Math 20580	Name:
Midterm 2	Instructor:
March 5, 2020	Section:
Calculators are NOT allowed.	Do not remove this answer page – you will return the whole
over Ven will be allowed 75	minutes to do the test. You may leave earlier if you are

exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Total.

11.

12.

Part I: Multiple choice questions (7 points each)

- 1. Assume that A and B are two 4×4 matrices with determinants det A = 2, det B = 3. Find the determinant det $(A^T B A^{-1} B)$.
 - (a) 0 (b) 9/4 (c) 36 (d) 9 (e) cannot be determined.

$$det(A^{T}) \cdot det(B) \cdot det(A^{T}) \cdot det B =$$

$$2 \cdot 3 \cdot \frac{1}{2} \cdot 3 = 9$$

2. Consider the four functions $f_1 = (\sin t)^2$, $f_2 = (\cos t)^2$, $f_3 = 1$, $f_4 = \cos 2t$. They generate a subspace $H = \text{Span}\{f_1, f_2, f_3, f_4\}$ in the vector space C[0, 1] of continuous functions on the interval [0, 1]. Which among the following sets is a basis for H?

Hint: You may use the trig identity $\cos 2t = (\cos t)^2 - (\sin t)^2 = 2(\cos t)^2 - 1 = 1 - 2(\sin t)^2.$

(a) $\{f_1, f_2\}$ (b) $\{f_1, f_2, f_3\}$ (c) $\{f_1, f_2, f_3, f_4\}$ (d) $\{f_1\}$ (e) none of the above.

3. Which among the following subsets of \mathbb{R}^3 is a subspace?

1.
$$\begin{cases} t \\ sint \\ t, s \in \mathbb{R} \end{cases}$$

2.
$$\begin{cases} t \\ 2t \\ 1 \\ t \in \mathbb{R} \end{cases}$$

3.
$$\begin{cases} t \\ s \\ t+s \\ t+s \\ s \\ t+s \\ t+s$$

4. Let S be the parallogram determined by the vectors $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 3 \end{bmatrix}$. Find the area of S. (a) 0 (b) 1 (c) -1 (d) 42 (e) none of the above. $\int det \begin{bmatrix} 1 & 2\\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -1\\ -1 \end{bmatrix} = \begin{bmatrix} -1\\ -1$

- 5. Consider the linear transformation $T : \mathbb{P}_2 \to \mathbb{P}_2$ defined by $T : p(t) \mapsto t p'(t) p(t)$. Which of the following polynomials is in the null space (kernel) of T?
 - (I) t^2 (II) 2t (III) $1 t^2$ (IV) -t

(a) I and II only (b) IV only (c) III only (d) I and III only (e) II and IV only

$$t^{2} \rightarrow t \cdot 2t - t^{2} = t^{2} \neq 0$$

$$2t \rightarrow t \cdot 2 - 2t = 0$$

$$|-t^{2} \rightarrow t (-2t) - (1 - t^{2}) = -t^{2} - 1 \neq 0$$

$$-t \rightarrow t \cdot (-1) + t = 0$$

- 6. Let *H* be the subspace of \mathbb{P}_3 consisting of all polynomials p(t) of degree at most 3 such that p(-1) = 0. Which of the following is a basis of *H*?
 - (a) $\{1, t, t^2, t^3\}$ (b) $\{t 1, t^2 + 1, t^3 1\}$ (c) $\{t + 1, t^2 1, t^3 + 1\}$ (d) $\{t + 1, t^2 - 1, t^2 + t^3, t^3 + 1\}$ (e) $\{t + 1, t^3 + 1\}$

$$p(t) = a+bt + ct^{2} + dt^{3}$$

$$p(-1) = 0 \iff a - b + c - d = 0 \iff a = b - c + d$$
So $p(t) = (b - c + d) + bt + ct^{2} + dt^{3}$

$$= b(1+t) + c(t^{2}-1) + d(t^{3}+1)$$

$$f = \frac{1}{2}$$
Span and independent

7. Let $T: \mathbb{R}^{12} \to \mathbb{R}^8$ be a linear transformation of \mathbb{R}^{12} onto \mathbb{R}^8 . What is the dimension of the null space (kernel) of T?

