Math 20580 Name:

Midterm 2 Instructor:

October 28, 2021 Section:

Calculators are NOT allowed. Do not remove this answer page — you will return the whole

exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are
finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions
each worth 11 points. Record your answers by placing an x through one letter for each
problem on this answer sheet.

Sign the pledge. “On my honor, I have neither given nor received unauthorized aid on
this Exam”:
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Part I: Multiple choice questions (7 points each)

1. Assume that A and B are two 4 x 4 matrices with determinants det A = 2, det B = 3.
Find the determinant det(247 BZAB™!).

(a) 0 (b) 192 (c) —36 (d) 48 (e) cannot be determined.
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2. What are the eigenvalues of the matrix [_12 411] ?

(a) 1,4 (b) 1,2 (c) 2.1 (d) 3,0

ne of the above.
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3. Let M, 3 denote the vector space of 2 x 3 matrices. Which among the following
subsets of M, 3 is a subspace?

O
}(The set of all 2 x 3 matrices whose columns sum to [(1)] O S

. The set of all matrices whose entries are all non-negative. Nel C,\O }QQQ {,LV\CQ.Q\.“A
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. The set of all matrices with a zero in the first row, second column.
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(a) DI and IV only (b) IV only (c) I, III, and IV only
(d) all of them (e) none of them.
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4. Which of the following statements is always true?
VI./ If two matrices are similar, then they have the same determinant.
)Ii If two matrices have the same characteristic polynomial, then they are similar.
m. If a matrix is diagonalizable, then it is invertible.
\y(. If a matrix A is invertible, then zero is not an eigenvalue of A.

(a) III and IV only (b) I only @ and IV only

(d) all of them ) none of them.
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5. Which of the following matrices has complex eigenvalue 4 + 27

0 { _42 ﬂ (1) { _42 _241 (111) [;l ﬂ (IV) [‘21 —42]

(a) Iand IT only  (b) IV only  (c) III only and IV only  (e) IT and IV only
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6. Let H = span{1,#* 4+ 1,¢* + > 4+, >+t — 1}, considered as a subspace of P3 (the

vector space of all polynomials of degree at most 3). What is the dimension of H?

(a) 0 (b) 1 (c) 2 @ () 4
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7. Let T: R® — R'? be a linear transformation which is one-to-one. What is the
dimension of the range of T'?

(2) 12 (b) (c) 4 (d) 0 (e) cannot be determined.
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8. The vector [ 3 | is an eigenvector of the matrix A = [O —18 O] . What is the
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corresponding eigenvalue?

(a) 2 18 (c) 7 (d) 0 (e) 3
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Part II: Partial credit questions (11 points each). Show your work.

9. Consider the matrix

1 11 o0 0
300 Vo1 «

A=1]1 1 0 11000 10
1 1 1 1 sin(8)
0 00 0 2

(a) Calculate the determinant of A. Explain how this computation implies that A is
invertible. (Hint: The size of the matrix and the irrational entries should encourage
you to be efficient in your computation.)
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(b) Compute the entry in the the 5th row and 5th column of A~
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10. Consider the two ordered bases B and C of R? given by

17 1] [o 11
B={|-1|. [1|. o[}, c={|-1|. 1
0 1 0| |2
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(a) Find the change of coordinate matrix P from C to B (recall that P is the
B«C B«+C

matrix such that [Z¥]z = BPC - [#]¢ for all vectors Z in R?).
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(b) If ¥ is a vector in R? with [7]; = [1] , determine [v]g and .
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11. Let A be the matrix
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(a) Find all the eigenvalues of A.

Wl (A e e bangdar, s

o\l e Q\AJVV\Q& on s onal . )
(b) Diagonalize A, that is, find an invertible matrix P and a diagonal matrix D s&h

that A= PDP™'. l/u)\\\ U\’ N 1\ QOVVLYLAPQL*LQW .
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(c) Express A" in the form PEP™", where E is a diagonal matrix.
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12. Consider the vector space Py of polynomials of degree at most 2 in the variable x,
and the linear transformation

TiB B, ()= o (bl +2),

0
where — means taking the derivative with respect to x.

ox
(a) Verify that 7' can be expressed more explicitly as

T(ao + a17 + asx®) = (ay + 4as) + 2asz.
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(b) Write down a basis B for Py. Find the matrix [Tz = [T] of T with respect to B.
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(c) Find bases for the kernel and the range of 7.
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