
Quantification in the predicate calculus
PHIL 43916

September 5, 2012

1. ...The problem posed by quantified sentences 1
2. ...Syntax of PC 2
3. ...Bound and free variables 3
4. ..Models and assignments 4
5. ...Interpretation of sentences containing one quantifier 6
6. ..Multiply quantified sentences and scope 7

1. THE PROBLEM POSED BY QUANTIFIED SENTENCES

So far the language for which we have developed a semantics contains no devices for
expressing generality, which we accomplish in English by expressions like ‘someone,’
‘everything’, or ‘most dogs.’

At first glance, it is not easy to see how to think about the structure of such sentences.
Consider, for example,

 Every cat is proud of itself.

It looks like ‘Every cat’ is playing the same role as a standard N, and ‘is proud of’ looks
like a Vt. Hence one might think that the right tree diagram for this sentence is
something like

But it’s hard to see how thius is going to work, for a few reasons. First, it is not obvious
what could be given as ⟦Every cat⟧ — our previous semantics leads us to expect that this
will be some individual, but which one could it be? (You might say: the set of all the cats.
But this would make a mess of our previous semantic theories, since then the sentence

S

N

Every cat

VP

Vt

is proud of

N

itself

would be true only if a certain set was proud of itself — and sets are not the sorts of
things which can be proud.)

Second, even if we could solve this problem, we have no way to account for the fact that
the interpretation of ‘itself’ seems somehow linked to ‘every cat’; our previous theories
give us no way to represent the idea that the semantic value of one expression might
depend in some way on the semantic value of another, unless one dominates the other.

Problems involving the logic and semantics of quantified sentences were a source of
intensive study from ancient times through the Middle Ages. The principal breakthrough
in their treatment was due to Frege. One way to think of Frege’s basic idea is to think of
him as saying that ‘Every cat is proud of itself’ does not have the form described by the
tree above, but rather a form something like

which introduces quantifiers and variables as new syntactic categories. The idea is that we
understand the function of expressions like ‘every cat’ not as simple N’s but rather as
‘saying something about’ a sentence, like ‘it is proud of itself’, which contains variable
expressions. Intuitively, what it says about such a sentence is that, if we restrict ourselves
to the cats, then every assignment of an object to ‘it’/‘itself’ yields a true sentence.

Our job now is to make this idea precise, and to see how to apply it to an expanded
fragment of English. But it’s useful, as in the text, to begin by looking at how we treat
quantification in the predicate calculus.

2. SYNTAX OF PC

My presentation of this will differ a bit from the way it is done in the text; I will stick
with the (now) familiar categories of S, N, and conj rather than replacing them with
Form (for formula), const (for constant), and Conn (for connective). I will, however,
simplify by following the text in replacing VPs with Preds (predicates).

We add the category t (for term). There are two types of terms: names (N) and variables
(var).

S

Quant

Every cat

S

var

it

VP

Vt

is proud of

var

itself

2

We admit the subcategories Pred1, Pred2, etc. where the subscript represents the number
of terms that the predicate in question must combine with in order for form a S. We have:

Pred1 → is boring, is hungry
Pred2 → likes, =
Pred3 → _ introduces _ to _.

In addition we add to our lexicon the following expressions:

→ (‘if … then’)
⟷ (‘if and only if’)
∀x (‘every’)
∃x (‘some’)
x1, x2, … (the variables)

The sentences of our language are of the forms

S conj S
neg S
Predn (t1 … tn)
∀x S
∃x S

3. BOUND AND FREE VARIABLES

Some sentences, like ‘Everyone loves someone’ contain multiple devices of generality.
Remember that rather than thinking of such sentences as of the form

we are thinking of them instead as of (something like) the form

S

N

Everyone

Pred2

loves

N

someone

3

But we need some way of representing the fact that ‘Everyone’ is connected to ‘x’
whereas ‘Someone’ is connected to ‘y’. (We’ll spell out what this connection amounts to
in a bit.) We express this connection by saying that ‘Everyone’ binds ‘x’ whereas
‘Someone’ binds ‘y’. A variable which is bound by some quantifier is a ‘bound variable.’ A
variable which is not bound by any quantifier is a ‘free variable.’

In the syntax of PC as described above, how do we indicate what binds what? In two
ways: first, by the indices on variables we use; and, second, by relative locations of
variables and quantifiers in the relevant tree structure. We say that a quantifier binds a
variable iff (i) they are coindexed and (ii) the quantifier c-commands the variable, where

A c-commands B iff neither A nor B dominate each other, and the first branching
node that dominates A also dominates B.

We can then make clear what binds what in the above tree by changing it to

4. MODELS AND ASSIGNMENTS

What we need to know now is how to interpret trees like this: what does it take for them
to be true or false?

S

?

Everyone

S

?

Someone

S

var

x

Pred2

loves

var

y

S

8x1 S

9x2 S

var

x1

Pred2

loves

var

x2

4

Two answer this question we need to introduce two new concepts: the concept of a model
and the concept of an assignment.

A model M is a pair of two things: a valuation function V and a domain (or universe) U
of discourse. These ideas are already familiar, in somewhat different form, from our
language F1. Recall that we needed to talk not just about, for example, ⟦is boring⟧, but
also ⟦is boring⟧v — where the latter is ⟦boring⟧ relative to some circumstance of
evaluation. A valuation function V1 is a function from the expressions of our language to
their semantic value in a situation v1.

A domain U1 is just the list of things that exist in v1. The semantic values assigned to
expressions by V1 must be built up from elements of U1. In the examples we’ve been
discussing, the domain was {Pavarotti, James Bond, Sophia Loren}.

So we can talk about the semantic value of ‘‘is boring’’ relative to a model in much the
way we before talked about ⟦is boring⟧v.

