Invariants of 4-manifolds from Hopf Algebras

Julian Chaidez USC

Jordan Cotler Harvard

Shawn Xingshan Cui
Math and Physics&Astronomy
Purdue University

May 26, 2024

QuaSy-Con II University of Notre Dame

Background & Motivation

Classification of (closed oriented) manifolds in low dimensions

- dim = 1: circle
- dim = 2: surfaces

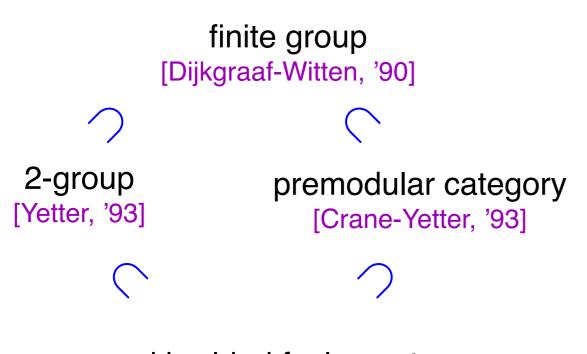
- · dim = 3: Thurston Geometrization Conjecture (Theorem by Perelman)
- dim = 4: topological: simply-connected manifolds (Freedman) smooth: wildly open

Construct computable invariants to distinguish (smooth) 4-manifolds.

- "classical" invariants: Euler char., signature, (co)homology, etc
- "quantum" invariants: topological quantum field theory (TQFT)
 - analytical approach: Seiberg-Witten/Donaldson-Floer
 - algebraic approach:

Algebraic construction of 4-manifold invariants (incomplete list)

Turaev-Viro state-sum type



crossed braided fusion category [C-, '16]

fusion 2-category

[Douglas-Reutter, '18]

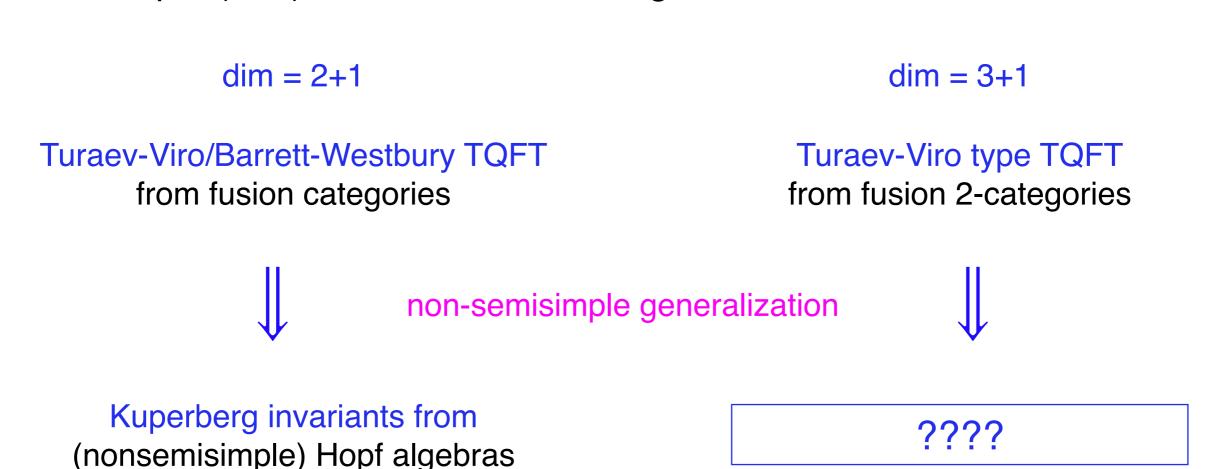
universal state sum

[Walker, '21]

- Kashaev inv based on cyclic groups [Kashaev, '14]
- Dichromatic inv based on pivotal functors [Barenz-Barrett, '17]
- State sums for fermionic topological order [Tata-Kobayashi-Bulmash-Barkeshli, '21]
- Skein TQFTs from ribbon categories
 [Costantino-Geer-Haïoun-Patureau-Mirand, '23]
- Trisection inv based on Hopf algebras [Chaidez-Cotler-Cui, '19, '23]

Semisimple vs non-semisimple TQFTs

- Roughly, a (d+1)-TQFT assigns to each closed d-manifold a vector space, and to each (d+1)-cobordism a linear operator, coherently (functorially).
- · Semisimple (3+1)-TQFTs cannot distinguish smooth structures. [Reutter, '20]



Goal: Construct Kuperberg-type 4-manifold invariants.

