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1. SIMPLIFYING OUR THEORY

Recall that in our discussion of our semantic theory last time, we noted that the theory 
incorporates, for every syntactic rule, a corresponding semantic rule. This suggests that 
someone learning the language will have to, in addition to mastering the rules by which 
expressions can be grammatically combined, associate with each of these syntactic rules a 
separate semantic rule.

Once you put things this way, you might think that it would be vastly better if we could 
simplify things, and not have to come up with a separate semantic rule for every rule of 
grammatical combination. There’s an analogy here with theory construction in, for 
example, physics — it is vastly better to have a theory which explains the motion of all 
physical things than a theory which needs to posit separate laws to explain the movement 
of different types of physical objects. (One for planets, one for bricks, one for rabbits …)

Today our focus will be on the attempt to simplify our semantic theory in something like 
this way.

2. MODIFYING OUR ASSIGNMENT OF SEMANTIC VALUES

Remember the semantic rule corresponding to ‘it is not the case that’:

 (c) ⟦ [S neg S] ⟧ = ⟦neg⟧ (⟦S⟧)

The idea was that ⟦neg⟧ is a function from truth-values to truth-values, and that the 
semantic value of [S neg S] is the value of that function given ⟦S⟧ as argument.



The most ambitious attempt to simplify semantic theory would hold that this rule — 
functional application — is the only, or almost the only, semantic rule. 

To make this work, we’re obviously going to have to change our assignments of semantic 
values to our basic vocabulary. Consider, for example, our view about ⟦Vi⟧. We took, for 
example, ⟦is boring⟧ to be {x: x is boring}. But this won’t do if we want our only 
semantic rule to be functional application, since 

 Pavarotti is boring.

is a grammatical expression of our language, and neither ⟦Pavarotti⟧ nor ⟦is boring⟧ is a 
function. And if neither of x, y are a function, then neither will be an argument for the 
other, and functional application can’t get started.

The basic idea is this: our two basic categories are sentences and names. As before, the 
semantic value of a sentence is a truth-value, and the semantic value of a name is the 
object for which it stands. But the semantic value of everything else in our language will 
be a function. Let’s go through some examples to see how this might work.

2.1. Intransitive verbs

Let’s start with Vi’s like ‘is boring.’ What function might make a good semantic value for 
expressions of this sort?

Well, we know that in simple sentences like the above VPs inherit the semantic value of 
the relevant Vi. And we know that combining a N with a VP makes an S. So, if functional 
application is going to be our only semantic rule, we know that ⟦Vi⟧ must be something 
which can combine by functional application with an object to yield a truth-value. Hence 
it is natural to think that, on the present sort of approach, ⟦Vi⟧ is a function from objects 
to truth-values.

Let’s use ‘e’ to stand for entity — the sort of thing which can be the semantic value of a 
name — and ‘t’ to stand for truth-value. Then the present view is that the semantic value 
of an intransitive verb is a function of type <e,t> — a function from entities to truth-
values.

Which function of this sort is it? Intuitively, ⟦is boring⟧ will be the function which gives 
value true for any argument which is boring, and the value false otherwise. I.e.:

⟦is boring⟧v = the function f such that f(x)=1 if x ∈ {x: x is boring in v} and 
f(x)=0 otherwise

This is the characteristic function of the set of boring things: it delivers one value — 1 — 
for all of the things in the set, and another for all of the things not in the set. The 

2



proposal, then, is that rather than assign sets as the semantic values of intransitive verbs, 
we use the characteristic functions of those sets. 

Why do this? Again, the point is that by doing this we avoid having to appeal to different 
semantic rules at each turn: one for combining ⟦N⟧ with ⟦VP⟧, another for combining ⟦Vi⟧   
with ⟦N⟧, and so on.

2.2. Transitive verbs

As before, things get a bit hairier when we get to transitive verbs. The only semantic 
values in our system are objects, truth-values, and functions; so we know that the 
semantic value of a Vt must be a function. But a function from what to what?

To answer this question we think about what transitive verbs do, grammatically, in our 
language. They combine with N’s to form VP’s. So — given that ⟦N⟧ is an entity — their 
semantic value must be a function from entities to whatever the semantic value of a VP 
is. Since the semantic value of a VP is itself a function from entities to truth values, the 
semantic value of a Vt must be a function from entities to a function from entities to 
truth-values — that is, a function of type <e,<e,t>>.

