ungrammaticality of sentences like

 Everyone went to the store and he was disappointed.

3

This means that we have to treat ‘everything’ as combining with the verb ‘eats’. What
rule might you give for ⟦[every β] VP⟧?

This might seem a bit ad hoc. But some evidence that in sentences like this the quantifier
does attach to the VP is given by the fact that whereas

 A napkin was next to every plate.

is ambiguous (and favors the reading on which ‘every plate’ has wide scope), the sentence

 A napkin was next to every plate but had already been used.

forces the reading on which ‘a napkin’ has wide scope. The idea would be that this is
explained by the constraint on movement of ‘every plate’ out of conjuncts.

3. RELATIVE CLAUSES

The following are some example sentences involving relative clauses:

A man whom Mary likes is hungry.
A man that likes Mary is bored.

It looks like these clauses are functioning as predicates; in particular, they look like
predicates derived from sentences. This makes it very natural to use λ in the analysis of
these clauses. Consider the first sentence above. We might (simplifying a bit the view
defended in the text) take its tree to be something like

There are two steps the computation of the semantic value of this tree that need
comment. The first is the way in which we derive the semantic value of the CP from
‘whom’ and the S. Let’s suppose that

S

NP1

Det

a

NP

Nc

man

CP

C

whom2

S

Mary likes e2

S

e1 VP

is hungry

4

 ⟦Mary likes e2⟧M,w,i,g=1 iff Mary ∈ {x:<x,g(e2)>∈⟦likes⟧M,w,i,g}

then

 ⟦whom Mary likes e2⟧M,w,i,g= ⟦λy[Mary likes e2[y/e2]]⟧
 = {y: Mary ∈ {x:<x,y>∈⟦likes⟧M,w,i,g}}

This gives us a set of individuals — the set of individuals that Mary likes — as the
semantic value of the CP. How do we combine this with ⟦man⟧ to get the semantic value
of the parent NP?

We again use lambda abstraction, in the way just illustrated by our discussion of
predicate conjunction and disjunction. The idea is, very roughly, that

⟦NP⟧=⟦λx(man(x) & whom Mary likes(x))
 ={x:x ∈ ⟦man⟧ and x ∈ {y: Mary ∈ {x:<x,y>∈⟦likes⟧M,w,i,g}}}

4. VP ANAPHORA

Here’s an example of VP anaphora (also called in the text ‘VP deletion’ and ‘VP
ellipsis’):

 John went to the store. Bob did too.

A natural first thought is that this is simply a case of ellipsis — we are just saving time
by not repeating words. On this interpretation, these sentences mean the same thing as

 John went to the store. Bob went to the store too.

But this can’t be quite right, as is shown by

 John went to the store. Bob will too.

Our initial idea would lead to interpreting this pair as either of

 John went to the store. Bob went to the store too.
 John went to the store. Bob will went to the store too.

But the first interpretation gives the wrong truth conditions, and the second is
ungrammatical. This indicates that we have to look to the logical form of the relevant
sentences — where we can find an untensed verb to serve as the antecedent for the second
sentences — rather than just to the surface form.

5

Now consider the following pair:

 Bob thinks that he is the cat’s pajamas.
 John does too.

Contrast two readings of this pair: the ‘strict reading’ and the ‘sloppy reading.’ A possible
explanation for this distinction in terms of the distinction between a reading of the first
sentence in which ‘he’ is bound, and a reading of that sentence in which it is unbound
and assigned a value by the context.

Here is a residual puzzle involving the interaction of scope with VP ellipsis. It is a fact
familiar from our discussion of quantifier phrases that

 A student showed the campus to every visitor.

is ambiguous depending on which quantifier takes wide scope. This ambiguity remains if
we add to the discourse another sentence anaphoric on this one, as in

 A student showed the campus to every visitor. And a staff member did too.

This is as it should be. The odd thing is that if we use a proper name rather than ‘a staff
member’, we (arguably) force the reading in which ‘a student’ has wide scope:

 A student showed the campus to every visitor. And Bob did too.

But it’s not obvious why both interpretations of the first sentence shouldn’t still be
available.

6