Algebraic Input: Hopf Triplets

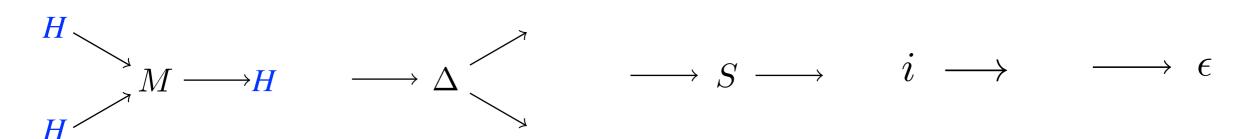
Hopf algebra $H(M, i, \Delta, \epsilon, S)$ (finite dimensional over \mathbb{C})

 $M: H \otimes H \to H$ $\Delta: H \to H \otimes H$

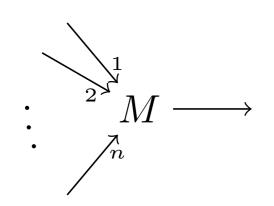
 $i: \mathbb{C} \to H$ $\epsilon: H \to \mathbb{C}$

 $S: H \to H$

Tensor diagram representations



Iterated M, Δ tensors:



$$M(M\otimes I)\cdots(M\otimes I^{\otimes (n-2)})$$

$$\longrightarrow \Delta$$
 $\stackrel{1}{\longrightarrow}$
 $\stackrel{2}{\longrightarrow}$
 $\stackrel{1}{\longrightarrow}$

$$(\Delta \otimes I^{\otimes (n-2)}) \cdots (\Delta \otimes I)\Delta$$

Definition:

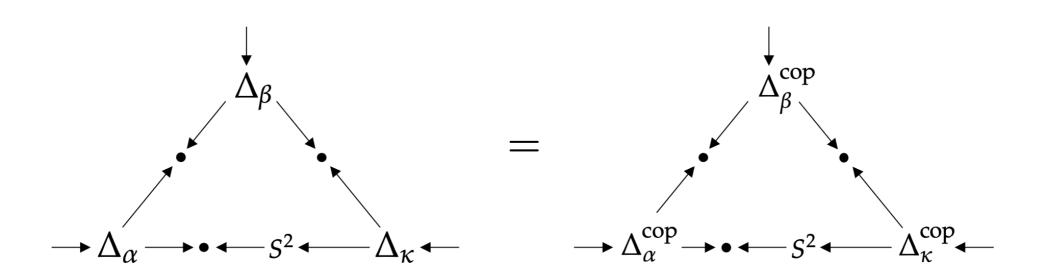
A Hopf triplet $\mathcal{H} = (H_{\alpha}, H_{\beta}, H_{\gamma}; \langle - \rangle)$ consists of

- three Hopf algebras $H_{lpha}, H_{eta}, H_{\gamma}$
- three pairings $\langle \rangle_{\alpha\beta} : H_{\alpha} \otimes H_{\beta} \to \mathbb{C}$ $\langle \rangle_{\beta\gamma} : H_{\beta} \otimes H_{\gamma} \to \mathbb{C}$ $\langle \rangle_{\gamma\alpha} : H_{\gamma} \otimes H_{\alpha} \to \mathbb{C}$

tensor notation: $M_{\alpha} \longrightarrow M_{\alpha} \longrightarrow M_{\alpha}$

such that

- 1. For $\mu\nu\in\{\alpha\beta,\beta\gamma,\gamma\alpha\}$, the induced map $\langle\cdot,\cdot\rangle^{\nu}_{\mu}:H_{\mu}\to H^{*,\mathrm{cop}}_{\nu}$ is a Hopf algebra morphism, and preserves the distinguished group-like element;
- 2.



Definition:

A Hopf algebra H is balanced if

the distinguished group-like element

$$\rightarrow S^2 \rightarrow = \rightarrow \Delta \stackrel{\alpha}{\rightleftharpoons} \alpha^{-1}$$

is involutory if $S^2 = Id$

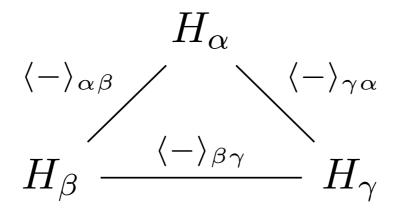
involutory

 \iff

semisimple

balanced

· A Hopf triplet is balanced/involutory if its Hopf algebras are so.