(a) 3 (b) 4 (c) 6 (d) 8 (e) 11.

$$12 = 8 + \dim Nul(T)$$

 4

So 1=3

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the matrix

$$A = \begin{bmatrix} s & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & s \end{bmatrix}$$

with s a parameter.

(a) Calculate the determinant of A.

Expand along now 1:

$$det A = S \cdot det \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix} = 0 + 1 \cdot det \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$= S(S-1)$$

(b) For which values of the parameter s is the matrix A invertible?

dit A = 0, so [5 = 1]

(c) When A is invertible, find the entry in row 1, column 3 of the inverse matrix A^{-1} (the formula will depend on the parameter s).

10. Consider the two ordered bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 given by

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}, \qquad \mathcal{C} = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\}.$$

(a) Find the change of coordinate matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} (recall that $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ is the matrix such that $[\vec{x}]_{\mathcal{B}} = \underset{\mathcal{B}\leftarrow\mathcal{C}}{P} \cdot [\vec{x}]_{\mathcal{C}}$ for all vectors \vec{x} in \mathbb{R}^3).

$$\begin{bmatrix} 1 & 0 & | & | & | & | & | & | & | \\ 0 & 0 & | & | & | & | & | \\ 0 & | & 0 & | & 0 & | \\ 0 & | & 0 & | & 0 & | \\ 0 & | & 0 & | & | \\ 0 & | & 0 & | \\ 0 & | & | \\ 0 & | & | \\ 0 & | \\ 0 & | \\ 0 & | \\ 0 & | \\ 0 & | \\ 0 & | \\ 0 & | \\ 0$$

11. Let A be the matrix

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

1=0

(a) Find all the eigenvalues of A.

 $0 = dt (A - AT_3) = dt \begin{bmatrix} -A & 1 & 1 \\ 0 & 1 - A & 1 \\ 0 & 1 & 1 - A \end{bmatrix}$ $= (-A) dt \begin{bmatrix} 1 - A & 1 \\ 0 & 1 & 1 - A \end{bmatrix} = (-A)((1 - A)^2 - 1) = -A \cdot A \cdot (A - 2)$

(b) For each eigenvalue of A, determine a basis of the corresponding eigenspace.

$$E_{0} = Mul \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_{1} = S \\ x_{2} = -t \\ x_{3} = t \\ \hline x_{1} = S \cdot \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_{2} = -t \\ x_{3} = t \\ \hline x_{3} = t \\$$

12. Consider the vector space \mathbb{P}_2 of polynomials of degree at most 2 in the variable t. Let $\mathcal{E} = \{1, t, t^2\}$ denote the standard basis of \mathbb{P}_2 . Define the following polynomials in \mathbb{P}_2 :

 $p_0(t) = 1 + t + t^2$, $p_1(t) = 1 + 2t + 3t^2$, $p_2 = 1 + 4t + 9t^2$, $p_3 = 1 + 8t + 17t^3$.

(a) Write below the coordinate vector $\vec{v}_i = [p_i(t)]_{\mathcal{E}}$ in \mathbb{R}^3 for each i = 0, 1, 2, 3.

$$\vec{v}_0 = \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{bmatrix}, \quad \vec{v}_1 = \begin{bmatrix} \mathbf{I} \\ \mathbf{2} \\ \mathbf{3} \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} \mathbf{I} \\ \mathbf{4} \\ \mathbf{9} \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} \mathbf{I} \\ \mathbf{8} \\ \mathbf{17} \end{bmatrix}.$$

(b) Find scalars a_0, a_1, a_2 such that $\vec{v}_3 = a_0 \vec{v}_0 + a_1 \vec{v}_1 + a_2 \vec{v}_2$.

(c) Find scalars b_0, b_1, b_2 such that $p_3 = b_0 p_0 + b_1 p_1 + b_2 p_2$. Explain your reasoning.

Since
$$V_i = [P_i]_E$$
 same weights work
 $b_i = 4, b_i = 4, b_2 = 1$