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1 Soundness and completeness

Roughly, the axioms of a theory are that theory’s basic assumptions, and the
theorems are the formulae provable from the axioms using the rules provided
by the theory.

Arithmetic is a theory. It’s axioms can be written like this:

(P1) 0 is a number.

(P2) The successor of any number is a number.

(P3) No two numbers have the same successor.

(P4) 0 is not the successor of any number.

(P5) Any property which belongs to 0, and also to the successor of
every number which has the property, belongs to all numbers.

These are called the Peano axioms. Using these axioms, we can define addition
and other arithmetical operations, and prove, for example, that 56+9=65.

Claims that one can prove from the axioms of a theory are called theorems of
that theory.

Suppose we are talking about the theory A of arithmetic. Then we can express
the idea that a certain sentence p is a theorem of A — i.e., provable from A’s
axioms — as follows:

`A p

Now we can introduce the notion of the valid sentences of a theory. For our
purposes, think of a valid sentence as a sentence in the language of the theory
that can’t be false.



Now we can ask, for any theory, how the theorems of the theory relate to its
valid sentences. In the case of arithmetic, we said that 56+9=65 is a theorem
of the theory. It is also valid; it can’t be false. But in general we can ask two
important questions of any theory:

◦ Are all of its theorems valid? If they are, we say that the theory is sound.

◦ Are all of its valid sentence theorems? If they are, we say that the theory
is complete.

2 Gödel’s incompleteness theorems

Gödel’s incompleteness theorems are, as the name would indicate, proofs that
certain mathematical and logical theories — one of which is Peano arithmetic —
are not complete. That is, Gödel showed that there were certain valid sentences
of those theories which were not provable from their axioms.

2.1 Gödel numbering and ‘provable’

First we note that we can use the natural numbers to come up with ‘names’
for every formula of arithmetic. We do this by assigning every formula what is
now called a Gödel number. There are many ways to do this. One is by first
assigning a natural number to every basic symbol of the language of arithmetic,
such as, for example, 0, 1, +, *, =, (, . . . . Then imagine that we have some
formula of arithmetic, e.g.

0+1=1

We assign this formula a Gödel number by multiplying the Gödel number for
the first digit of the formula (0) by 2, the Gödel number for the second digit of
the formula (+) by 3, the Gödel number of the third digit (1) by 5, and so on,
multiplying the Gödel number for the nth digit by the nth prime number. The
sum of these n products is the Gödel number for the formula as a whole.

The point of using only prime numbers is that, this way, no two formulae will
ever have the same Gödel number. The key points here are that every formula
has a Gödel number, and that no two formulae every have the same Gödel
number.

Rather than actually writing out the Gödel numbers for formulae, if we’re talk-
ing about some sentence p, we’ll use the following symbol for its Gödel number:
#p.
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The point of this is to give us a way, using the language of arithmetic, of talking
about the sentences of that language. You can think of the Godel number of a
formula as a name for that formula.

Now assume that we can also define a predicate ‘provable’ such that, for the
theory A of arithmetic,

`A p ⇐⇒ `A provable(#p)

i.e., ‘provable(#p)’ is a theorem of A if and only if ‘p’ is.

2.2 The fixed point lemma

Gödel showed that we could, for the theory A of arithmetic, find a sentence q
such that

`A (q ⇐⇒ ¬ provable(#q))

In other words, he showed that there was a formula such that it was provable
in A that the formula was true iff it was not provable.

Suppose first that q is true. Then it follows from the above that it is not
provable.

Suppose instead that q is false. We are assuming that theory in question is
sound, and hence that falsehoods are never provable in the theory. But then it
follows from the fixed point lemma that it is true. So the supposition that q is
false leads to a contradiction, and q must be true.

This is the moral of the first incompleteness theorem: there is some formula in
the language of arithmetic which is true and cannot be proven. This is sometimes
called a ‘Godel sentence.’ These sentences are said to be ‘undecidable’ by the
theory, since neither they nor their negations are provable from the axioms.
In follows from the fact that there are such sentences that, in the terms we
introduced earlier, arithmetic is incomplete.

2.3 Gödel’s second incompleteness theorem

The second incompleteness theorem establishes that we cannot prove, in the
language of arithmetic, the consistency of the axioms of arithmetic. The route
this takes is a proof of the conditional claim

A is consistent → q
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Since this conditional is provable, if the consistency of A were provable, ‘q’
would be provable as well. But we just saw above (in the proof of the first
incompleteness theorem) that it isn’t. So, the consistency of A is not provable
in A.

3 Lucas on the consequences of the incompleteness theorems

The second incompleteness theorem says that one cannot prove, in the language
of arithmetic, that arithmetic is consistent. And, more generally, for any lan-
guage L which can state the truths of arithmetic, one cannot prove in L that L
is consistent.

But, Lucas argues, this fact can be used to show that the mind is not a com-
puting machine. Here is the key passage:

‘Now a model of the mind must include a mechanism which can enun-
ciate truths of arithmetic, because this is something which minds can
do: in fact, it is easy to produce mechanical models which will in
many respects produce truths of arithmetic far better than human
beings can. But in this one respect they cannot do so well: in that
for every machine there is a truth which it cannot produce as being
true, but which a mind can. This shows that a machine cannot be a
complete and adequate model of the mind. It cannot do everything
that a mind can do, since however much it can do, there is always
something which it cannot do, and a mind can. . . . The Godelian
formula is the Achilles heel of the cybernetical machine. And there-
fore we cannot hope to ever produce a machine that will do all that
a mind can do . . . ’

Here is one way to think about the argument. Suppose (for reductio) that the
mind is a computing machine, which knows things only by deriving theorems
from axioms. Call the language which the mind is using L+.

The human mind can express the truths of arithmetic; so it follows from Godel’s
first incompleteness theorem that there are truths of L+ that are not provable
in L+, and hence no knowable by the mind.

Further, it follows from Godel’s second incompleteness theorem that (given the
above) the mind cannot know that it is consistent.

But, Lucas argues, we can know that our own representation of the world is
consistent. So, our minds cannot be machines, because we can know things
that machines (provably) could not know.

4



What’s the best reply? Does the fact that we can know whether arithmetic
is consistent mean that we can always know when some formalized theory is
consistent?
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