Examples of Hopf triplets

Let (H,R) be a quasi-triangular Hopf algebra

$$R \subset H \otimes H$$

such that
$$R = a \longrightarrow$$
 the distinguished group-like element of H

Construct a Hopf triplet $\mathcal{H}_H = (H^*, H^{cop}, H^*; \langle - \rangle)$

$$f \in H^*$$

$$f \circ S(x)$$

$$R$$

$$S^{-2}(g)$$

$$x \in H^{\text{cop}}$$

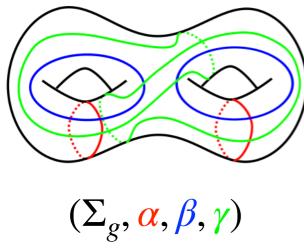
$$H^* \ni g$$

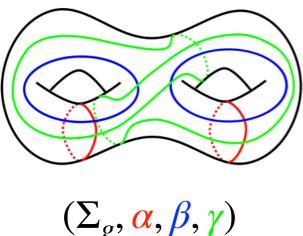
Note: this Hopf triplet is balanced/involutory if H is so.

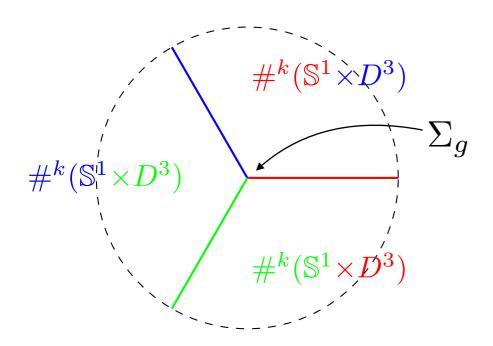
The Invariant

Trisection diagrams of closed 4-manifolds

[D. Gay, R. Kirby, '12]







 Σ_{ρ} : closed surface of genus g

$$\begin{split} &\alpha = \{\alpha_1, \cdots, \alpha_g\} \\ &\beta = \{\beta_1, \cdots, \beta_g\} \\ &\gamma = \{\gamma_1, \cdots, \gamma_g\} \\ &(\Sigma_g, \alpha, \beta) \;, \;\; (\Sigma_g, \alpha, \gamma) \;, \;\; (\Sigma_g, \beta, \gamma) \\ &\text{are Heegaard diagrams for} \quad \#^k(\mathbb{S}^1 \times \mathbb{S}^2) \end{split}$$

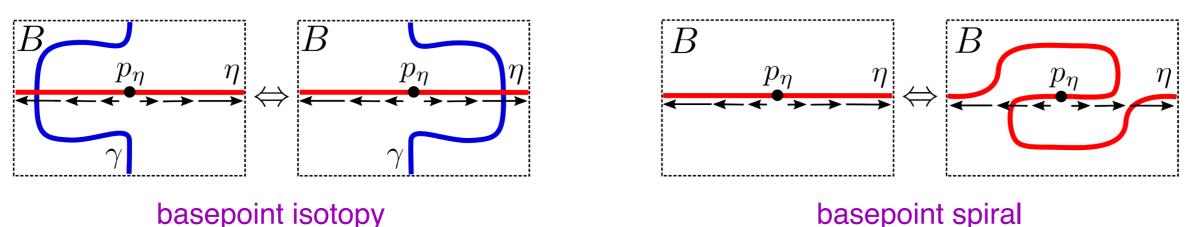
- Every closed oriented 4-manifold has trisection diagrams.
- Equivalent diagrams are related by surface isotopy, handle slides, stabilization.

Definition:

A combing on a trisection $T = (\Sigma_g, \alpha, \beta, \gamma)$ is a vector field f on Σ_g ,

- f has a singularity of index -1 on each trisection curve,
- f has degree 0 on all components of $\partial \Sigma_g$, except the marked component.

Combing moves:



[f]: the set of combings equivalent to f under combing moves $\mathrm{Comb}(T)$: the set of equivalence classes of combings

Theorem [Chaidez, Cotler, C-]

For a trisection diagram $T = (\Sigma_g, \alpha, \beta, \gamma)$ representing the 4-manifold X, $\operatorname{Comb}(T)$ is a torsor over $H_1(X)$.

Algebraic input: a balanced Hopf triplet

$$H_{\alpha}$$
 $\langle - \rangle_{\alpha\beta}$
 $\langle - \rangle_{\gamma\alpha}$
 H_{β}
 H_{γ}

$$\mathcal{H} = (H_{\alpha}, H_{\beta}, H_{\gamma}; \langle - \rangle)$$

$$\mu \in \{\alpha, \beta, \gamma\}$$

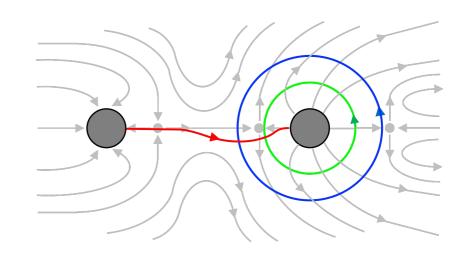
Choose a right integral $e = e^{\mu} \in H_{\mu}$, and define the generalized integral