An assignment g is a function from variables to elements of the domain. Recall that we
have infinitely many variables x1, x2, … One assignment, given the above domain of
discourse, might be

[x1 → James Bond
 x2 → Sophia Loren
 xn → Pavarotti] for any n>2.

Another might be

[x1 → James Bond
 x2, x3 → Pavarotti
 xn → Sophia Loren] for any n>3.

A very simple one might be

[xn → James Bond] for any n

All that’s required is that the assignment g be a function from the variables to members
of the domain. We can now talk about the semantic value of an expression relative to a
model and an assignment (written as, e.g., ⟦is boring⟧M1, g1). This notion is defined (for
the lexicon described above) as follows:

For a model M1 = <U1, V1>,
if A is an expression which is not a variable — e.g., a N or a Pred — then
⟦A⟧M1, g1 = V1(A); and

5

if A is a variable, then ⟦A⟧M1, g1 = g1(A).

5. INTERPRETATION OF SENTENCES CONTAINING ONE QUANTIFIER

Our language contains two sorts of sentences containing quantifiers:

What does it take for these sentences to be true or false?

Consider the first, universally quantified, sentence first. The basic idea is that we start
with a model M and an assignment g of values to all of the variables, and we then
consider every assignment function which agrees with g on every variable other than xn. If
S is true in M with respect to every such assignment, then our quantified sentence is true
relative to M and g.

We use

 g1 [u/xn]

to mean

 the assignment function which differs from g1 only in assigning u as the value of
 x2

We can then write out our truth conditions as:

 (21a) ⟦∀xn A⟧M1, g1 =1 iff for all u ∈ U1, ⟦A⟧ M1, g1 [u/xn] =1

Existential quantification is treated in a parallel way:

 (21b) ⟦∃xn A⟧M1, g1 =1 iff for some u ∈ U1, ⟦A⟧ M1, g1 [u/xn] =1

Given our domain of three individuals and the choice of the first assignment function
described above, how would you derive the truth value for ‘∃x x is hungry’?

Did it matter which assignment function we picked?

S

8xn

S

S

9xn

S

6

6. MULTIPLY QUANTIFIED SENTENCES AND SCOPE

Let’s see how this helps us to derive truth conditions for sentences with more than one
quantifier. On one reading, the sentence ‘Everyone likes someone’ might be written out in
our present language as ‘∀x1 ∃x2 (x1 likes x2)’, with the tree diagram

We first apply rule (21a), and get the result that the sentence is true iff for every u ∈ U,
⟦∃x2 (x1 likes x2)⟧ = 1 relative to M1 and g1[u/x1] — i.e., if, for every member of the
domain, the sentence is true relative to the assignment which differs from g1 only in
assigning u as the value of x1.

How do we tell whether it is? What we want to do is apply rule (21b) to ∃x2 (x1 likes x2).
But this contains the variable ‘x1’ which, in this sentence, appears to be free. What do we
do with it?

The answer is that we were already told what to do in the previous step. We know that
for the sentence as a whole to be true, we need ‘∃x2 (x1 likes x2)’ to be true relative to, for
all u ∈ U, g1[u/x1]. That means that we have to consider (given our small domain) three
cases: one in which Pavarotti = ⟦x1⟧, one in which Bond = ⟦x1⟧, and one in which Loren
= ⟦x1⟧. The whole sentence is true iff the sub-sentence ‘∃x2 (x1 likes x2)’ is true relative to
each of these assignments.

How do we tell whether it is? Now we can apply rule (21b) — three times, corresponding
to the three different values of ⟦x1⟧. Let’s focus first on the case in which Pavarotti =
⟦x1⟧. What rule (21b) tells us is that ‘∃x2 (x1 likes x2)’ is true relative to this assignment
iff for some u’ ∈ U, ‘x1 likes x2’ is true relative to g1[Pavarotti/x1[u’/x2⟧ — i.e., iff, for
some member u’ of the domain, it is true relative to the assignment of values to variables
which differs from g1 only in assigning Pavarotti as the value of x1 and u’ as the value of
x2.

We then go through the same procedure for assignments in which Bond = ⟦x1⟧, and in
which Loren = ⟦x1⟧. If ‘∃x2 (x1 likes x2)’ comes out true for all, then our original sentence
‘∀x1 ∃x2 (x1 likes x2)’ is true (relative to the model and assignment).

8x19x2(x1 likes x2)

8x1 9x2(x1 likes x2)

9x2 x1 likes x2

var

x1

Pred 2

likes

var

x2

7

The process is not quite this tiresome if we want to derive truth conditions rather than
truth-value. Then rules (21a-b) let us derive the result that

⟦∀x1 ∃x2 (x1 likes x2)⟧M, g = 1 iff for all u ∈ U and some u’ ∈ U,
⟦x1 likes x2⟧M, g [u/x1[u’/x2]] = 1.

We could then of course analyze this further by looking at what our semantic theory says
about sentences of the form [S N Pred2 N], like ‘x1 likes x2.’

In the tree above, the universal quantifier contains the existential quantifier within its
scope. In tree diagram terms, this means that the first branching node which dominates
the universal quantifier is not the first branching node which dominates the existential
quantifier, but does dominate it. When this is the case we say that the universal
quantifier has wide scope relative to the existential quantifier, and, conversely, that the
existential quantifier has narrow scope relative to the universal quantifier.

Scope relations can have an important effect on truth conditions. Consider, for example,
the tree with the scope relations of our example sentence reversed:

What would its truth conditions be?

9x28x1(x1 likes x2)

9x2 8x1(x1 likes x2)

8x1 x1 likes x2

var

x1

Pred 2

likes

var

x2

8