Exactly which function of this type will ⟦likes⟧ be? Intuitively, you might think of this as 
a function from two objects to a truth-value — one that returns the value ‘true’ iff the 
first likes the second. But this is no good if we want our only semantic rule to be 
functional application. So we need to reduce this two-place function — i.e., a function 
which takes a pair of arguments — to two one-place functions. This method is known as 
currying a function.

The basic idea is this: we begin with the two-place function mentioned above, which can 
be defined as follows:

f(x,y)=1 iff x likes y, and  =0 otherwise.

Intuitively, what we are looking for is a pair of functions to do the job of f. The way to 
find them is to let the first function g be a function from an object x to the function h 
which is such that, for any object y, h(y)=1 iff f(x,y)=1. That is:

g(x)=the function h which is such that h(y)=1 iff y likes x
 
or, equivalently,

g(x)=the function h which is such that h(y)=1 iff y ∈ {z: z likes x}
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2.3. Operators

Extending our new semantics to ‘it is not the case that’ is pretty easy; we can just leave 
its semantic value as a function of type <t,t>. But our sentence connectives are a little 
tricky; we must reduce their semantic values to one-place functions if we want to 
maximize the simplicity of our semantic rules. 

To get the simplification of our semantics that we’re looking for, we have to slightly 
complicate our syntax, by introducing a new semantic category, which in the text is called 
‘conjP.’ Rather than treating conjunctive sentences as having the structure

we instead treat them as having the structure 

Given that we are viewing the sentences this way, what must ⟦and⟧ be?

3. THE INTERPRETATION FUNCTION

In the text, this is called ‘type-driven’ as opposed to ‘rule-to-rule’ semantics. The reason 
for this is that all of the heavy lifting in the semantics is done by an assignment of the 
right sorts of semantic values to the different syntactic types. Once this is done, then 
functional application does the rest; there’s no need to specify different rules for different 
syntactic constructions.

In fact, we can summarize the interpretation function for our new semantics — i.e., the 
list of rules for computing the semantic values of complex expressions from the semantic 
values of simpler ones — using just these two rules:

(51) a. Pass up
If Δ is a non-branching node whose only child is a, then ⟦Δ⟧v = ⟦a⟧v
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(51) b. Functional application
If Δ is a branching node with children a and b and ⟦a⟧v is a function which takes 
as argument entities of type ⟦b⟧v, then ⟦Δ⟧v = ⟦a⟧v(⟦b⟧v)

You should be able to see how much simpler this is than the semantic theory with which 
we began. We have one rule for non-branching nodes, another for branching nodes — and 
that’s it.

As mentioned in the text, this approach to semantics may also allow us to simplify our 
syntax by, for example, eliminating the need for a distinction between transitive and 
intransitive verbs. The relevant syntactic rules could then just be

 VP → V(N)

i.e., a rule which tells us that you can form a VP by taking any V, and either 
concatenating it with an N, or not. This will mean that no syntactic rules will prohibit 
the formation of ungrammatical strings like

 James Bond is hungry Sophia Loren.

But the ungrammaticality of these strings can now be explained not by positing extra 
semantic rules, but via our claim that the interpretation function — i.e., the set of our 
rules for semantically combining different expressions — is exhaused by Pass up and 
Functional Application. For when we look at the structure of the above we get 

But when we try to get the semantic value of the VP, we end up combining an e with a 
function of type <e,t>, which gives us a truth-value for the VP. And then we’re stuck 
with the S node with daughters of type e and type t — and neither of these is a function, 
and so we can’t combine them to get any semantic value at all for the sentence. The fact 
that the sentence is, in this sense, uninterpretable might be used to explain its 
ungrammaticality.

A puzzle for type-driven interpretation: what does our interpretation function say about 
cases in which we introduce a name for a function of type <e,t>, and then concatenate 
this with another (normal) name? Or a case in which we concatenate it with a predicate 
whose semantic value is also of type <e,t>? These cases might suggest, respectively, that 
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we can’t derive the facts about well-formedness from the system we’ve been developing, 
and that we can’t always derive the right truth conditions from Functional Application 
without adding in — as a rule-to-rule approach would do — facts about whether a given 
semantic value is the value of the name or the predicate in a sentence.

…

Type driven approaches to semantics have important theoretical advantages, but are 
often harder to work with; it’s more difficult to think about ⟦and⟧ on the new approach, 
for example. So going forward we will not always try to fit our theory into a semantics 
which uses only functional application. In many cases, it will be clear how our theory 
could be modified to fit with the present approach.
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