$$e_{n-\frac{1}{2}} \longrightarrow := e \longrightarrow \Delta$$

Topological input: a closed oriented 4-manifold M

Choose

- a trisection diagram $T = (\Sigma_g, \alpha, \beta, \gamma)$ for M
- A combing f on T



$$\mu \in \{\alpha, \beta, \gamma\} \quad i = 1, \dots, g$$

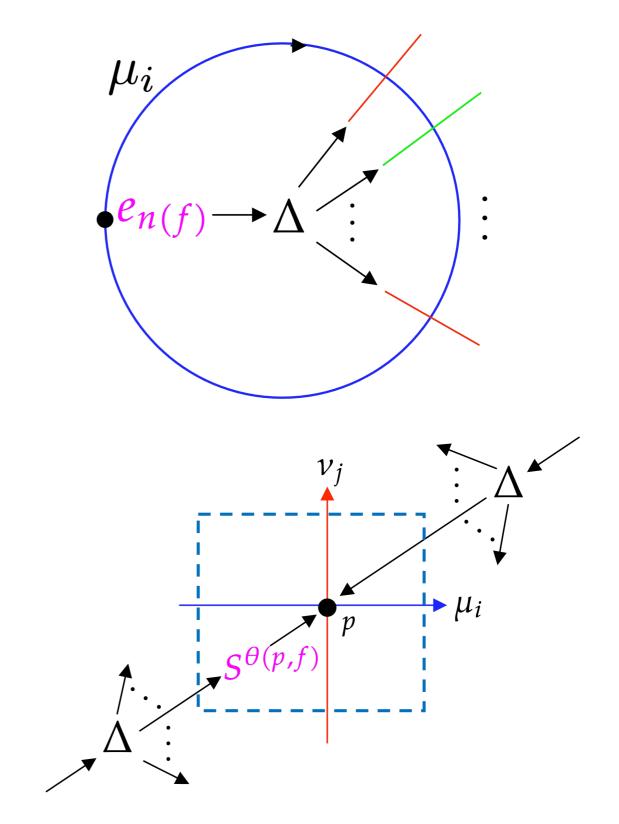
To each μ_i curve, choose

- a basepoint
- an orientation

and assign the tensor:

$$\mu\nu \in \{\alpha\beta, \beta\gamma, \gamma\alpha\}$$

To each crossing p between a μ_i curve and a ν_j curve, assign the tensor:



n(f) and $\theta(p,f)$ are quantities depending on f

 $Z(M; \mathcal{H}) :=$ contraction of the above tensors with certain normalization.

Involutory Case:

Theorem [Chaidez, Cotler, C-]

For a involutory Hopf triplet \mathcal{H} , $Z(M;\mathcal{H})$ is an invariant of the diffeomorphism class of closed oriented smooth 4-manifolds.

Theorem [Chaidez, Cotler, C-]

If H is a quasi-triangular semisimple Hopf algebra, then

$$Z(M; \mathcal{H}_H) = CY(M; Rep(H))$$

Crane-Yetter invariant

Theorem [Chaidez, Cotler, C-]

If $\phi: D(H) \to K$ is a Hopf algebra morphism between semisimple Hopf algebras H and K, where D(H) is the Drinfeld double of H, then

$$Z(M; \mathcal{H}(H, K, \phi)) = I(M; \operatorname{Rep}(\phi))$$

certain triplet

Dichromatic invariant

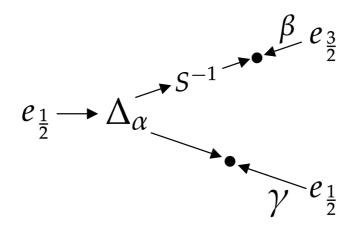
General Case:

Theorem

For a balanced Hopf triplet \mathcal{H} satisfying certain normalization condition, if for 4-manifolds M with $H_1(M)=0,\ Z(M;\mathcal{H})$ is an invariant of M.

Remark:

- For general manifolds, the invariant depends on the combing, but only on the equivalence class of the combings. Want to know what intrinsic structure of the 4-manifold elements of Comb(T) represent.
- The normalization condition requires the diagram below NONZERO



Known examples of triplets to date are all semisimple.

Future directions:

- Is the invariant (semisimple or not) part of a TQFT?
- Relate the invariant to other state-sum invariants besides CY.
- Find more examples of (nonsemisimple) Hopf triplets.
- Generalize to Hopf triplets in a symmetric fusion category.
- The notion of Hopf triplets should be generalized to a tri-algebra.
- Recent work of Beliakova & De Renzi on invariants 4d 2-handlebodie using unimodular ribbon Hopf algebras.

Thank You!